Sustainability of the Water-Energy-Food Nexus in Caribbean Small Island Developing States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Physical Characteristics
2.2. Current WEF Nexus and Island Sustainability
2.3. Projected Climate Change Impacts on Sustainability by 2050
3. Results and Discussion
3.1. Current WEF Nexus and Island Sustainability
3.1.1. Water
3.1.2. Energy
3.1.3. Food
3.1.4. Current WEF Sustainability
3.2. Projected Climate Change Impacts on Water Sustainability by 2050
3.3. Governance and SIDS Sustainability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keairns, D.; Darton, R.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Castillo, R.M.; Crisman, T.L. The Role of Green Infrastructure in Water, Energy, and Food Security in Latin America and the Caribbean: Experiences, Opportunities and Challenges. Discussion Paper IDB-DP 00693; Inter-American Development Bank: Washington, DC, USA, 2019. [Google Scholar]
- Weitz, N.; Nilsson, M.; Davis, M. A nexus approach to the post-2015 agenda. SAIS Rev. Int. Aff. 2014, 34, 37–50. [Google Scholar] [CrossRef]
- Miralles-Wilhelm, F. Development and application of analytical tools in support of water-energy-food nexus planning in Latin America and the Caribbean. Water Monogr. 2014, 2, 76–85. [Google Scholar]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The water-energy-food nexus: A systematic review of methods of nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P.W. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Stylianopoulou, K.G.; Papapostolou, C.M.; Kondili, E.M. Water-energy-food nexus: A focused review on integrated methods. Environ. Sci. Proc. 2020, 2, 46. [Google Scholar] [CrossRef]
- Purwanto, A.; Susnik, J.; Suryadi, F.X.; de Fraiture, C. Water-energy-food nexus: Critical review, practical applications, and prospects for future research. Sustainability 2021, 13, 1919. [Google Scholar] [CrossRef]
- Susnik, J.; Staddon, C. Evaluation of water-energy-food (WEF) nexus research: Perspectives, challenges, and directions for future research. J. Am. Water Resour. Assoc. 2021, 20, 1–10. [Google Scholar]
- Wang, Q.; Li, S.; He, G.; Li, R.; Wang, X. Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. J. Clean. Prod. 2018, 202, 1097–1106. [Google Scholar] [CrossRef]
- Wicaksono, A.; Kang, D. Nationwide simulation of water, energy, and food nexus: Case study in South Korea and Indonesia. J. Hydro-Environ. Res. 2019, 22, 70–87. [Google Scholar] [CrossRef]
- Wicaksono, A.; Jeong, G.; Kang, D. Water-energy-food nexus simulation: An optimization approach for resource security. Water 2019, 11, 667. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.T.; Zhang, J.L.; Yu, L.; Zhu, J.X.; Li, Z.; Tang, L. A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach. Appl. Energy 2019, 263, 743–759. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, J.; Wang, D.; Kong, X.; Zhu, Y.; Liu, Z.; Dai, W.; Huang, G. Scenario analysis of a sustainable water-food nexus optimization with consideration of population-economy regulation in Beijing-Tianjin-Hebei region. J. Clean. Prod. 2019, 228, 927–940. [Google Scholar] [CrossRef]
- Daohan, H.; Guijun, L.; Chengshuang, S.; Qian, L. Exploring interactions in the local water-energy-food nexus (WEF-Nexus) using a simultaneous equations model. Sci. Total Environ. 2020, 703, 135034. [Google Scholar]
- Moghadam, E.S.; Sadeghi, S.H.R.; Zarghami, M.; Delavar, M. Water-energy-food nexus as a new approach for watershed resources management: A review. Environ. Resour. Res. 2019, 7, 129–136. [Google Scholar]
- Mahlknecht, J.; Gonzalez-Bravo, R. Measuring the water-energy-food nexus: The case of Latin America and the Caribbean Region. Energy Procedia 2018, 153, 169–173. [Google Scholar] [CrossRef]
- Simpson, G.B.; Berchner, M. Measuring integration towards a water-energy-food nexus. Water Wheel 2017, 16, 22–23. [Google Scholar]
- Wolde, Z.; Wei, W.; Likessa, D.; Omari, R.; Ketema, H. Understanding the impact of land use and land cover change on water-energy-food nexus in the Gidabo watershed, eastern African Rift Valley. Nat. Resour. Res. 2021, 30, 2687–2702. [Google Scholar] [CrossRef]
- Sadagehi, S.H.; Moghadam, E.S. Integrated watershed management vis-à-vis water-energy-food nexus. In The Water-Energy-Food Nexus; Muthu, S.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–96. [Google Scholar]
- Ding, K.J.; Gunda, T.; Hornberger, G.M. Prominent influence of socioeconomic and governance factors on the food-energy-water nexus in sub-Saharan Africa. Earths Future 2019, 7, 1071–1087. [Google Scholar] [CrossRef] [Green Version]
- United Nations (UN). Integrated Management and Sustainable Development of Coastal and Marine Areas, Including Exclusive Economic Zones. In Report of the United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3−14 June 1992; United Nations: New York, NY, USA, 1995. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). If SIDS Were a Country. In Development and Globalization: Facts and Figures 2021. Available online: https://dgff2021.unctad.org/if-sids-were-a-country/ (accessed on 18 October 2021).
