Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts
Abstract
:1. Introduction
2. Data
2.1. Study Sites: The English Channel and Normandy Coasts
2.2. Wind and Wave Fields Measurements
2.3. Storm Events Identification
3. Methodology
3.1. Wave Model
3.2. Model Set-Up
3.3. Wave Statistics
4. Results
4.1. Model Validation
4.2. Changes in Directional Wave Spectrum
4.3. Storms Evolution within the English Channel
4.4. Storm Evolution in Normandy Coasts: Case of Etretat and Hautot-sur-Mer
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Smith, J.A.; Yang, L.; Vecchi, G.A. Tropical cyclone flooding in the Carolinas. J. Hydrometeorol. 2021, 23, 53–70. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Jia, Y.; Onat, Y.; Cifuentes-Lorenzen, A.; Ilia, A.; McCardell, G.; Fake, T.; O’Donnell, J. Estimating the annual exceedance probability of water levels and wave heights from high resolution coupled wave-circulation models in long island sound. J. Mar. Sci. Eng. 2020, 8, 475. [Google Scholar] [CrossRef]
- McInnes, K.L.; Walsh, K.J.E.; Hubbert, G.D.; Beer, T. Impact of sea-level rise and storm surges in a coastal community. Nat. Hazards 2003, 30, 187–207. [Google Scholar] [CrossRef]
- O’Donnell, J.; Whitney, M.; Strobel, K.H. A Study of Coastal Flooding at Jarvis Creek; Connecticut LIS PO Review View Project Sea Level Rise View Project. 2016. Available online: https://www.researchgate.net/publication/311583802_A_Study_of_Coastal_Flooding_at_Jarvis_Creek_Connecticut (accessed on 15 December 2021).
- Wolf, J.; Woolf, D.K. Waves and climate change in the north-east Atlantic. Geophys. Res. Lett. 2006, 33, L06604. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar] [CrossRef]
- Hasselmann, K.; Bauer, E.; Janssen, P.A.E.M. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Tolman, H.L. Distributed-memory concepts in the wave model WAVEWATCH III. Parallel Comput. 2002, 28, 35–52. [Google Scholar] [CrossRef]
- Tolman, H.L. Validation of WAVEWATCH III Version 1.15 for a Global Domain; Environmental Modeling Center: College Park, MD, USA, 2002. [Google Scholar]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III TM Version 3.14; NOAA/NWS/NCEP/OMB Technical Note; 2009; Volume 276, 194p. Available online: https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (accessed on 15 December 2021).
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Camus, P.; Mendez, F.J.; Medina, R. A hybrid efficient method to downscale wave climate to coastal areas. Coast. Eng. 2011, 58, 851–862. [Google Scholar] [CrossRef]
- Lewis, H.W.; Manuel Castillo Sanchez, J.; Siddorn, J.; King, R.R.; Tonani, M.; Saulter, A.; Sykes, P.; Pequignet, A.C.; Weedon, G.P.; Palmer, T.; et al. Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf? Ocean. Sci. 2019, 15, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Saulter, A.N.; Bunney, C.; King, R.R.; Waters, J. An Application of NEMOVAR for Regional Wave Model Data Assimilation. Front. Mar. Sci. 2020, 7. Available online: https://www.frontiersin.org/articles/10.3389/fmars.2020.579834/full (accessed on 15 December 2021). [CrossRef]
- Skliris, N.; Marsh, R.; Srokosz, M.; Aksenov, Y.; Rynders, S.; Fournier, N. Assessing extreme environmental loads on offshore structures in the North Sea from high-resolution ocean currents, waves and wind forecasting. J. Mar. Sci. Eng. 2021, 9, 52. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A.; Bidlot, J.-R.; Graham, N.; Swail, V. Intercomparison of Different Wind-Wave Reanalyses. J. Clim. 2004, 17, 1893–1913. [Google Scholar] [CrossRef]
- Cavaleri, L.; Sclavo, M. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 2006, 53, 613–627. [Google Scholar] [CrossRef]
- Weisse, R.; von Storch, H. Marine Climate Change: Storms, Wind Waves and Storm Surges; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Numerical modelling of nearshore wave energy resource in the Sea of Iroise. Renew. Energy 2015, 83, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Soloy, A.; Turki, I.; Fournier, M.; Costa, S.; Peuziat, B.; Lecoq, N. A deep learning-based method for quantifying and mapping the grain size on pebble beaches. Remote Sens. 2020, 12, 3659. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; Gutiérrez Barceló, Á.D.; Costa, S.; Laignel, B.; Bazin, B.; Soufflet, Y.; le Louargant, L.; Maquaire, O. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems. Coast. Eng. 2021, 167, 103894. [Google Scholar] [CrossRef]
- Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 2012, 43–44, 36–51. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, W.; Zhao, X.; Zhang, Y.; Sun, Z. Study of irregular wave run-up over fringing reefs based on a shock-capturing Boussinesq model. Appl. Ocean. Res. 2019, 84, 216–224. [Google Scholar] [CrossRef]
- Levoy, F.; Anthony, E.J.; Monfort, O.; Larsonneur, C. The morphodynamics of megatidal beaches in Normandy, France. Mar. Geol. 2000, 171, 39–59. [Google Scholar] [CrossRef]
- Jennings, R.; Shulmeister, J. A field based classification scheme for gravel beaches. Mar. Geol. 2002, 186, 211–228. [Google Scholar] [CrossRef]
- Modélisation et Analyse pour la Recherche Côtière. Available online: https://marc.ifremer.fr/ (accessed on 15 December 2021).
