Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges
Abstract
:1. Introduction
2. Methods
- RQ1: What is the state of the reclamation of treated wastewater for irrigation in Chile?
- RQ2: What criteria/parameters determine the state of the reclamation of treated wastewater for irrigation in Chile?
3. Results and Discussion
3.1. Perspectives on the Current State
3.1.1. The Context of Climate in Chile
3.1.2. Chile as an Agricultural Country
3.1.3. Irrigation in Chile
3.1.4. Current Status of Wastewater Reclamation in Chile
3.1.5. Regulations Related to Treated Wastewater and Its Reclamation
3.2. Challenges for Improving Reclamation of Wastewater in Chile
3.2.1. Institutional
3.2.2. The Necessity of Regulations
3.2.3. Rural Communities
3.2.4. Emerging Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaramillo, M.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Panagopoulos, A. Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach—A techno-economic evaluation. J. Environ. Chem. Eng. 2021, 9, 105338. [Google Scholar] [CrossRef]
- Panagopoulos, A. Energetic, economic and environmental assessment of zero liquid discharge (ZLD) brackish water and seawater desalination systems. Energy Convers. Manag. 2021, 235, 113957. [Google Scholar] [CrossRef]
- Panagopoulos, A. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Cáceres, L.; Gruttner, E.; Contreras, R. Water Recycling in Arid Regions: Chilean case. Ambio 1992, 21, 138–144. Available online: https://www.jstor.org/stable/4313907 (accessed on 7 January 2022).
- Cáceres, L.; Delatorre, J.; De la Riva, F.; Monardes, V. Greening of arid cities by residual water reuse: A multidisciplinary project in northern Chile. Ambio 2003, 32, 264–268. [Google Scholar] [CrossRef]
- Ganoulis, J. Risk analysis of wastewater reuse in agriculture. Int. J. Recycl. Org. Waste Agric. 2012, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tal, A. Rethinking the sustainability of Israel’s irrigation practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Pan, N.; Wang, Y.; Wu, L. Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere 2015, 119, 654–661. [Google Scholar] [CrossRef]
- Lu, S.B.; Shang, Y.Z.; Pei, L.; Li, W.; Wu, X.H. The effects of rural domestic sewage reclaimed water drip irrigation on characteristics of rhizosphere soil. Appl. Ecol. Environ. Res. 2017, 15, 1145–1155. [Google Scholar] [CrossRef]
- Zalacáin, D.; Sastre-Merlín, A.; Martínez-Pérez, S.; Bienes, R.; García-Díaz, A. Assessment on micronutrient concentration after reclaimed water irrigation: A CASE study in green areas of Madrid. Irrig. Drain. 2021, 70, 668–678. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Y. Using reclaimed water for agricultural and landscape irrigation in China: A review. Irrig. Drain. 2017, 66, 672–686. [Google Scholar] [CrossRef]
- Liu, C.; Cui, B.; Hu, C.; Wu, H.; Gao, F. Effects of mixed irrigation using brackish water with different salinities and reclaimed water on a soil-crop system. Water Reuse 2021, 11, 632–648. [Google Scholar] [CrossRef]
- Xu, M.; Bai, X.; Pei, L.; Pan, H. A research on application of water treatment technology for reclaimed water irrigation. Int. J. Hydrogen Energy 2016, 41, 15930–15937. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Y.; Guan, X.; Xu, L. Advances in research of reclaimed water irrigation in China. Irrig. Drain. 2020, 69, 119–126. [Google Scholar] [CrossRef]
- Chávez-Mejía, A.C.; Navarro-González, I.; Magaña-López, R.; Uscanga-Roldán, D.; Zaragoza-Sánchez, P.I.; Jiménez-Cisneros, B.E. Presence and Natural Treatment of Organic Micropollutants and their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation. Water 2019, 11, 2148. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, S.; Portugal, J.; Bayona, J.; Matamoros, V.; Leiva, A.; Vidal, G.; Piña, B. Compounds of emerging concern as new plant stressors linked to water reuse and biosolid application in agriculture. J. Environ. Chem. Eng. 2021, 9, 105198. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86–96. [Google Scholar] [CrossRef]
- Chang, D.; Ma, Z. Wastewater reclamation and reuse in Beijing: Influence factors and policy implications. Desalination 2012, 297, 72–78. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency (US EPA). Guidelines for Water Reuse; U.S. Agency for International Development: Washington, DC, USA, 2012. Available online: https://www.epa.gov/sites/production/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 15 June 2021).