- Miralles-Wilhelm, F.; Munoz-Castillo, R. An Analysis of the Water-Energy-Food Nexus in Latin America and the Caribbean Region: Identifying Synergies and Tradeoffs through Integrated Assessment Modeling. Int. J. Eng. Sci. 2018, 7, 8–24. [Google Scholar]
- Biermann, F.; Kanie, N.; Kim, R.E. Global governance by goal-setting: The novel approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2017, 26, 26–31. [Google Scholar] [CrossRef]
- Sarni, W. The Case for Green Infrastructure in LAC: Conclusions from Stockholm World Water Week 2018. Policy Brief N IDB-PB-318; InterAmerican Development Bank: Washington, DC, USA, 2019. [Google Scholar]
- Cashman, A.; Nurse, L.; John, C. Climate change in the Caribbean: The water management implications. J. Environ. Dev. 2010, 19, 42–67. [Google Scholar] [CrossRef]
- Mycoo, M.A. Beyond 1.5 °C: Vulnerabilities and adaptation strategies for Caribbean Small Island Developing States. Reg. Environ. Chang. 2018, 18, 2341–2353. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.C.; Sealy, A.M.; Stephenson, T.S.; Kusunoki, S.; Taylor, M.A.; Chen, A.A.; Kitoh, A. Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor. Appl. Climatol. 2013, 113, 271–287. [Google Scholar] [CrossRef]
- The World Factbook. Available online: https://www.cia.gov/the-world-factbook/ (accessed on 10 October 2020).
- Xu, H.; Wu, M. Water Availability Indices—A Literature Review. ANL/ESD-17/5; Argonne National Laboratory: Chicago, IL, USA, 2017.
- FAO. AQUATSTAT. Available online: https://www.fao.org/aquastat/statistics/query/index.html (accessed on 5 October 2020).
- Water Sanitation and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/environmental-health-in-emergencies/humanitarian-emergencies#minimum-quantity-water-needed (accessed on 1 October 2020).
- Falkenmark, M. The massive water scarcity now threatening Africa: Why isn’t it being addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Cosgrove, W.J.; Rijsberman, F. World Water Vision: Making Water Everybody’s Business; Earthscan Publications Ltd.: London, UK, 2000. [Google Scholar]
- Brown, A.; Matlock, M.D. A Review of Water Scarcity Indices and Methodologies; The Sustainability Consortium, University of Arkansas: Fayetteville, NC, USA, 2011. [Google Scholar]
- Gunda, T.; Benneyworth, L.; Burchfield, E. Exploring water indices and associated parameters: A case study approach. Water Policy 2015, 17, 98–111. [Google Scholar] [CrossRef] [Green Version]
- The World Bank Database. Available online: https://databank.worldbank.org/home.aspx (accessed on 15 September 2020).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 15 September 2020).
