Effect of Using Trichoderma spp. on Turfgrass Quality under Different Levels of Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments Layout
2.2. Trichoderma spp. Isolates
2.3. Experiment 1: Mycelial Growth Rate of the Three Trichoderma spp. Isolates under Different Salt Concentrations
2.4. Experiment 2: In Vitro Evaluation of Trichoderma spp. on Turfgrass Seeds under Different Levels of Salinity
2.5. Experiment 3: In-Vivo Effect of Trichoderma Isolate on Perennial Ryegrass under Different Levels of Salinity
2.5.1. Perennial Ryegrass Cultivation and Treatments
2.5.2. Measurements
2.6. Data Analysis
3. Results
3.1. Mycelial Growth Rate of the Three Trichoderma spp. Isolates under Different Salt Concentrations
3.2. In Vitro Evaluation of Trichoderma spp. on Turfgrass Seeds under Different Levels of Salinity
3.3. In-Vivo Effect of Trichoderma Isolate on Perennial Ryegrass under Different Levels of Salinity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villwock, M.R.; Meyer, E.G.; Powell, J.W.; Fouty, A.J.; Haut, R.C. Football playing surface and shoe design affect rotational traction. Am. J. Sports Med. 2009, 37, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.C.; Beverly, C.R. Lawn and Sports Turf Benefits; Lawn Institute: East Dundee, IL, USA, 1989. [Google Scholar]
- Christians, N.E.; Aaron, J.P.; Quincy, D. Law. In Fundamentals of Turfgrass Management; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Turgeon, A.J. Turfgrass Management, 3rd ed.; Prentice-Hall Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Geren, H.; Riza, A.; Melis, C. Performances of some warm-season turfgrasses under Mediterranean conditions. Afr. J. Biotechnol. 2009, 8, 4469–4474. [Google Scholar]
- Sakr, W.R.A. Response of paspalum turfgrass grown in sandy soil to trinexapac-ethyl and irrigation water salinity. J. Hortic. Sci. Ornam. Plants 2009, 1, 15–26. [Google Scholar]
- Chawla, S.L.; Roshni, A.; Patel, M.; Patil, S.; Shah, H.P. Turfgrass: A billion dollar industry. In Proceedings of the 2018 National Conference on Floriculture for Rural and Urban Prosperity in the Scenerio of Climate Change, Ranipool, India, 16–18 February 2018. [Google Scholar]
- Jensen, K.B.; Asay, K.H.; Waldron, B.L. Dry matter production of orchardgrass and perennial ryegrass at five irrigation levels. Crop Sci. 2001, 41, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Li, H.; Pang, H.; Fu, J. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J. Plant Physiol. 2012, 169, 146–156. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.; Dong, Y.; Xu, L.; Zhang, X.; Hou, J.; Fan, Z. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul. 2013, 69, 11–20. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.M.; Angle, J.S.; Welterlen, M.S. Nutrient and sediment losses from turfgrass. J. Environ. Qual. 1990, 19, 663–668. [Google Scholar] [CrossRef]
- Pitman, M.G.; Läuchli, A. Global impact of salinity and agricultural ecosystems. In Salinity: Environment-Plants-Molecules; Springer: Dordrecht, The Netherlands, 2002; pp. 3–20. [Google Scholar]
- Shalhevet, J. Using water of marginal quality for crop production: Major issues. Agric. Water Manag. 1994, 25, 233–269. [Google Scholar] [CrossRef]