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228, 2–12. [Google Scholar] [CrossRef]
- Ait-Mouheb, N.; Bahri, A.; Thayer, B.; Benyahia, B.; Bourrié, G.; Cherki, B.; Condom, N.; Declercq, R.; Gunes, A.; Héran, M.; et al. The reuse of reclaimed water for irrigation around the Mediterranean Rim: A step towards a more virtuous cycle? Reg. Environ. Chang. 2018, 18, 693–705. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Patwa, N.; Sivarajah, U.; Seetharaman, A.; Sarkar, S.; Maiti, K.; Hingorani, K. Towards a circular economy: An emerging economies context. J. Bus. Res. 2021, 122, 725–735. [Google Scholar] [CrossRef]
- Valdés, H.; Correa, C.; Mellado, F. Proposed Model of Sustainable Construction Skills for Engineers in Chile. Sustainability 2018, 10, 3093. [Google Scholar] [CrossRef] [Green Version]
- Vera-Puerto, I.; Olave-Vera, J.; Tapia, S.; Chávez, W.; Arias, C. Reuse of Treated Municipal Wastewater from Constructed Wetlands for Cut Flowers Irrigation in Aeroponic Cultivation. Ing. Univ. 2020, 24, 11. [Google Scholar] [CrossRef]
- Donoso, G.; Rivera, D. Desafíos del reúso de aguas residuales tratadas en Chile. In Gestión de Aguas Residuales: Vertimiento, Tratamiento Y Reutilización; Cairampoma, A., Villegas, P., Eds.; Séptimas Jornadas de Derecho de Aguas; Pontificia Universidad Católica del Perú: Lima, Peru, 2019; pp. 71–88. (In Spanish) [Google Scholar]
- Neuman, P.; Riquelme, C.; Alvez, A.; Castillo, R. Aspectos Ambientales y Desafíos del Tratamiento y Reutilización de las Aguas Residuales Urbanas; Serie Comunicacional CHRIAM; Editorial University of Concepción (Concepción, Chile) 2021; ISSN 0718-6460. Available online: https://drive.google.com/file/d/13Pnt4Q-NPvmi4nw_Lsi1xgCDD8pzuG77/view (accessed on 30 June 2021). (In Spanish).
- Segura, D.; Carrillo, V.; Remonsellez, F.; Araya, M.; Vidal, G. Comparison of Public Perception in Desert and Rainy Regions of Chile Regarding the Reuse of Treated Sewage Water. Water 2018, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Vera, I.; Jorquera, C.; López, D.; Vidal, G. Humedales construidos para tratamiento y reúso de aguas servidas en Chile: Reflexiones. Tecnol. Cienc. Agua 2016, 7, 19–35. Available online: http://www.scielo.org.mx/pdf/tca/v7n3/2007-2422-tca-7-03-00019.pdf (accessed on 1 July 2021). (In Spanish).
- Vera-Puerto, I.; Olave, J.; Tapia, S.; Chávez, W. Atacama Desert: Water resources and reuse of municipal wastewater in irrigation of cut flower aeroponic cultivation system (first laboratory experiments). Desalin. Water Treat. 2019, 150, 73–83. [Google Scholar] [CrossRef]
- Villamar, C.; Vera-Puerto, I.; Rivera, D.; de la Hoz, F. Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment. Water 2018, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Boland, A.; Cherry, G.; Dickson, R. Doing a Systematic Review: A Student’s Guide, 2nd ed.; Sage Publications Ltd.: London, UK, 2017. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Slobodiuk, S.; Niven, C.; Arthur, G.; Thakur, S.; Ercumen, A. Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11046. [Google Scholar] [CrossRef]
- Garner, E.; Organiscak, M.; Dieter, L.; Shingleton, C.; Haddix, M.; Joshi, S.; Pruden, A.; Ashbolt, N.; Medema, G.; Hamilton, K.A. Towards risk assessment for antibiotic resistant pathogens in recycled water: A systematic review and summary of research needs. Environ. Microbiol. 2021, 23, 7355–7372. [Google Scholar] [CrossRef]
- Victor, C.P.; Ellis, K.; Lamar, F.; Leon, J.S. Agricultural Detection of Norovirus and Hepatitis a Using Fecal Indicators: A Systematic Review. Int. J. Microbiol. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Andreini, D.; Bettinelli, C. Systematic Literature Review. International Series in Advanced Management Studies. In Business Model Innovation; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kim, S.; Brown, R. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Stern, C.; Jordan, Z.; McArthur, A. Developing the review question and inclusion criteria. AJN Am. J. Nurs. 2014, 114, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 4th ed.; SAGE Publications Ltd.: London, UK, 2018. Available online: https://lccn.loc.gov/2017050739 (accessed on 7 January 2022).
