Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of the MB11 and Alum Solutions
2.3. Coagulation-Flocculation Experiments
3. Results and Discussion
3.1. FTIR Spectrum of MOP Seeds
3.2. Effect of Coagulant Dosage
3.3. Effect of Initial pH
Biocoagulant | Wastewater Type | Optimal Conditions | Color Removal Efficiency | References | |
---|---|---|---|---|---|
pH | Dose | ||||
Opuntia ficus indica | Textile wastewater | 7.25 | 40 mg/L | 99% | [38] |
Ocimum basilicum | Textile wastewater | 8.5 | 1600 mg/L | 69% | [39] |
Papaya seed | Textile wastewater | 2 | 570 mg/L | 85% | [40] |
Cassia fistula | Synthetic paint industry wastewater | 8.4 | 160 mg/L | 96% | [41] |
Opuntia dillenii | Highly turbid lake water | - | 1000 mg/L | 15% | [42] |
Moringa oleifera | Reactive yellow | 6.5 | 60 mL | 89% | [43] |
Strychnos potatorum | 6.5 | 60 mL | 93% | ||
Okra mucilage | Textile wastewater | 6 | 3.20 mg/L + 88.0 mg/L Fe3+ | 93.57% | [44] |
MOPW | MB11 | ≤6.5 | 500 mg/L | 80.12% | This study |
MOPS | 95.02% |
3.4. Effect of Initial Dye Concentration
3.5. Effect of Salt Concentration
3.6. Effect of Sedimentation Time
4. Conclusions
- ⮚
- The coagulant dose had a substantial impact on the effectiveness of MOPW and MOPS in removing MB11 dye. With an increase in dosage, the removal efficiency of both biocoagulants increased until the optimal dosage of 500 mg/L was recorded. Thereafter, an increase in coagulant dosage led to a decrease in dye removal efficiency, indicating that adsorption and charge neutralization might be the primary mechanisms occurring in this study.
- ⮚
- Within the pH range of 3 to 6.5, a minimal impact on the removal efficiency of MB11 was noticed when the biocoagulants were used. This was in contrast to alum, for which removal rates fluctuated significantly, indicating the versatility of biocoagulants to function effectively over a wide pH range. Tests on pH variations have shown that biocoagulants have a negligible effect on pH, enabling us to establish that the neutralization step often needed when chemical coagulants are employed is no longer required.
- ⮚
- In contrast to MOPW and MOPS, increasing the initial concentration of MB11 had less of an effect on the proper functioning of alum as a coagulant. Indicating that distinct processes govern the coagulation-flocculation of this anionic dye.
- ⮚
- Despite the similar patterns of the two biocoagulants, MOPS outperformed MOPW. This was attributed to the proteinaceous structure of MO, which necessitates salt for increased extractability; nevertheless, this is not regarded as a disadvantage due to the accessibility and cost-effectiveness of NaCl salt.