- Atak, M.; Kaya, M.D.; Kaya, G.; Çikili, Y.; Çiftçi, C.Y. Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk. J. Agric. For. 2006, 30, 39–47. [Google Scholar]
- Othman, Y.; Al-Karaki, G.; Al-Tawaha, A.R.; Al-Horani, A. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci 2006, 2, 11–15. [Google Scholar]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Othman, Y.A.; Tahat, M.; Alananbeh, K.M.; Al-Ajlouni, M. Arbuscular Mycorrhizal Fungi Inoculation Improves Flower Yield and Postharvest Quality Component of Gerbera Grown under Different Salinity Levels. Agriculture 2022, 12, 978. [Google Scholar] [CrossRef]
- Odeh, T.; Mohammad, A.H.; Hussein, H.; Ismail, M.; Almomani, T. Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci. 2019, 78, 40. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Rue, K. Salinity tolerance of 12 turfgrasses in three germination media. HortScience 2011, 46, 651–654. [Google Scholar] [CrossRef]
- Tang, J.; Yu, X.; Luo, N.A.; Xiao, F.; Camberato, J.J.; Jiang, Y. Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions. Plant Cell Environ. 2013, 36, 2021–2033. [Google Scholar] [CrossRef] [PubMed]
- Ali Harivandi, M.; Butler, J.D.; Wu, L. Salinity and turfgrass culture. Turfgrass 1992, 32, 207–229. [Google Scholar]
- Alshammary, S.F.; Qian, Y.L.; Wallner, S.J. Growth response of four turfgrass species to salinity. Agric. Water Manag. 2004, 66, 97–111. [Google Scholar] [CrossRef]
- Marcum, K.B.; Pessarakli, M. Salinity tolerance of ryegrass turf cultivars. HortScience 2010, 45, 1882–1884. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, G.; Bigirimana, J.; Elad, Y.; Höfte, M. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 1998, 104, 279–286. [Google Scholar] [CrossRef]
- Alfano, G.; Ivey, M.L.L.; Cakir, C.; Bos, J.I.B.; Miller, S.A.; Madden, L.V.; Kamoun, S.; Hoitink, H.A.J. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 2007, 97, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastouri, F.; Björkman, T.; Harman, G.E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeimi, S.; Okhovvat, S.M.; Javan-Nikkhah, M.; Vágvölgyi, C.; Khosravi, V.; Kredics, L. Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathol. Mediterr. 2010, 49, 287–300. [Google Scholar]
- Rawat, L.; Singh, Y.; Shukla, N.; Kumar, J. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 2011, 347, 387–400. [Google Scholar] [CrossRef]
- Papavizas, G.C. Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 1985, 23, 23–54. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Keswani, C.; Ray, S.; Upadhyay, R.S.; Singh, D.P.; Prabha, R.; Sarma, B.K.; Singh, H.B. Isolation and screening of high salinity tolerant Trichoderma spp. with plant growth property and antagonistic activity against various soilborne phytopathogens. Arch. Phytopathol. Plant Prot. 2019, 52, 667–680. [Google Scholar] [CrossRef]
- Poosapati, S.; Ravulapalli, P.D.; Tippirishetty, N.; Vishwanathaswamy, D.K.; Chunduri, S. Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus 2014, 3, 641. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, I. Influence of Trichoderma species on seed germination in okra. Mycopath 2008, 6, 47–50. [Google Scholar]
- Sharma, V.P.; Kumar, S. Spawn Production Technology; Mushrooms Cultivation, Marketing and Consumption, Directorate of Mushroom Research (ICAR): Chambaghat, India, 2011; pp. 35–42. [Google Scholar]