- Pellicer, E.; Correa, C.; Yepes, V.; Alarcón, L. Organizational improvement through standardization of the innovation process in construction firms. Eng. Manag. J. 2012, 24, 40–53. [Google Scholar] [CrossRef]
- Ministerio de Obras Públicas de Chile (MOP). Atlas del Agua Chile; Dirección General de Aguas, MOP (Santiago, Chile). 2016. Available online: https://snia.mop.gob.cl/sad/REH5648.pdf (accessed on 31 May 2021). (In Spanish).
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.; Boisier, J.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.; Veloso-Äguila, D. The Central Chile Mega Drought (2010–2018): A Climate dynamics perspective. Int. J. Climatol. 2019, 40, 421–439. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Stehr, A.; Duran-Llacer, I.; Rodríguez-López, L.; Sauvage, S.; Sánchez-Pérez, J.M. Estimation of the climate change impact on the hydrological balance in basins of south-central chile. Water 2021, 13, 794. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; de la Barrera, F.; Arumí, J. Understanding agricultural water footprint variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Serrao, L.; Molinos-Senante, M.; Bezzi, M.; Ragazzi, M. Assessment of wastewater reuse potential for irrigation in rural semi-arid areas: The case study of Punitaqui, Chile. Clean Technol. Environ. Policy 2020, 22, 1325–1338. [Google Scholar] [CrossRef]
- Vergara-Araya, M.; Lehn, H.; Poganietz, W.R. Integrated water, waste and energy management systems–A case study from Curauma, Chile. Resour. Conserv. Recycl. 2020, 156, 104725. [Google Scholar] [CrossRef]
- Apey-Guzmán, A. La Fruticultura en Chile: Tendencias Productivas y su Expresión Territorial; Análisis Realizado a Partir de Los Catastros Frutícolas Para el Período 1999–2018; Oficina de Estudios y Políticas Agrarias, ODEPA: Santiago, Chile, 2019. Available online: https://www.odepa.gob.cl (accessed on 11 May 2021). (In Spanish)
- Ríos, S.; Torres, G. El sector Agropecuario en la Región de Los Lagos y el Paradigma “Chile Potencia Alimentaria”: Desafíos Para la Política Agraria Nacional. Mundo Agrar. 2014, 15, 1–21. Available online: https://www.redalyc.org/articulo.oa?id=84531879008 (accessed on 1 July 2021). (In Spanish).
- Martin, F.; Saavedra, F. Water Policy in Chile, Global Issues in Water Policy. In Irrigated Agriculture; Donoso, G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 165–177. [Google Scholar] [CrossRef]
- Asociación de Exportadores de Frutas de Chile, A.G. (ASOEX). Fruits from Chile-Important Chilean Fruit Statistics; Chilean Fruit Exporters Association; ASOEX: Santiago, Chile, 2021; Available online: https://fruitsfromchile.com/fruit/ (accessed on 21 May 2021). (In Spanish)
- Parodi, P. Productividad Frutícola en Chile. Evolución y Factores Relevantes; Corporación de Estudios para Latinoamérica, CIEPLAN: Santiago, Chile, 2019; Available online: http://www.cieplan.org/productividad-fruticola-en-chile-evolucion-y-factores-relevantes (accessed on 15 May 2021). (In Spanish)
- Retamales, J.; Sepúlveda, J. Fruit production in Chile: Bright past, uncertain future. Rev. Bras. Frutic. 2011, 33, 173–178. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Gumucio, A.; Amunategui, R. Aporte del Sector a la Economía de Chile al 2030. Reflexiones y Desafíos al 2030: Perspectiva Institucional de ODEPA, 2018. pp. 43–54. Available online: https://www.odepa.gob.cl/wp-content/uploads/2018/01/economia4parte.pdf (accessed on 30 June 2021). (In Spanish).