- ⮚
- The removal efficiencies of MOPS and alum were comparable (95 and 98%), with decreased sedimentation time reported when the two biocoagulants were applied, indicating that the flocs generated by MOPS and MOPW may be larger and, hence, settle more quickly, which is a considerable advantage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bian, Z.; Liu, D. A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus. Int. J. Environ. Res. Public Health. 2021, 18, 8276. [Google Scholar] [CrossRef] [PubMed]
- Isik, Z.; Saleh, M.; M’barek, I.; Yabalak, E.; Dizge, N.; Deepanraj, B. Investigation of the Adsorption Performance of Cationic and Anionic Dyes Using Hydrochared Waste Human Hair. Biomass Convers. Biorefinery 2022, 1–14. [Google Scholar] [CrossRef]
- Sharma, V.T.; Kamath, S.V.; Mondal, D.; Kotrappanavar, N.S. Fe–Al Based Nanocomposite Reinforced Hydrothermal Carbon: Efficient and Robust Absorbent for Anionic Dyes. Chemosphere 2020, 259, 127421. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.S.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. A Comprehensive Review on Magnetic Carbon Nanotubes and Carbon Nanotube-Based Buckypaper- Heavy Metal and Dyes Removal. J. Hazard. Mater. 2021, 413, 125375. [Google Scholar] [CrossRef]
- Kaur, Y.; Jasrotia, T.; Kumar, R.; Chaudhary, G.; Chaudhary, S. Adsorptive Removal of Eriochrome Black T (EBT) Dye by Using Surface Active Low Cost Zinc Oxide Nanoparticles: A Comparative Overview. Chemosphere 2021, 278, 130366. [Google Scholar] [CrossRef]
- Cai, L.; Ying, D.; Liang, X.; Zhu, M.; Lin, X.; Xu, Q.; Cai, Z.; Xu, X.; Na, N. A Novel Cationic Polyelectrolyte Microsphere for Ultrafast and Ultra-Efficient Removal of Heavy Metal Ions and Dyes. Chem. Eng. J. 2021, 410, 128404. [Google Scholar] [CrossRef]
- Wijannarong, S.; Aroonsrimorakot, S.; Thavipoke, P.; Kumsopa, C.; Sangjan, S. Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process. APCBEE Procedia 2013, 5, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Möslang, M. Superior Adsorption Capacity of Functionalised Straw Adsorbent for Dyes and Heavy-Metal Ions. J. Hazard. Mater. 2019, 382, 121040. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, J.-L.; Zeng, G.-M.; Deng, C.-H.; Yang, H.-C.; Liu, H.; Huan, S.-Y. Cross-Linking to Prepare Composite Graphene Oxide-Framework Membranes with High-Flux for Dyes and Heavy Metal Ions Removal. Chem. Eng. J. 2017, 322, 657–666. [Google Scholar] [CrossRef]
- Waghchaure, R.; Adole, V.; Jagdale, B. Photocatalytic Degradation of Methylene Blue, Rhodamine B, Methyl Orange and Eriochrome Black T Dyes by Modified ZnO Nanocatalysts: A Concise Review. Inorg. Chem. Commun. 2022, 109764. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xin, B.; Chen, S.; Huang, Q. Extracellular Biosynthesis of High-Purity γ-MnS by the Sulfate-Reducing Bacterium Anaerofilum Sp. through Selective Precipitation of a Mn2+-Eriochrome Black T Chelate Complex. Geomicrobiol. J. 2016, 33, 194–198. [Google Scholar] [CrossRef]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.K.; Thiong’o, G. Banana Pith as a Natural Coagulant for Polluted River Water. Ecol. Eng. 2016, 95, 699–705. [Google Scholar] [CrossRef]
- Dayarathne, H.N.P.; Angove, M.; Aryal, R.; Abuel-Naga, H.; Mainali, B. Removal of Natural Organic Matter from Source Water: Review on Coagulants, Dual Coagulation, Alternative Coagulants, and Mechanisms. J. Water Process. Eng. 2020, 40, 101820. [Google Scholar] [CrossRef]