- Dawar, S.; Khaliq, S.; Tariq, M. Comparative effect of plant extract of Datura alba Nees and Cynodon dactylon (L.) Pers., alone or in combination with microbial antagonists for the control of root rot disease of cowpea and okra. Pak. J. Bot 2010, 42, 1273–1279. [Google Scholar]
- Kuehl, R.O.O. Designs of Experiments: Statistical Principles of Research Design and Analysis; Duxbury Press: Duxbury, MA, USA, 2000. [Google Scholar]
- Mohamed, H.A.-L.A.; Haggag, W.M. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum. Braz. J. Microbiol. 2006, 37, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Rawat, L.; Singh, Y.; Shukla, N.; Kumar, J. Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch. Phytopathol. Plant Prot. 2013, 46, 1442–1467. [Google Scholar] [CrossRef]
- De Donno, A.; Bagordo, F.; Lugoli, F.; Leopizzi, M.I.; Russo, A.; Napoli, C.; Montagna, M.T. Spatial distribution of fungal microflora in the sediment of a brackish lake (Lake Alimini Grande, Italy) used for fish production and bathing. J. Prev. Med. Hyg. 2008, 49, 148–151. [Google Scholar] [PubMed]
- Sedat, Ç.A.M.; Çiğdem, K.Ü.Ç.Ü.K. The Effect of Salinity on Growth, Antagonistic Potential, Protease Activity, and Proline Content of Trichoderma harzianum. Commagene J. Biol. 2020, 4, 62–66. [Google Scholar]
- Mishra, N.; Khan, S.S.; Sundari, S.K. Native isolate of Trichoderma: A biocontrol agent with unique stress tolerance properties. World J. Microbiol. Biotechnol. 2016, 32, 130. [Google Scholar] [CrossRef]
- Soliman, H.G.; El-Sheikh, H.H.; Lashine, I.F. Influence of salt stress on certain metabolic activities of Aspergillus terreus and A. tamarii isolated from the Mediterranean Sea water. Al-Azhar J. Microbiol 1994, 24, 46–57. [Google Scholar]
- Yeo, A. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 1998, 49, 915–929. [Google Scholar] [CrossRef]
- Munns, R. Salinity, growth and phytohormones. In Salinity: Environment-Plants-Molecules; Springer: Dordrecht, The Netherlands, 2002; pp. 271–290. [Google Scholar]
- Shiade, S.R.G.; Boelt, B. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2020, 70, 485–494. [Google Scholar] [CrossRef]
- Nizam, I. Effects of salinity stress on water uptake, germination and early seedling growth of perennial ryegrass. Afr. J. Biotechnol. 2011, 10, 10418–10424. [Google Scholar]
- Kalleli, F.; Aissa, E.; M’Hamdi, M. Seed biopriming with endophytic fungi enhances germination, growth, yield and fruit quality of fennel under salinity stress. J. Res. Environ. Earth Sci. 2022, 8, 1–10. [Google Scholar]
- Lo, C.-T.; Lin, C.-Y. Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. J. Phytopathol. 2002, 11, 215–220. [Google Scholar]
- Hoyos-Carvajal, L.; Orduz, S.; Bissett, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control 2009, 51, 409–416. [Google Scholar] [CrossRef]
- Kleifeld, O.; Chet, I. Trichoderma harzianum—interaction with plants and effect on growth response. Plant Soil 1992, 144, 267–272. [Google Scholar] [CrossRef]
- Hu, T.; Li, H.; Zhang, X.; Luo, H.; Fu, J. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicol. Environ. Saf. 2011, 74, 2050–2056. [Google Scholar] [CrossRef]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hückelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [Green Version]