- Niles, M.T.; Lubell, M.; Brown, M. How limiting factors drive agricultural adaptation to climate change. Agric. Ecosyst. Environ. 2015, 200, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Vizinho, A.; Avelar, D.; Branquinho, C.; Capela Lourenço, T.; Carvalho, S.; Nunes, A.; Sucena-Paiva, L.; Oliveira, H.; Fonseca, A.; Duarte Santos, F.; et al. Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions. Land 2021, 10, 161. [Google Scholar] [CrossRef]
- Dirección General de Aguas de Chile (DGA). Estimaciones de Demanda de Agua y Proyecciones Futuras y Caracterización de la Calidad de los Recursos Hídricos en Chile; Informe Final; Dirección General de Aguas, DGA, Ministerio de Obras Públicas: Santiago, Chile, 2017. Available online: https://snia.mop.gob.cl/sad/USO5795v1.pdf (accessed on 1 June 2021). (In Spanish)
- Comisión Nacional del Riego (CNR). Condición Hídrica en Chile; Comisión Nacional de Riego, CNR, Ministerio de Agricultura: Santiago, Chile, 2012. Available online: https://research.csiro.au/gestionrapel/wp-content/uploads/sites/79/2016/11/Condici%C3%B3n-H%C3%ADdrica-en-Chile-2012.pdf (accessed on 29 April 2021). (In Spanish)
- [Dataset] Instituto Nacional de Estadística de Chile (INE). Síntesis de resultados, Censo 2017. 2018. Available online: https://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf (accessed on 10 May 2021). (In Spanish).
- Superintendecia de Servicios Sanitarios de Chile (SISS). Informe de Gestión del Sector Sanitario, Gobierno de Chile. 2020. Available online: http://www.siss.gob.cl/586/articles-17955_recurso_1.pdf (accessed on 31 May 2021). (In Spanish).
- Inter-American Network of Academies of Sciences (IANAS). Desafíos del Agua Urbana en las Américas: Perspectivas Desde las Academias de Ciencias. 2015. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000245202 (accessed on 31 May 2021). (In Spanish).
- Vera, I.; Sáez, K.; Vidal, G. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef]
- Ministerio de Obras Públicas de Chile (MOP). Mesa 1: Personas que Residen en una Vivienda Sin Servicios Sanitarios Básicos (Agua Potable y/o Baño), Gobierno de Chile. 2020. Available online: http://www.compromisopais.cl/assets/files/Mesa1-ServiciosSanitariosBasicos.pdf (accessed on 31 May 2021). (In Spanish).
- Ministerio de Obras Públicas de Chile (MOP). Mesa Nacional del Agua: Primer Informe. Gobierno de Chile. 2020. Available online: https://www.mop.cl/Prensa/Documents/Mesa_Nacional_del_Agua_2020_Primer_Informe_Enero.pdf (accessed on 31 May 2021). (In Spanish).
- Mena, M.; Rojas, N.; Zamorano, G.; Peralta, F.; Díaz, G.; Aldunate, G.; Recabarren, A. Informe Final, Mesa Eficiencia Hídrica, Sub-Mesa Reúso de Aguas Servidas Tratadas y Aguas Grises Tratadas; Ministerio de Obras Públicas de Chile: Santiago, Chile, 2020. (In Spanish)
- Subsecretaría de Desarrollo Rural de Chile (Subdere). Resumen Catastro Plantas de Tratamiento de Aguas Servidas-Sector Rural. Subsecretaría de Desarrollo Rural. 2012. Available online: https://bibliotecadigital.subdere.gov.cl/?_ga=2.15711862.1716703321.%201627500562-215413543.1627500562 (accessed on 1 July 2021). (In Spanish)
- Biblioteca del Congreso Nacional (BCN). Decreto Supremo 46 de 2002. Establece Norma de Emisión de Residuos Líquidos a Aguas Subterráneas; Biblioteca del Congreso Nacional de Chile: Valparaíso, Chile, 2003; Available online: https://www.bcn.cl/leychile/navegar?idNorma=206883 (accessed on 30 June 2021). (In Spanish)
- Superintendecia de Servicios Sanitarios de Chile (SISS). Resultados Fiscalización de PTAS, Gobierno de Chile. 2021. Available online: https://www.siss.gob.cl/586/w3-propertyvalue-6408.html (accessed on 30 June 2021). (In Spanish).