- Owodunni, A.; Ismail, S. Revolutionary Technique for Sustainable Plant-Based Green Coagulants in Industrial Wastewater Treatment—A Review. J. Water Process. Eng. 2021, 42, 102096. [Google Scholar] [CrossRef]
- Syed Zainal, S.F.F.; Aziz, H.; Mohd Omar, F.; Alazaiza, M. Influence of Jatropha Curcas Seeds as a Natural Flocculant on Reducing Tin (IV) Tetrachloride in the Treatment of Concentrated Stabilised Landfill Leachate. Chemosphere 2021, 285, 131484. [Google Scholar] [CrossRef]
- Azamzam, A.; Rafatullah, M.; Yahya, E.; Ahmad, M.; Lalung, J.; Mahboob, A.; Siddiqui, M. Enhancing the Efficiency of Banana Peel Bio-Coagulant in Turbid and River Water Treatment Applications. Water 2022, 14, 2473. [Google Scholar] [CrossRef]
- Bahrodin, M.; Zaidi, N.S.; Kadier, A.; Hussein, N.; Syafiuddin, A.; Boopathy, R. A Novel Natural Active Coagulant Agent Extracted from the Sugarcane Bagasse for Wastewater Treatment. Appl. Sci. 2022, 12, 7972. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Assadi, A.A.; Amrane, A.; Mouni, L. Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water 2022, 14, 3324. [Google Scholar] [CrossRef]
- Ueda Yamaguchi, N.; Cusioli, L.; Quesada, H.; Ferreira, M.; Fagundes-Klen, M.; Vieira, A.; Gomes, R.; Vieira, M.; Bergamasco, R. A Review of Moringa Oleifera Seeds in Water Treatment: Trends and Future Challenges. Process Saf. Environ. Prot. 2021, 147, 405–420. [Google Scholar] [CrossRef]
- Ribeiro, J.V.; Vega, P.; Reis, A. Moringa Oleifera Seed as a Natural Coagulant to Treat Low-Turbidity Water by in-Line Filtration. Rev. Ambient. Água. 2019, 14, 1. [Google Scholar] [CrossRef]
- Okuda, T.; Baes, A.U.; Nishijima, W.; Okada, M. Improvement of Extraction Method of Coagulation Active Components from Moringa Oleifera Seed. Water Res. 1999, 33, 3373–3378. [Google Scholar] [CrossRef] [Green Version]
- Varsani, V.; Vyas, S.; Dudahagara, D. Development of Bio-Based Material from the Moringa Oleifera and Its Bio-Coagulation Kinetic Modeling–A Sustainable Approach to Treat the Wastewater. Heliyon 2022, 8, e10447. [Google Scholar] [CrossRef] [PubMed]
- Flory Mkangombe, K.; Bernard, Z.; Hongbin, C. Study of Domestic Wastewater Treatment Using Moringa Oleifera Coagulant Coupled with Vertical Flow Constructed Wetland in Kibera Slum, Kenya. Environ. Sci. Pollut. Res. 2022, 29, 36589–36607. [Google Scholar] [CrossRef]
- Johnson, U.K.; Imelda, N.N.; Geoffrey, M.M.; Caro, W.H.; Festus, M.; Josphert, K. The Effectiveness of Moringa Oleifera Seed Coagulant in Reducing the Turbidity and Modifying the Physico-Chemical Characteristics of Water. Afr. J. Environ. Sci. Technol. 2022, 16, 126–145. [Google Scholar] [CrossRef]
- Tometin, L.; Nonfodji, O.; Chouti, W.; Dannon, M.; Aboubakari, A.; Fatombi, J. Use of Natural Coagulants in Removing Organic Matter, Turbidity and Fecal Bacteria from Hospital Wastewater by Coagulation-Flocculation Process. J. Water Resour. Prot. 2022, 14, 719–730. [Google Scholar] [CrossRef]
- Eichhorn, C.; Weckmüller, S.; Urban, W. Natural Flocculant from a Combination of Moringa Oleifera Seeds and Cactus Cladodes (Opuntia Ficus-Indica) to Optimize Flocculation Properties. Water 2022, 14, 3570. [Google Scholar] [CrossRef]
- Mohamed Noor, M.; Lee, W.; Azli, M.; Ngadi, N.; Mohamed, M. Moringa Oleifera Extract as Green Coagulant for POME Treatment: Preliminary Studies and Sludge Evaluation. Mater. Today Proc. 2021, 46, 1940–1947. [Google Scholar] [CrossRef]
- Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S. Green Fabrication of Moringa Oleifera Seed as Efficient Biosorbent for Selective Enrichment of Triazole Fungicides in Environmental Water, Honey and Fruit Juice Samples. Microchem. J. 2022, 175, 107194. [Google Scholar] [CrossRef]
- Silva, K.; Filippov, L.; Piçarra, A.; Filippova, I.; Lima, N.; Skliar, A.; Marques Faustino, L.; Leal Filho, L. New Perspectives in Iron Ore Flotation: Use of Collector Reagents without Depressants in Reverse Cationic Flotation of Quartz. Miner. Eng. 2021, 170, 107004. [Google Scholar] [CrossRef]
- Ezeamaku, U.; Chike-Onyegbula, C.; Iheaturu, N.; Onwuka, E.; Ezike, C.; Onuchukwu, S. Treatment of Lead Contaminated Wastewater Using Aluminium Sulphate and Moringa Oleifera as Coagulants. Niger J. Polym. Sci. Technol. 2018, 13, 82–92. [Google Scholar]
- Zeng, H.; Tang, H.; Sun, W.; Wang, L. Strengthening Solid–Liquid Separation of Bauxite Residue through the Synergy of Charge Neutralization and Flocculation. Sep. Purif. Technol. 2021, 285, 120296. [Google Scholar] [CrossRef]
- Lim, V.H.; Yamashita, Y.; Ogawa, K.; Adachi, Y. The Inhibitory Effects of Synthetic Polyacrylic Acid and Humic Substances on the Initial Stage of Colloidal Flocculation Induced by Polycationic Flocculant with Low Charge Density. Colloids Surf. A Physicochem. Eng. 2022, 653, 129930. [Google Scholar] [CrossRef]
- Megersa, M.; Beyene, A.; Ambelu, A.; Asnake, D.; Tesfaye, B.; Firdissa, B.; Alebachew, Z.; Triest, L. A Preliminary Evaluation of Locally Used Plant Coagulants for Household Water Treatment. Water Conserv. Sci. Eng. 2016, 1, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Ndabigengesere, A.; Narasiah, K.S. Quality of Water Treated by Coagulation Using Moringa Oleifera Seeds. Water Res. 1998, 32, 781–791. [Google Scholar] [CrossRef]
- Madrona, G.S.; Serpelloni, G.B.; Salcedo Vieira, A.M.; Nishi, L.; Cardoso, K.C.; Bergamasco, R. Study of the Effect of Saline Solution on the Extraction of the Moringa Oleifera Seed’s Active Component for Water Treatment. Water Air Soil Pollut. 2010, 211, 409–415. [Google Scholar] [CrossRef]
- Belbali, A.; Benghalem, A.; Gouttele, K.; Taleb, S. Coagulation of Turbid Wastewater with an Active Component Extracted from Moringa Oleifera Seeds. J. Environ. Anal. Chem. 2021, 1–17. [Google Scholar] [CrossRef]
- Tiaiba, M.; Merzouk, B.; Mazour, M.; Leclerc, J.; Lapicque, F. Study of Chemical Coagulation Conditions for a Disperse Red Dye Removal from Aqueous Solutions. Membr. Water Treat. 2022. [Google Scholar] [CrossRef]
- Bouatay, F.; Mhenni, M.F. Use of the Cactus Cladodes Mucilage (Opuntia Ficus Indica) As an Eco-Friendly Flocculants: Process Development and Optimization Using Stastical Analysis. Int. J. Environ. Res. 2014, 8, 1295–1308. [Google Scholar]
- Shamsnejati, S.; Chaibakhsh, N.; Pendashteh, A.R.; Hayeripour, S. Mucilaginous Seed of Ocimum Basilicum as a Natural Coagulant for Textile Wastewater Treatment. Ind. Crops Prod. 2015, 69, 40–47. [Google Scholar] [CrossRef]
- Kristianto, H.; Kurniawan, M.; Soetedjo, J.N.M. Utilization of Papaya Seeds as Natural Coagulant for Synthetic Textile Coloring Agent Wastewater Treatment. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 2071. [Google Scholar] [CrossRef]