- Cashman, A. Water security and services in the Caribbean. Water 2014, 6, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Crisman, T.L.; Dumke, D.; Rivera, F.I.; Santiago-Pimentel, L. Resilience of environment, infrastructure, communities and governance in Puerto Rico after Hurricane Maria and the need for community empowerment to develop decentralized, nature-based solutions to sustainability. J. Environ. Manag. 2021, 19, 11–23. [Google Scholar]
- UNICEF; WHO. Progress on Drinking Water and Sanitation: 2012 Update; UNICEF and World Health Organization: New York, NY, USA, 2012; pp. 1–57.
- Crisman, T.C. Observational data, 2020. (Unpublished work).
- FAO; CDB. Study on the State of Agriculture in the Caribbean; FAO and CDB: Rome, Italy, 2019; p. 212p. [Google Scholar]
- Pemberton, C. Agricultural Development and Employment in the Caribbean: Challenges and Future Prospects; International Labour Organization: Port of Spain, Trinidad, 2005. [Google Scholar]
- Sullivan, M.P.; Beitel, J.S.; DeBruyne, N.F.; Meyer, P.J.; Seelke, C.R.; Taft-Morales, M.; Villarreal, M.A. Latin America and the Caribbean: US Policy and Issues in the 116th Congress; Congressional Research Service: Washington, DC, USA, 2021.
- Scobie, M. Accountability in climate change governance and Caribbean SIDS. Environ. Dev. Sustain. 2018, 20, 769–787. [Google Scholar] [CrossRef] [Green Version]
- CNN. Haiti Earthquake Fast Facts. Available online: https://www.cnn.com/2013/12/12/world/haiti-earthquake-fast-facts/index.html (accessed on 20 October 2021).
- Herring, G.H. From Colony to Superpower; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Dubois, L. Haiti: The Aftershocks of History; Henry Holt and Company: New York, NY, USA, 2012. [Google Scholar]
- Sullivan, M.P.; Meyer, P.J. Latin America and the Caribbean: Impact of COVID-19; Congressional Research Service: Washington, DC, USA, 2021.
- Dizney-Flores, Z. The Development Paradox. NACLA Rep. Am. 2018, 50, 163–169. [Google Scholar] [CrossRef]
- Chandra, A.; Marsh, T.; Madrigano, J.; Simmons, M.M.; Abir, M.; Chan, E.W.; Ryan, J.; Nanda, N.; Zieler, M.D.; Nelson, C. Health and Social Services in Puerto Rico before and after Hurricane Maria; Homeland Security Operational Analysis Center: Santa Monica, CA, USA, 2020.
- Susnik, J.; Vamvakeridou-Lyroudia, L.S.; Baumert, N.; Kloos, J.; Renaud, F.G.; La Jeunesse, I.; Mabrouk, B.; Savic, D.A.; Kapelan, Z.; Ludwig, R.; et al. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile Delta, Egypt. Sci. Total Environ. 2015, 503–504, 279–288. [Google Scholar] [CrossRef]
- Lawford, R.G. A design for a data and information service to address the knowledge needs of the water-energy-food (W-E-F) nexus and strategies to facilitate its implementation. Front. Environ. Sci. 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Peter, S. Worsening Water Crisis in the Eastern Caribbean. Available online: https://eos.org/articles/worsening-water-crisis-in-the-eastern-caribbean (accessed on 22 September 2020).