- Baltruschat, H.; Fodor, J.; Harrach, B.D.; Niemczyk, E.; Barna, B.; Gullner, G.; Janeczko, A.; Kogel, K.; Schäfer, P.; Schwarczinger, I.; et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 2008, 180, 501–510. [Google Scholar] [CrossRef]
- Ahmad, P.; Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; John, R.; Egamberdieva, D.; Guce, S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front. Plant Sci. 2015, 6, 868. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Del-Val, E.K.; Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016, 92, fiw036. [Google Scholar] [CrossRef] [Green Version]
- Cetinel, S.H.A.; Gokce, A.; Erdik, E.; Cetinel, B.; Cetinkaya, N. The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia solani Infection in Strawberry (Fragaria × ananassa Duch.). Agronomy 2021, 11, 1589. [Google Scholar] [CrossRef]
- Othman, Y.A.; Leskovar, D. Organic soil amendments influence soil health, yield, and phytochemicals of globe artichoke heads. Biol. Agric. Hortic. 2018, 34, 258–267. [Google Scholar] [CrossRef]
- Qin, K.; Dong, X.; Jifon, J.; Leskovar, D.I. Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Appl. Soil Ecol. 2019, 138, 80–87. [Google Scholar] [CrossRef]
- Wiedow, D.; Baum, C.; Leinweber, P. Inoculation with Trichoderma saturnisporum accelerates wheat straw decomposition on soil: (Inokulation mit Trichoderma saturnisporum beschleunigt den Abbau von Weizenstroh auf dem Boden). Arch. Agron. Soil Sci. 2007, 53, 1–12. [Google Scholar] [CrossRef]
- Yadav, R.L.; Shukla, S.K.; Suman, A.; Singh, P.N. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol. Fertil. Soils 2009, 45, 461–468. [Google Scholar] [CrossRef]
- Tabatabaei, S.J.; Fakhrzad, F. Foliar and soil application of potassium nitrate affects the tolerance of salinity and canopy growth of perennial ryegrass (Lolium perenne var Boulevard). Am. J. Agric. Biol. Sci. 2008, 3, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Behzadi Rad, P.; Roozban, M.R.; Karimi, S.; Ghahremani, R.; Vahdati, K. Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of pistachios rootstocks. Agriculture 2021, 11, 708. [Google Scholar] [CrossRef]
- Padmaja, K.; Prasad, D.D.K.; Prasad, A.R.K. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 1990, 24, 399–405. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.; Bandehagh, A.; Toorchi, M. Effects of NaCl stress on chlorophyll content and chlorophyll fluorescence in sunflower (Helianthus annuus L.) lines. Yuzuncu Yıl Univ. J. Agric. Sci. 2014, 24, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Rawat, L.; Bisht, T.S.; Kukreti, A.; Prasad, M. Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum L.). Mol. Soil Biol. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Khomari, S.; Davari, M. Trichoderma-induced enhancement of soybean seedling performance in response to salt stress. J. Plant Physiol. Breed. 2017, 7, 27–39. [Google Scholar]
Main Effect | Clipping Dry Weight (g) | Shoot Dry Weight (g) | Root Dry Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Day | 88 | 119 | 185 | 88 | 119 | 185 | 190 | 190 | |
Trichoderma (T) | |||||||||
With | 1.51 a 1 | 2.21 a | 12.10 a | 0.35 a | 0.46 a | 3.37 a | 19.64 a | 8.22 a | |