- Biblioteca del Congreso Nacional (BCN). Decreto Supremo 90 de 2000. Establece Norma de Emisión Para la Regulación de Contaminantes Asociados a las Descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales; Biblioteca del Congreso Nacional de Chile: Valparaíso, Chile, 2000; Available online: https://www.bcn.cl/leychile/navegar?idNorma=182637 (accessed on 30 June 2021). (In Spanish)
- Instituto Nacional de Normalización (INN). Norma Chilena (NCh) 1333 Of. 78 Modificada 1987. Requisitos de Calidad del Agua para Diferentes usos; Instituto Nacional de Normalización: Santiago de Chile, Chile, 1987; Available online: https://www.inn.cl/ (accessed on 5 July 2021). (In Spanish)
- Ministerio de Obras Públicas de Chile (MOP). Mesa Nacional del Agua: Informe Final del Proceso de Participación Ciudadana, Gobierno de Chile. 2020. Available online: https://www.mop.cl/MesaAgua/docs/InformePACMNAFinal_15_ene.pdf (accessed on 30 June 2021). (In Spanish).
- Biblioteca del Congreso Nacional (BCN). Ley 20998 Regula los Servicios Sanitarios Rurales; Biblioteca del Congreso Nacional: Valparaíso, Chile, 2017; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1100197 (accessed on 30 June 2021). (In Spanish)
- Superintendencia de Servicios Sanitarios (SISS). Agenda Sector Sanitario 2030: Reciclaje de Aguas y Reducción de Pérdidas. Gobierno de Chile. 2019. Available online: http://www.sectorsanitario2030.cl/587/w3-propertyvalue-6501.html (accessed on 30 June 2021). (In Spanish).
- Biblioteca del Congreso Nacional (BCN). Ley 21075 Regula la Recolección, Reutilización y Disposición de Aguas Grises; Biblioteca del Congreso Nacional: Valparaíso, Chile, 2018; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1115066 (accessed on 30 June 2021). (In Spanish)
- Biblioteca del Congreso Nacional (BCN). Resolución 404 Exenta-Difunde Consulta Pública de Reglamento Sobre Proyectos de Reutilización de Aguas Grises; Biblioteca del Congreso Nacional: Valparaíso, Chile, 2021; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1159434 (accessed on 30 June 2021). (In Spanish)
- Instituto Nacional de Normalización (INN). Norma Chilena (NCh) 3456 Directrices Para el uso de Aguas Residuales Tratadas en Proyectos de Riego. Partes 1, 2, 3 y 4 (Versiones Comité); Instituto Nacional de Normalización: Santiago de Chile, Chile, 2021; Available online: https://www.inn.cl/ (accessed on 5 July 2021). (In Spanish)
- Oron, G.; Adel, M.; Agmon, V.; Friedler, E.; Halperin, R.; Leshem, E.; Weinberg, D. Greywater use in Israel and worldwide: Standards and prospects. Water Res. 2014, 58, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Albalawneh, A.; Chang, T.-K. Review of the greywater and proposed greywater recycling scheme for agricultural irrigation reuses. Int. J. Res. Granthaalayah 2015, 3, 16–35. [Google Scholar] [CrossRef]
- Asociación Interamericana de Ingeniería Sanitaria y Ambiental (AIDIS)–Capítulo Chileno. Experiencias en el uso de Aguas grises. Rev. AIDIS-Chile 2017, 54, 15–17. Available online: https://www.aidis.cl (accessed on 5 July 2021). (In Spanish).
- Amaris, G.; Dawson, R.; Gironás, J.; Hess, S.; Ortúzar, J.d.D. Understanding the preferences for different types of urban greywater uses and the impact of qualitative attributes. Water Res. 2020, 184, 116007. [Google Scholar] [CrossRef]
- Mac-Lean, C.; Naning, J. Reutilización de Aguas grises en FCFM: Ingeniería Para la Sustentabilidad Partiendo por Casa. Rev. AIDIS-Chile 2016, 53, 19–20. Available online: https://aidis.cl/wp-content/uploads/2016/10/REV-AIDIS-DIC-2016.pdf (accessed on 5 July 2021). (In Spanish).
- Rodríguez, C.; Sánchez, R.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water 2020, 12, 3468. [Google Scholar] [CrossRef]
- Rodríguez, C.; Sánchez, R.; Lozano-Parra, J.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Water balance assessment in schools and households of rural areas of Coquimbo region, north-central Chile: Potential for greywater reuse. Water 2020, 12, 2915. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional (BCN). Decreto 10 Modifica Decreto Supremo n°47, de Vivienda y Urbanismo, de 1992, Ordenanza General de Urbanismo y Construcciones, en lo Relativo a Establecer los Trámites y Requisitos de los Permisos de Loteo y Edificación que Incorporen Sistemas de Reutilización de Aguas Grises; Biblioteca del Congreso Nacional: Valparaíso, Chile, 2020; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1153728&idParte=10186730&idVersion=Diferido (accessed on 30 June 2021). (In Spanish)
- Commission of European Communities (CEC). Regulation (EU) 2020/741 of the European Parliament and of the council of 25 may 2020 on Minimum Requirements for Water Reuse. 2020. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 30 June 2021).