- Emmanuel, K.; Spence, B. Climate change implications for water resource management in Caribbean tourism. Worldw. Hosp. Tour. Themes 2009, 1, 252–268. [Google Scholar] [CrossRef]
- Robinson, D.; Newman, S.P.; Stead, S.M. Community perceptions link environmental decline to reduced support for tourism development in small island states: A case study in the Turks and Caicos Islands. Mar. Policy 2019, 108, 103671. [Google Scholar] [CrossRef]
- Maharjan, S.K.; Dangol, D.R. Agritourism education and research in Nepal. J. Agric. Res. Technol. 2018, 14, 1–5. [Google Scholar] [CrossRef]
- Breiby, M.A.; Duedahl, E.; Øian, H.; Ericsson, B. Exploring sustainable experiences in tourism. Scand. J. Hosp. Tour. 2020, 20, 335–351. [Google Scholar] [CrossRef] [Green Version]
Country | Population | GDP (USD) | Surface Area (km2) | Agricultural Area (km2) | Highest Elevation (m) |
---|---|---|---|---|---|
Antigua and Barbuda | 95,882 | 2,398,000,000 | 442 | 91 | 402 |
Bahamas | 332,634 | 12,060,000,000 | 13,900 | 195 | 64 |
Barbados | 293,131 | 5,218,000,000 | 430 | 140 | 336 |
Dominica | 74,027 | 783,000,000 | 751 | 261 | 1447 |
Grenada | 112,207 | 1,634,000,000 | 344 | 111 | 840 |
Jamaica | 2,812,090 | 26,060,000,000 | 10,991 | 4550 | 2256 |
St. Kitts and Nevis | 53,094 | 1,550,000,000 | 261 | 60 | 1156 |
St. Lucia | 165,510 | 2,542,000,000 | 616 | 107 | 948 |
St. Vincent and Grenadines | 101,844 | 1,265,000,000 | 389 | 100 | 1234 |
Trinidad and Tobago | 1,215,527 | 42,850,000,000 | 5128 | 544 | 940 |
Country | Renewable Freshwater (m3/Capita/Year) | Natural and Desalinated Water Availability (m3/Capita/Year) | Difference (m3/Capita/Year) |
---|---|---|---|
Antigua and Barbuda | 542 | 616 | 74 |
Bahamas | 2104 | 2126 | 22 |
Barbados | 273 | 311 | 38 |
Dominica | 2701 | 2701 | 0 |
Grenada | 1782 | 1782 | 0 |
Jamaica | 3849 | 3849 | 0 |
St. Kitts and Nevis | 452 | 514 | 62 |
St. Lucia | 1813 | 1813 | 0 |
St. Vincent and Grenadines | 982 | 988 | 6 |
Trinidad and Tobago | 3159 | 3198 | 39 |
Country | Urban Population (%) | Water Supply | |||
---|---|---|---|---|---|
Urban | Rural | ||||
Unimproved (%) | Improved (%) | Unimproved (%) | Improved (%) | ||
Antigua and Barbuda | 89 | 5 | 95 | 11 | 89 |
Bahamas | 84 | 2 | 98 | 14 | 86 |
Barbados | 44 | 0 | 100 | 0 | 100 |
Dominica | 67 | 4 | 96 | 4 | 96 |
Grenada | 39 | 2 | 98 | 7 | 93 |
Jamaica | 52 | 2 | 98 | 12 | 88 |
St. Kitts and Nevis | 32 | 1 | 99 | 1 | 99 |
St. Lucia | 28 | 2 | 98 | 5 | 95 |
St. Vincent and Grenadines | 49 | N/A | N/A | 7 | 93 |
Trinidad and Tobago | 14 | 2 | 98 | 7 | 93 |
Country | Urban Population (%) | Water Sanitation | |||
---|---|---|---|---|---|
Urban | Rural | ||||
Unimproved (%) | Improved (%) | Unimproved (%) | Improved (%) | ||
Antigua and Barbuda | 89 | 2 | 98 | 2 | 98 |
Bahamas | 84 | 2 | 98 | 2 | 98 |
Barbados | 44 | 0 | 100 | 0 | 100 |
Dominica | 67 | 4 | 96 | 8 | 92 |
Grenada | 39 | 4 | 96 | 3 | 97 |
Jamaica | 52 | 3 | 97 | 11 | 89 |
St. Kitts and Nevis | 32 | 2 | 98 | 2 | 98 |
St. Lucia | 28 | 1 | 99 | 7 | 93 |
St. Vincent and Grenadines | 49 | 5 | 95 | 5 | 95 |
Trinidad and Tobago | 14 | 3 | 97 | 7 | 93 |
Country | Petroleum Imports (USD)—2018 | Total Import (USD)—2018 | Petroleum as Percent of Total |
---|---|---|---|
Antigua and Barbuda | 230,190,000 | 955,000,000 | 24% |