- Solaiappan, V.; Sakthivel, S.; Karthick, R.; Gowsigan, V.S. A Sustainable Approach for the Treatment of Industrial Effluent Using a Green Coagulant Cassia Fistula vs. Chemical Coagulant. Desalin. Water Treat. 2020, 195, 189–197. [Google Scholar] [CrossRef]
- Nougbodé, Y.A.; Agbangnan, C.P.; Koudoro, A.Y.; Dèdjiho, C.A.; Aïna, M.P.; Mama, D.; Sohounhloué, D.C. Evaluation of the Opuntia Dillenii as Natural Coagulant in Water Clarification: Case of Treatment of Highly Turbid Surface Water. J. Water Resour. Prot. 2013, 5, 1242–1246. [Google Scholar] [CrossRef]
- Vijayaraghavan, G.; Rajasekaran, R.; Shanthakumar, S. Removal of Reactive Yellow Dye Using Natural Coagulants in Synthetic Textile Wastewater. Int. J. Chem. Sci. 2013, 11, 1824–1830. [Google Scholar]
- Freitas, T.; Oliveira, V.M.; Souza, M.T.F.; Geraldino, H.; Almeida, V.C.; Fávaro, S.; Garcia, J. Optimization of Coagulation-Flocculation Process for Treatment of Industrial Textile Wastewater Using Okra (A. Esculentus) Mucilage as Natural Coagulant. Ind. Crops Prod. 2015, 76, 538–544. [Google Scholar] [CrossRef]
- Mahmoudabadi, T.; Abbasi, F.; Jalili, M.; Talebi, P. Effectiveness of Plantago Major Extract as a Natural Coagulant in Removal of Reactive Blue 19 Dye from Wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 7893–7900. [Google Scholar] [CrossRef]
- Beltrán, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. Textile Wastewater Purification through Natural Coagulants. Appl. Water Sci. 2011, 1, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, D.; Astudillo-Sanchez, P.; Real, J.; Bandala, E. Wastewater Treatment Using Moringa Oleifera Lam Seeds: A Review. J. Water Process. Eng. 2018, 23, 151–164. [Google Scholar] [CrossRef]
- Kristianto, H.; Rahman, H.; Prasetyo, S.; Sugih, A.K. Removal of Congo Red Aqueous Solution Using Leucaena Leucocephala Seed’s Extract as Natural Coagulant. Appl. Water Sci. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wahid, M.; Megat Mohd Noor, M.J.; Goto, M.; Sugiura, N.; Othman, N.; Zakaria, Z.; Mohammed, T.; Jusoh, A.; Hara, H. Recombinant Protein Expression of Moringa Oleifera Lectin in Methylotrophic Yeast as Active Coagulant for Sustainable High Turbid Water Treatment. Biosci. Biotechnol. Biochem. 2017, 81, 1–8. [Google Scholar] [CrossRef]
Characteristics | MB11 | Chemical Structure |
---|---|---|
General name/synonyms | Mordant black 11/Eriochrome Black T | |
Chemical formula | C20H12N3O7SNa | |
Molecular weight (g/mol) | 461.381 | |
Maximum wavelength absorbance (λmax) | 535 nm | |
Purity | Indicator grade | |
Dye type | Anionic (azo) dye |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Cheikh, S.; Assadi, A.A.; Amrane, A.; Kebir, M.; Mouni, L. Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum. Water 2022, 14, 4109. https://doi.org/10.3390/w14244109
Hadadi A, Imessaoudene A, Bollinger J-C, Cheikh S, Assadi AA, Amrane A, Kebir M, Mouni L. Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum. Water. 2022; 14(24):4109. https://doi.org/10.3390/w14244109
Chicago/Turabian StyleHadadi, Amina, Ali Imessaoudene, Jean-Claude Bollinger, Sabrina Cheikh, Aymen Amine Assadi, Abdeltif Amrane, Mohamed Kebir, and Lotfi Mouni. 2022. "Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum" Water 14, no. 24: 4109. https://doi.org/10.3390/w14244109
APA StyleHadadi, A., Imessaoudene, A., Bollinger, J.-C., Cheikh, S., Assadi, A. A., Amrane, A., Kebir, M., & Mouni, L. (2022). Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum. Water, 14(24), 4109. https://doi.org/10.3390/w14244109