- Secretaria de Medio Ambiente, Recursos Naturales y Pesca de Mexico (Semarnat). NORMA Oficial Mexicana NOM-003-ECOL-1997 que Establece los Límites Máximos Permisibles de Contaminantes Para las Aguas Residuales Tratadas que se Reusen En servicios al Público. 1998. Available online: https://www.gob.mx/cms/uploads/attachment/file/311363/NOM_003_SEMARNAT.pdf (accessed on 30 June 2021). (In Spanish).
- Ministro de Ambiente y Energía, Ministerio de Salud de Costarrica (MINAE-S). Decreto Nº 33601 Reglamento de Vertido y Reuso de Aguas Residuales. Gobierno de Costa Rica. 2007. Available online: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=59524&nValor3=83250&strTipM=TC. (accessed on 30 June 2021). (In Spanish).
- Zaibel, I.; Zilberg, D.; Groisman, L.; Arnon, S. Impact of treated wastewater reuse and floods on water quality and fish health within a water reservoir in an arid climate. Sci. Total Environ. 2016, 559, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kalavrouziotis, I.; Kokkinos, P.; Oron, G.; Fatone, F.; Bolzonella, D.; Vatyliotou, M.; Fatta-Kassinos, D.; Koukoulakis, P.; Varnavas, S. Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalin. Water Treat. 2015, 53, 2015–2030. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional (BCN). Decreto 50 Reglamento de la Ley 20998, que Regula a los Servicios Sanitarios Rurales; Biblioteca del Congreso Nacional: Valparaíso, Chile, 2020; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1150724&idVersion=2021-01-19&idParte=10167844 (accessed on 30 June 2021). (In Spanish)
- Avellán, T.; Gremillion, P. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Nivala, J.; van Afferden, M.; Hasselbach, R.; Langergraber, G.; Molle, P.; Rustige, H.; Nowak, J. The new German standard on constructed wetland systems for treatment of domestic and municipal wastewater. Water Sci. Technol. 2018, 78, 2414–2426. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Dominguez, M.; Konnerup, D.; Brix, H.; Arias, C. Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- Leiva, A.M.; Núñez, R.; Gómez, G.; López, D.; Vidal, G. Performance of ornamental plants in monoculture and polyculture horizontal subsurface flow constructed wetlands for treating wastewater. Ecol. Eng. 2018, 120, 116–125. [Google Scholar] [CrossRef]
- López, D.; Fuenzalida, D.; Vera, I.; Rojas, K.; Vidal, G. Relationship between the removal of organic matter and the production of methane in subsurface flow constructed wetlands designed for wastewater treatment. Ecol. Eng. 2015, 83, 296–304. [Google Scholar] [CrossRef]
- Vera, I.; Verdejo, N.; Chávez, W.; Jorquera, C.; Olave, J. Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. J. Environ. Sci. Health Part A 2016, 51, 105–113. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Escobar, J.; Rebolledo, F.; Valenzuela, V.; Olave, J.; Tíjaro-Rojas, R.; Correa, C.; Arias, C. Performance comparison of vertical flow treatment wetlands planted with the ornamental plant zantedeschia aethiopica operated under arid and mediterranean climate conditions. Water 2021, 13, 1478. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Valdés, H.; Correa, C.; Perez, V.; Gomez, R.; Alarcon, E.; Arias, C. Evaluation of Bed Depth Reduction, Media Change, and Partial Saturation as Combined Strategies to Modify in Vertical Treatment Wetlands. Int. J. Environ. Res. Public Health 2021, 18, 4842. [Google Scholar] [CrossRef] [PubMed]