Without 2 | 1.12 a | 1.35 b | 10.31 b | 0.26 a | 0.26 b | 2.71 b | 17.20 b | 6.77 b | |
LSD | 0.4263 | 0.3629 | 1.5432 | 0.0978 | 0.0882 | 0.4092 | 2.0274 | 1.0278 | |
Salinity (S) | |||||||||
0 | 2.34 a | 2.81 a | 17.84 a | 0.52 a | 0.57 a | 4.64 a | 22.56 a | 13.29 a | |
4 | 1.34 b | 1.89 b | 11.62 b | 0.34 b | 0.40 b | 3.16 b | 18.06 b | 8.60 b | |
8 | 0.84 bc | 1.33 c | 10.05 b | 0.20 bc | 0.27 bc | 2.79 b | 17.79 b | 4.76 c | |
12 | 0.72 c | 1.07 c | 5.30 c | 0.17 c | 0.21 c | 1.57 c | 15.99 b | 3.79 c | |
LSD | 0.6029 | 0.5132 | 2.1824 | 0.1383 | 0.1248 | 0.5787 | 2.8378 | 1.4477 | |
ANOVA | |||||||||
T | 0.0716 | <0.0001 | 0.0246 | 0.0701 | <0.0001 | 0.0026 | 0.0205 | 0.0055 | |
S | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0009 | <0.0001 | |
T × S | 0.7829 | 0.3643 | 0.7724 | 0.6976 | 0.3913 | 0.2526 | 0.8192 | 0.7262 |
Main Effect | CO2% |
---|---|
Trichoderma (T) | |
With | 2.67 a 1 |
Without 2 | 1.50 b |
LSD | 0.3842 |
Salinity (S) | |
0 | 2.25 a |
12 | 2.92 a |
LSD | 0.3843 |
ANOVA | |
T | 0.0066 |
S | 0.2598 |
T × S | 0.4876 |
Main Effect | L* 1 | a* 2 | b* 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Day | 28 | 43 | 58 | 28 | 43 | 58 | 28 | 43 | 58 | |
Trichoderma (T) | ||||||||||
With | 34.72 a 4 | 34.39 a | 34.69 a | −15.65 a | −14.27 a | −13.68 a | 23.42 a | 22.40 a | 22.19 a | |
Without 5 | 36.13 a | 34.88 a | 35.65 a | −15.07 a | −13.90 a | −13.00 a | 23.23 a | 21.54 a | 21.67 a | |
LSD | 1.6001 | 1.3312 | 1.1335 | 0.6914 | 0.8886 | 0.7946 | 1.1955 | 0.8731 | 0.7747 | |
Salinity (S) | ||||||||||
0 | 37.69 a | 36.23 a | 36.15 a | −16.50 b | −15.07 b | −14.66 c | 24.26 a | 23.20 a | 22.81 a | |
4 | 36.38 ab | 35.15 a | 35.52 ab | −15.36 a | −14.22 ab | −13.26 b | 23.61 ab | 21.79 bc | 22.39 a | |
8 | 34.58 bc | 34.73 a | 34.79 ab | −14.89 a | −13.76 a | −13.59 bc | 22.44 ab | 22.16 ab | 21.98 a | |
12 | 33.04 c | 32.43 b | 34.23 b | −14.70 a | −13.39 a | −11.86 a | 22.99 b | 20.75 c | 20.52 b | |
LSD | 2.2629 | 1.8826 | 1.6031 | 0.9778 | 1.2567 | 1.1238 | 1.6908 | 1.2348 | 1.0956 | |
ANOVA | ||||||||||
T | 0.0811 | 0.4552 | 0.0932 | 0.0966 | 0.3995 | 0.0914 | 0.7521 | 0.0527 | 0.1823 | |
S | 0.0012 | 0.0024 | 0.0999 | 0.0032 | 0.0446 | 0.0002 | 0.1699 | 0.0033 | 0.0011 | |
T × S | 0.3245 | 0.0333 | 0.2516 | 0.8423 | 0.9124 | 0.0756 | 0.6426 | 0.0103 | 0.6053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Shanab, N.S.; Alananbeh, K.M.; Othman, Y.A.; Al-Ajlouni, M.G. Effect of Using Trichoderma spp. on Turfgrass Quality under Different Levels of Salinity. Water 2022, 14, 3943. https://doi.org/10.3390/w14233943
Abu-Shanab NS, Alananbeh KM, Othman YA, Al-Ajlouni MG. Effect of Using Trichoderma spp. on Turfgrass Quality under Different Levels of Salinity. Water. 2022; 14(23):3943. https://doi.org/10.3390/w14233943
Chicago/Turabian StyleAbu-Shanab, Nour S., Kholoud M. Alananbeh, Yahia A. Othman, and Malik G. Al-Ajlouni. 2022. "Effect of Using Trichoderma spp. on Turfgrass Quality under Different Levels of Salinity" Water 14, no. 23: 3943. https://doi.org/10.3390/w14233943
APA StyleAbu-Shanab, N. S., Alananbeh, K. M., Othman, Y. A., & Al-Ajlouni, M. G. (2022). Effect of Using Trichoderma spp. on Turfgrass Quality under Different Levels of Salinity. Water, 14(23), 3943. https://doi.org/10.3390/w14233943