Aquatic Carbon Dynamics in a Time of Global Change
Funding
Acknowledgments
Conflicts of Interest
References
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global Carbon Dioxide Emissions from Inland Waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic Carbon Burial in Global Lakes and Reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Dugan, H.A.; Bartlett, S.L.; Burke, S.M.; Doubek, J.P.; Krivak-Tetley, F.E.; Skaff, N.K.; Summers, J.C.; Farrell, K.J.; McCullough, I.M.; Morales-Williams, A.M.; et al. Salting Our Freshwater Lakes. Proc. Natl. Acad. Sci. USA 2017, 114, 4453–4458. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, M.; Singer, G.; Bruno, M.C.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. Artificial Light at Night Decreases Biomass and Alters Community Composition of Benthic Primary Producers in a Sub-Alpine Stream. Limnol. Oceanogr. 2017, 62, 2799–2810. [Google Scholar] [CrossRef] [Green Version]
- Rochman, C.M. Plastics and Priority Pollutants: A Multiple Stressor in Aquatic Habitats. Environ. Sci. Technol. 2013, 47, 2439–2440. [Google Scholar] [CrossRef]
- Drake, T.W.; Tank, S.E.; Zhulidov, A.V.; Holmes, R.M.; Gurtovaya, T.; Spencer, R.G.M. Increasing Alkalinity Export from Large Russian Arctic Rivers. Environ. Sci. Technol. 2018, 52, 8302–8308. [Google Scholar] [CrossRef]
- Finlay, K.; Vogt, R.J.; Bogard, M.J.; Wissel, B.; Tutolo, B.M.; Simpson, G.L.; Leavitt, P.R. Decrease in CO2 Efflux from Northern Hardwater Lakes with Increasing Atmospheric Warming. Nature 2015, 519, 215–218. [Google Scholar] [CrossRef]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; De Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved Organic Carbon Trends Resulting from Changes in Atmospheric Deposition Chemistry. Nature 2007, 450, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Vadeboncoeur, Y.; Moore, M.V.; Stewart, S.D.; Chandra, S.; Atkins, K.S.; Baron, J.S.; Bouma-Gregson, K.; Brothers, S.; Francoeur, S.N.; Genzoli, L.; et al. Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. Bioscience 2021, 71, 1011–1027. [Google Scholar] [CrossRef]
- Metcalfe, D.B.; Hermans, T.D.G.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R.G.; Björkman, M.P.; Blok, D.; Chaudhary, N.; Chisholm, C.; et al. Patchy Field Sampling Biases Understanding of Climate Change Impacts across the Arctic. Nat. Ecol. Evol. 2018, 2, 1443–1448. [Google Scholar] [CrossRef]
- Attermeyer, K.; Casas-Ruiz, J.P.; Fuss, T.; Pastor, A.; Cauvy-Fraunié, S.; Sheath, D.; Nydahl, A.C.; Doretto, A.; Portela, A.P.; Doyle, B.C.; et al. Carbon Dioxide Fluxes Increase from Day to Night across European Streams. Commun. Earth Environ. 2021, 2, 118. [Google Scholar] [CrossRef]
- Powers, S.M.; Hampton, S.E. Winter Limnology as a New Frontier. Limnol. Oceanogr. Bull. 2016, 25, 103–108. [Google Scholar] [CrossRef]
- Vander Zanden, M.J.; Vadeboncoeur, Y. Putting the Lake Back Together 20 Years Later: What in the Benthos Have We Learned about Habitat Linkages in Lakes? Inl. Waters 2020, 10, 305–321. [Google Scholar] [CrossRef]
- Keller, P.S.; Catalán, N.; von Schiller, D.; Grossart, H.P.; Koschorreck, M.; Obrador, B.; Frassl, M.A.; Karakaya, N.; Barros, N.; Howitt, J.A.; et al. Global CO2 Emissions from Dry Inland Waters Share Common Drivers across Ecosystems. Nat. Commun. 2020, 11, 2126. [Google Scholar] [CrossRef]
- Sayers, M.; Bosse, K.; Fahnenstiel, G.; Shuchman, R. Carbon Fixation Trends in Eleven of the World’s Largest Lakes: 2003–2018. Water 2020, 12, 3500. [Google Scholar] [CrossRef]
- Khan, H.; Laas, A.; Marcé, R.; Sepp, M.; Obrador, B. Eutrophication and Geochemistry Drive Pelagic Calcite Precipitation in Lakes. Water 2021, 13, 597. [Google Scholar] [CrossRef]
- Fiskal, A.; Gaillard, A.; Giroud, S.; Malcic, D.; Joshi, P.; Sander, M.; Schubert, C.J.; Lever, M.A. Effects of Macrofaunal Recolonization on Biogeochemical Processes and Microbiota—A Mesocosm Study. Water 2021, 13, 1599. [Google Scholar] [CrossRef]
- Page, M.; Goldhammer, T.; Hilt, S.; Tolentino, S.; Brothers, S. Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production. Water 2022, 14, 2136. [Google Scholar] [CrossRef]
- Chan, C.N.; Shi, H.; Liu, B.; Ran, L. CO2 and CH4 Emissions from an Arid Fluvial Network on the Chinese Loess Plateau. Water 2021, 13, 1614. [Google Scholar] [CrossRef]
- Olofsson, M.; Power, M.E.; Stahl, D.A.; Vadeboncoeur, Y.; Brett, M.T. Cryptic Constituents: The Paradox of High Flux–Low Concentration Components of Aquatic Ecosystems. Water 2021, 13, 2301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brothers, S. Aquatic Carbon Dynamics in a Time of Global Change. Water 2022, 14, 3927. https://doi.org/10.3390/w14233927
Brothers S. Aquatic Carbon Dynamics in a Time of Global Change. Water. 2022; 14(23):3927. https://doi.org/10.3390/w14233927
Chicago/Turabian StyleBrothers, Soren. 2022. "Aquatic Carbon Dynamics in a Time of Global Change" Water 14, no. 23: 3927. https://doi.org/10.3390/w14233927
APA StyleBrothers, S. (2022). Aquatic Carbon Dynamics in a Time of Global Change. Water, 14(23), 3927. https://doi.org/10.3390/w14233927