- Leiva, A.M.; Piña, B.; Vidal, G. Antibiotic resistance dissemination in wastewater treatment plants: A challenge for the reuse of treated wastewater in agriculture. Rev. Environ. Sci. Bio/Technol. 2021, 20, 1043–1072. [Google Scholar] [CrossRef]
- Grassi, M.; Rizzo, L.; Farina, A. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: Implications for agricultural reuse and their removal by adsorption process. Environ. Sci. Pollut. Res. 2013, 20, 3616–3628. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Contreras, C.; López, D.; Leiva, A.; Domínguez, C.; Bayona, J.; Vidal, G. Removal of Organic Micropollutants in Wastewater Treated by Activated Sludge and Constructed Wetlands: A Comparative Study. Water 2019, 11, 2515. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M. Evaluación de los Efectos de Plantas de Tratamiento de Aguas Servidas Sobre Onchorrhynchus Mykiss Mediante el uso de Experimentos de Laboaratorio y te Terreno en la Cuenca del río Biobio. Ph.D. Thesis, University of Concepción, Concepción, Chile, 2015. [Google Scholar]
Keyword | K1: Wastewater K2: Chile | K3: Agriculture K4: Irrigation | K5: Recycled K6: Reuse | K7: Treatment K8: Policy | K9: Regulation K10: Standard |
---|---|---|---|---|---|
Combinations | Results from Database | ||||
WoS | Scopus | Scielo | Thesis | ||
C1: K1 and K2 | 68 | 110 | 25 | 483 | |
C2: K1 and K2 and K3 | 5 | 12 | 0 | 304 | |
C3: K1 and K2 and K4 | 7 | 16 | 2 | 38 | |
C4: K1 and K2 and K4 and (K5 or K6 or K7) | 4 | 0 | 1 | 149 | |
C5: K1 and K2 and K3 and (K5 or K6 or K7) | 0 | 0 | 0 | 21 | |
C6: K1 and K2 and (K8 or K9 or K10) | 17 | 25 | 4 | 36 | |
Title/Abstract/Keywords | C1: wastewater and Chile C2: wastewater and Chile and agriculture C3: wastewater and Chile and irrigation C4: wastewater and Chile and agriculture and (recycled or reuse or Treatment) C5: wastewater and Chile and irrigation and (recycled or reuse or treatment) C6: wastewater and Chile and (Policy or regulation or Standard) |
Region | Fruit Species | Planted Surface (ha) | Total Volume Exported (t) per Agricultural Season | ||||
---|---|---|---|---|---|---|---|
2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | |||
Antofagasta–O’Higgins | Table grapes | 48,593 | 729,754 | 759,855 | 700,799 | 732,663 | 731,775 |
O’Higgins–Los Lagos | Apples | 36,205 | 811,894 | 683,485 | 730,615 | 709,528 | 774,710 |
O’Higgins–Los Lagos | Avocado | 36,205 | 134,586 | 68,050 | 119,928 | 1,263,657 | 1,431,257 |
O’Higgins–Maule | Cherry | 29,908 | 68,544 | 103,081 | 83,763 | 95,289 | 186,504 |
Coquimbo–O’Higgins | Citrus | 17,385 | 169,815 | 191,860 | 246,609 | 279,103 | 295,620 |
RM–Maule | Plums | 17,340 | 46,982 | 97,092 | 116,279 | 99,452 | 120,658 |
O’Higgins–Los Lagos | Blueberries | 14,573 | 74,387 | 92,210 | 91,431 | 103,687 | 110,206 |
Valparaiso–O’Higgins | Peaches | 11,540 | 18,391 | 27,927 | 29,054 | 26,045 | 31,191 |
O’Higgins–Maule | Kiwifruit | 9717 | 116,123 | 166,507 | 185,986 | 181,162 | 176,556 |
RM–Maule | Pears | 8537 | 119,381 | 133,799 | 126,561 | 150,842 | 129,541 |
RM–O’Higgins | Nectarines | 5340 | 25,123 | 56,782 | 57,124 | 62,107 | 66,634 |
Coquimbo–Los Lagos | Others | ≤800 | 6533 | 7672 | 7855 | 7750 | 7094 |
Water Quality Parameter | Units | Discharge Place | |||||
---|---|---|---|---|---|---|---|
Stream-Flow 2 | Stream-Flow 3 | Lakes | Sea 1 | Sea 2 | Aquifer | ||
pH | Uni. | 6.0–8.5 | 6.0–8.5 | 6.0–8.5 | 6.0–9.0 | 5.5–9.0 | 6.0–8.5 |
Total Suspended Solids (TSS) | mg/L | 300 | 80 | 80 | 100 | 300 | |