Bahamas | 2,220,800,000 | 6,920,000,000 | 32% |
Barbados | 378,130,000 | 1,650,000,000 | 23% |
Dominica | 9,968,800 | 295,000,000 | 3% |
Grenada | 5,842,300 | 200,000,000 | 3% |
Jamaica | 915,859,000 | 4,400,000,000 | 21% |
St. Kitts and Nevis | 25,786,000 | 246,000,000 | 10% |
St. Lucia | 1,632,308,900 | 1,910,000,000 | 85% |
St. Vincent and the Grenadines | 46,000,000 | 393,000,000 | 12% |
Trinidad and Tobago | 1,122,100,000 | 4,710,000,000 | 24% |
Energy Parameters Pass or Fail | ||||
---|---|---|---|---|
Country | Access | Losses | Renewable | Final Classification |
Antigua and Barbuda | Pass | Fail | Fail | Fail |
Bahamas | Pass | Pass | Fail | Pass |
Barbados | Pass | Pass | Fail | Pass |
Dominica | Pass | Pass | Pass | Pass |
Grenada | Fail | Pass | Fail | Fail |
Jamaica | Pass | Fail | Fail | Fail |
St. Kitts and Nevis | Pass | Fail | Fail | Fail |
St. Lucia | Pass | Pass | Fail | Pass |
St. Vincent and the Grenadines | Pass | Pass | Fail | Pass |
Trinidad and Tobago | Pass | Pass | Fail | Pass |
Food Parameters Pass or Fail | ||||
---|---|---|---|---|
Country | Adequacy | Cereal Import | Food Supply Variability | Final Classification |
Antigua and Barbuda | Fail | Fail | Fail | Fail |
Bahamas | Pass | Fail | Fail | Fail |
Barbados | Pass | Fail | Fail | Fail |
Dominica | Pass | Fail | Fail | Fail |
Grenada | Fail | Fail | Fail | Fail |
Jamaica | Pass | Fail | Fail | Fail |
St. Kitts and Nevis | Pass | N/A | Fail | Fail |
St. Lucia | Fail | Fail | Fail | Fail |
St. Vincent and the Grenadines | Pass | Fail | Fail | Fail |
Trinidad and Tobago | Pass | Fail | Fail | Fail |
WEF Sector Summary | |||
---|---|---|---|
Country | Water | Energy | Food |
Antigua and Barbuda | Fail | Fail | Fail |
Bahamas | Pass | Pass | Fail |
Barbados | Fail | Pass | Fail |
Dominica | Pass | Pass | Fail |
Grenada | Pass | Fail | Fail |
Jamaica | Pass | Fail | Fail |
St. Kitts and Nevis | Fail | Fail | Fail |
St. Lucia | Fail | Pass | Fail |
St. Vincent and the Grenadines | Fail | Pass | Fail |
Trinidad and Tobago | Pass | Pass | Fail |
Water Sector Comparison | ||
---|---|---|
Country | Water—2020 | Water—2050 |
Antigua and Barbuda | Fail | Fail |
Bahamas | Pass | Fail |
Barbados | Fail | Fail |
Dominica | Pass | Fail |
Grenada | Pass | Fail |
Jamaica | Pass | Pass |
St. Kitts and Nevis | Fail | Fail |
St. Lucia | Fail | Fail |
St. Vincent and the Grenadines | Fail | Fail |
Trinidad and Tobago | Pass | Pass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winters, Z.S.; Crisman, T.L.; Dumke, D.T. Sustainability of the Water-Energy-Food Nexus in Caribbean Small Island Developing States. Water 2022, 14, 322. https://doi.org/10.3390/w14030322
Winters ZS, Crisman TL, Dumke DT. Sustainability of the Water-Energy-Food Nexus in Caribbean Small Island Developing States. Water. 2022; 14(3):322. https://doi.org/10.3390/w14030322
Chicago/Turabian StyleWinters, Zachary S., Thomas L. Crisman, and David T. Dumke. 2022. "Sustainability of the Water-Energy-Food Nexus in Caribbean Small Island Developing States" Water 14, no. 3: 322. https://doi.org/10.3390/w14030322
APA StyleWinters, Z. S., Crisman, T. L., & Dumke, D. T. (2022). Sustainability of the Water-Energy-Food Nexus in Caribbean Small Island Developing States. Water, 14(3), 322. https://doi.org/10.3390/w14030322