- Lazure, P.; Dumas, F. An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 2008, 31, 233–250. [Google Scholar] [CrossRef]
- Dumas, F.; Pineau-Guillou, L.; Lecornu, F.; le Roux, J.-F.; le Squère, B. General Introduction: PREVIMER, a French Pre-Operational Coastal Ocean Forecasting Capability. Available online: https://archimer.ifremer.fr/doc/00189/30037/2014. (accessed on 15 December 2021).
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III Version 1.15; NOAA/NWS/NCEP/OMB Technical Note; 1997; Volume 151, 97p. Available online: https://polar.ncep.noaa.gov/mmab/papers/tn151/OMB_151.pdf (accessed on 15 December 2021).
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III Version 1.18; NOAA/NWS/NCEP/OMB Technical Note; 1999; Volume 166, 110p. Available online: https://polar.ncep.noaa.gov/mmab/papers/tn166/OMB_166.pdf (accessed on 15 December 2021).
- Tolman, H.L. The numerical model WAVEWATCH: A third-generation model for the hindcasting of wind waves on tides in shelf seas. Commun. Hydraul. Geotech. Eng. 1989, 89, 72. [Google Scholar]
- Tolman, H.L. Effects of numerics on the physics in a third-generation wind-wave model. J. Phys. Oceanogr. 1992, 22, 1095–1111. [Google Scholar] [CrossRef] [Green Version]
- WAVEWATCH III R Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III R Version 6.07; Tech. Note 333; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2019; 465p. Available online: https://polar.ncep.noaa.gov/waves/wavewatch/ (accessed on 15 December 2021).
- Boussinesq, J. Théorie Analytique de la Chaleur; Gauthier-Villars: Paris, France, 1903; Volume II. [Google Scholar]
- Morton, I.D.; Bowers, J.; Mould, G. Estimating return period wave heights and wind speeds using a seasonal point process model. Coast. Eng. 1997, 3, 305–326. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Scotto, M.G. Application of the r largest-order statistics for long-term predictions of significant wave height. Coast. Eng. 2004, 51, 387–394. [Google Scholar] [CrossRef]
- SWAN, Implementation Manual. Delft University of Technology, Environmental Fluid Mechanics Section. Available online: https://swanmodel.sourceforge.io/online_doc/swanimp/swanimp.html (accessed on 15 December 2021).
- EMODnet Bathymetry Portal. Available online: https://www.emodnet-bathymetry.eu/data-products (accessed on 12 December 2021).
- ROL (Réseau d’Observation du Littoral de Normandie et des Hauts-de-France). PHASE 2 Topographique et Orthophoto 2020. 2020. Available online: https://rolnp.maps.arcgis.com/apps/MapJournal/index.html?appid=727a93598d4a47a39af3ca01edf150f6 (accessed on 15 December 2021).