Total Nitrogen (TN) a | mg/L | 75 | 50 | 10 b | 50 | 10 d–15 e | |
Total Phosphorus (TP) | mg/L | 15 | 10 | 2 | 5 | ||
Fecal Coliforms (FC) | NMP/100 mL | 1000 | 1000 | 1000–70 c | 1000–70 c | ||
5-day Biological Oxygen Demand (BOD5) | mg/L | 300 | 35 | 35 | 60 |
Climate Condition | Arid–Mediterranean–Temperate | Arid | Temperate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guideline or Regulation | Chile (Resolution 404 Exempt; 2021) | Israel (SI 6147; 2012) | United Kingdom (BS 8525; 2011) | ||||||||||
Classification | 1 | 2 | 3 | 4 | A | B | C | D | 1 | 2 | 3 | 4 | |
Parameter | Units | ||||||||||||
pH | Unit | 5.0–9.5 | |||||||||||
Total Suspended Solids (TSS) | mg/L | 10 | 140 (SSI) 30 (SI) | 70 | 30 | ||||||||
5-day Biological Oxygen Demand (BOD5) | mg/L | 10 | 240 (SSI) 30 (SI) | 70 | 20 | ||||||||
Turbidity | UNT | 5 | - (SSI) 10 (SI) | 30 | 10 | 5 | 10 | 10 | 10 | ||||
Fecal Coliforms (FC) | Log UFC/100 ml | 1 | 3 (SSI) 2.3 (SI) | 3 | 2 | 1 | |||||||
E. coli | Log MPN/100 ml | N.D. | 2.4 | 2.4 | N.D. | ||||||||
Residual Chlorine | mg/L | 0.5 < × < 2.0 | - (SSI) 0.5 < × < 2.0 (SI) | 2.0 | 2.0 | 0.5 | 2.0 |
Climatic Conditions | Arid–Mediterranean–Temperate | Mediterranean–Temperate | Tropical | Arid | Mediterranean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guideline or Regulation | Chile (NCh 1333 [78]) | Chile (NCh 3456, Part 2 [84]) | Europe (EU 2020/741 [93]) | Mexico (NOM-003-ECOL-1997 [94]) | Costa Rica (Decree 33601/2007 [95]) | Israel (National Standards for Water Reuse [21,96]) | Italy (GAB/DEC/93/06 [23,97]) | |||||||
Classification | Water for Irrigation | I | II | III | IV | A | B | C | D | Reclaimed Wastewater | Reclaimed Wastewater | Reclaimed Wastewater | Reclaimed Wastewater | |
Parameter | Units | |||||||||||||
Electrical Conductivity (EC) | µS/cm | <750 1 | ||||||||||||
pH | Unit | 5.5–9.0 | 6.0–9.0 | 7.0–8.5 | 6.0–9.5 | |||||||||
Total Suspended Solids (TSS) | mg/L | 10 | 25 | 50 | 80 | 10 | 35 | 35 | 35 | 20 | 50 | 10 | 10 | |
5-day Biological Oxygen Demand (BOD5) | mg/L | 10 | 20 | 35 | 35 | 10 | 25 | 25 | 25 | 20 | 50 | 10 | 20 | |
Chemical Oxygen Demand (COD) | mg/L | 100 | 100 | |||||||||||
Total Nitrogen (TN) | mg/L | 50 | 10 | 15 | ||||||||||
Total Phosphorus (TP) | mg/L | 25 | 1 | 2 | ||||||||||
Fecal Coliforms (FC) | Log MPN/100 mL | 3 | 1 2 | 2.3 2 | 3 2 | 3 2 | 2.4 | 3 | 1 | |||||
E. coli | Log MPN/100 mL | 1 | 2 | 3 | 4 | 2 4 | ||||||||
Helmints | Eggs/L | 5 | 1 3 | 1 3 | 1 3 | 1 3 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Puerto, I.; Valdés, H.; Bueno, M.; Correa, C.; Olave, J.; Carrasco-Benavides, M.; Schiappacasse, F.; Arias, C.A. Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges. Water 2022, 14, 627. https://doi.org/10.3390/w14040627
Vera-Puerto I, Valdés H, Bueno M, Correa C, Olave J, Carrasco-Benavides M, Schiappacasse F, Arias CA. Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges. Water. 2022; 14(4):627. https://doi.org/10.3390/w14040627
Chicago/Turabian StyleVera-Puerto, Ismael, Hugo Valdés, Marcos Bueno, Christian Correa, Jorge Olave, Marcos Carrasco-Benavides, Flavia Schiappacasse, and Carlos A. Arias. 2022. "Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges" Water 14, no. 4: 627. https://doi.org/10.3390/w14040627
APA StyleVera-Puerto, I., Valdés, H., Bueno, M., Correa, C., Olave, J., Carrasco-Benavides, M., Schiappacasse, F., & Arias, C. A. (2022). Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges. Water, 14(4), 627. https://doi.org/10.3390/w14040627