- Stopa, J.E.; Ardhuin, F.; Babanin, A.; Zieger, S. Comparison and validation of physical wave parameterizations in spectral wave models. Ocean. Model. 2016, 103, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Turki, I.; Laignel, B.; Kakeh, N.; Chevalier, L.; Costa, S. A new hybrid model for filling gaps and forecast in sea level: Application to the eastern English Channel and the North Atlantic Sea (western France). Ocean. Dyn. 2015, 65, 509–521. [Google Scholar] [CrossRef]
- Massei, N.; Dieppois, B.; Hannah, D.M.; Lavers, D.A.; Fossa, M.; Laignel, B.; Debret, M. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine River catchment, France. J. Hydrol. 2017, 546, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Dodet, G.; Castelle, B.; Masselink, G.; Scott, T.; Davidson, M.; Floc’h, F.; Jackson, D.; Suanez, S. Beach recovery from extreme storm activity during the 2013–14 winter along the Atlantic coast of Europe. Earth Surf. Process. Landf. 2019, 44, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Boudière, E.; Maisondieu, C.; Ardhuin, F.; Accensi, M.; Pineau-Guillou, L.; Lepesqueur, J. A suitable metocean hindcast database for the design of Marine energy converters. Int. J. Mar. Energy 2013, 3, e40–e52. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Roland, A.; Dumas, F.; Bennis, A.C.; Sentchev, A.; Forget, P.; Wolf, J.; Girard, F.; Osuna, P.; Benoit, M. Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr. 2012, 42, 2101–2120. [Google Scholar] [CrossRef]
- Turki, I.; Massei, N.; Laignel, B. Linking sea level dynamic and exceptional events to large-scale atmospheric circulation variability: A case of the Seine Bay, France. Oceanologia 2019, 61, 321–330. [Google Scholar] [CrossRef]
- Abroug, I.; Abcha, N.; Jarno, A.; Marin, F. European Geosciences Union. Hazards Earth Syst. Sci. 2020, 2020, 3279–3291. [Google Scholar] [CrossRef]
- Lewis, M.J.; Palmer, T.; Hashemi, R.; Robins, P.; Saulter, A.; Brown, J.; Lewis, H.; Neill, S. Wave-tide interaction modulates nearshore wave height. Ocean. Dyn. 2019, 69, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Martzikos, N.; Afentoulis, V.; Tsoukala, V.K.; Martzikos, N.; Afentoulis, V.; Tsoukala, V. Storm clustering and classification for the port of Rethymno in Greece. Water Util. J. 2018, 20, 67–79. [Google Scholar]
- Bertin, X.; Li, K.; Roland, A.; Zhang, Y.J.; Breilh, J.F.; Chaumillon, E. A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay. Coast. Eng. 2014, 94, 80–89. [Google Scholar] [CrossRef]
- Turki, I.; Massei, N.; Laignel, B.; Shafiei, H. Effects of Global Climate Oscillations on Intermonthly to Interannual Variability of Sea levels along the English Channel Coasts (NW France). Oceanologia 2020, 62, 226–242. [Google Scholar] [CrossRef]
Storm | Duration (Days) | ||||||
---|---|---|---|---|---|---|---|
Ali | 2.1 | 3.25 | 274.6 | 9 | 29 | 0.8 | 9.3 |
Deirdre | 6.6 | 4.43 | 276.2 | 7 | 48 | 1.24 | 18.26 |
Gabriel | 4.5 | 3.5 | 293.3 | 3 | 17 | 0.88 | 24.68 |
Gareth | 2.1 | 4.02 | 274.4 | 6 | 15 | 0.9 | 8.83 |
Hannah | 3.3 | 3.55 | 274.3 | 8 | 32 | 1.1 | 6.89 |
Lorenzo | 1.8 | 3.94 | 271.8 | 4 | 14 | 0.83 | 13.39 |
Amelie | 2.7 | 3.81 | 259.3 | 7 | 32 | 1.11 | 39.68 |
Atiyah | 2.7 | 4.46 | 280.6 | 6 | 12 | 1.11 | 17.16 |
Ciara | 4.4 | 5.33 | 276 | 3 | 43 | 1.26 | 12.11 |
Francis | 2.5 | 3.93 | 268.1 | 9 | 37 | 1.12 | 13.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Solano, C.; Turki, E.I.; Hamdi, Y.; Soloy, A.; Costa, S.; Laignel, B.; Gutiérrez Barceló, Á.D.; Abcha, N.; Jacono, D.; Lafite, R. Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts. Water 2022, 14, 321. https://doi.org/10.3390/w14030321
López Solano C, Turki EI, Hamdi Y, Soloy A, Costa S, Laignel B, Gutiérrez Barceló ÁD, Abcha N, Jacono D, Lafite R. Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts. Water. 2022; 14(3):321. https://doi.org/10.3390/w14030321
Chicago/Turabian StyleLópez Solano, Carlos, Emma Imen Turki, Yasser Hamdi, Antoine Soloy, Stéphane Costa, Benoit Laignel, Ángel David Gutiérrez Barceló, Nizar Abcha, Delphine Jacono, and Robert Lafite. 2022. "Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts" Water 14, no. 3: 321. https://doi.org/10.3390/w14030321
APA StyleLópez Solano, C., Turki, E. I., Hamdi, Y., Soloy, A., Costa, S., Laignel, B., Gutiérrez Barceló, Á. D., Abcha, N., Jacono, D., & Lafite, R. (2022). Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts. Water, 14(3), 321. https://doi.org/10.3390/w14030321