Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Long-Term Data on Ice Cover and Water Temperature
2.3. Stable Isotope Analyses
2.4. Gross Primary Production
2.5. Statistics
3. Results
3.1. Occurrence of FABs in Bear Lake
3.2. Potential Causes of FAB Occurrence
3.3. Effects on Primary Production
4. Discussion
4.1. Potential Causes of FAB Occurrence
4.2. Consequences of FAB Occurrence for Primary Production and Lake Food Web
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Glibert, P.M. Eutrophication, Harmful Algae and Biodiversity—Challenging Paradigms in a World of Complex Nutrient Changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Hilt, S.; Brothers, S.; Jeppesen, E.; Veraart, A.J.; Kosten, S. Translating Regime Shifts in Shallow Lakes into Changes in Ecosystem Functions and Services. Bioscience 2017, 67, 928–936. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; Van de Waal, D.B. Shifting States, Shifting Services: Linking Regime Shifts to Changes in Ecosystem Services of Shallow Lakes. Freshw. Biol. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Daloğlu, I.; Cho, K.H.; Scavia, D. Evaluating Causes of Trends in Long-Term Dissolved Reactive Phosphorus Loads to Lake Erie. Environ. Sci. Technol. 2012, 46, 10660–10666. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate: Blooms like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, J.L.; Van Sickle, J.; Herlihy, A.T.; Brahney, J.; Paulsen, S.; Peck, D.V.; Mitchell, R.; Pollard, A.I. Continental-Scale Increase in Lake and Stream Phosphorus: Are Oligotrophic Systems Disappearing in the United States? Environ. Sci. Technol. 2016, 50, 3409–3415. [Google Scholar] [CrossRef] [Green Version]
- Kopáček, J.; Hejzlar, J.; Kaňa, J.; Norton, S.A.; Stuchlík, E. Effects of Acidic Deposition on In-Lake Phosphorus Availability: A Lesson from Lakes Recovering from Acidification. Environ. Sci. Technol. 2015, 49, 2895–2903. [Google Scholar] [CrossRef]
- Kopáček, J.; Kaňa, J.; Bičárová, S.; Brahney, J.; Navrátil, T.; Norton, S.A.; Porcal, P.; Stuchlík, E. Climate Change Accelerates Recovery of the Tatra Mountain Lakes from Acidification and Increases Their Nutrient and Chlorophyll a Concentrations. Aquat. Sci. 2019, 81, 70. [Google Scholar] [CrossRef] [Green Version]
- Brahney, J.; Mahowald, N.; Ward, D.S.; Ballantyne, A.P.; Neff, J.C. Is Atmospheric Phosphorus Pollution Altering Global Alpine Lake Stoichiometry? Glob. Biogeochem. Cycles 2015, 29, 1369–1383. [Google Scholar] [CrossRef] [Green Version]
- Vadeboncoeur, Y.; Moore, M.V.; Stewart, S.D.; Chandra, S.; Atkins, K.S.; Baron, J.S.; Bouma-Gregson, K.; Brothers, S.; Francoeur, S.N.; Genzoli, L.; et al. Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. Bioscience 2021, 71, 1011–1027. [Google Scholar] [CrossRef] [PubMed]
- Timoshkin, O.A.; Moore, M.V.; Kulikova, N.N.; Tomberg, I.V.; Malnik, V.V.; Shimaraev, M.N.; Troitskaya, E.S.; Shirokaya, A.A.; Sinyukovich, V.N.; Zaitseva, E.P.; et al. Groundwater Contamination by Sewage Causes Benthic Algal Outbreaks in the Littoral Zone of Lake Baikal (East Siberia). J. Great Lakes Res. 2018, 44, 230–244. [Google Scholar] [CrossRef]
- Rosenberger, E.E.; Hampton, S.E.; Fradkin, S.C.; Kennedy, B.P. Effects of Shoreline Development on the Nearshore Environment in Large Deep Oligotrophic Lakes. Freshw. Biol. 2008, 53, 1673–1691. [Google Scholar] [CrossRef]
- DeNicola, D.M. Periphyton Responses to Temperature at Different Ecological Levels. In Algal Ecology: Freshwater Benthic Ecosystems; Stevenson, R.J., Bothwell, M.L., Lowe, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 149–181. [Google Scholar]
- Sommer, U. Nutrient Competition Experiments with Periphyton from the Baltic Sea. Mar. Ecol. Prog. Ser. 1996, 140, 161–167. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Power, M.E. Attached Algae: The Cryptic Base of Inverted Trophic Pyramids in Freshwaters. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 255–279. [Google Scholar] [CrossRef]
- Kuczynski, A.; Auer, M.T.; Brooks, C.N.; Grimm, A.G. The Cladophora Resurgence in Lake Ontario: Characterization and Implications for Management. Can. J. Fish. Aquat. Sci. 2016, 73, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Auer, M.T.; Tomlinson, L.M.; Higgins, S.N.; Malkin, S.Y.; Howell, E.T.; Bootsma, H.A. Great Lakes Cladophora in the 21st Century: Same Algae-Different Ecosystem. J. Great Lakes Res. 2010, 36, 248–255. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Evans, W.R.; Yin, Q.Q.; Bell, P.; Moczydlowski, E. Evidence for Paralytic Shellfish Poisons in the Freshwater Cyanobacterium Lyngbya Wollei (Farlow Ex Gomont) Comb. Nov. Appl. Environ. Microbiol. 1997, 63, 3104–3110. [Google Scholar] [CrossRef] [Green Version]
- Whitman, R.L.; Shively, D.A.; Pawlik, H.; Nevers, M.B.; Byappanahalli, M.N. Occurrence of Escherichia Coli and Enterococci in Cladophora (Chlorophyta) in Nearshore Water and Beach Sand of Lake Michigan. Appl. Environ. Microbiol. 2003, 69, 4714–4719. [Google Scholar] [CrossRef] [Green Version]
- Vander Zanden, M.J.; Vadeboncoeur, Y.; Chandra, S. Fish Reliance on Littoral-Benthic Resources and the Distribution of Primary Production in Lakes. Ecosystems 2011, 14, 894–903. [Google Scholar] [CrossRef]
- Nozaki, K. Abrupt Change in Primary Productivity in a Littoral Zone of Lake Biwa with the Development of a Filamentous Green-Algal Community. Freshw. Biol. 2001, 46, 587–602. [Google Scholar] [CrossRef]
- Baulch, H.M.; Turner, M.A.; Findlay, D.L.; Vinebrooke, R.D.; Donahue, W.F. Benthic Algal Biomass—Measurement and Errors. Can. J. Fish. Aquat. Sci. 2009, 66, 1989–2001. [Google Scholar] [CrossRef]
- Blindow, I.; Hargeby, A.; Meyercordt, J.; Schubert, H. Primary Production in Two Shallow Lakes with Contrasting Plant Form Dominance: A Paradox of Enrichment? Limnol. Oceanogr. 2006, 51, 2711–2721. [Google Scholar] [CrossRef] [Green Version]
- Dodds, W.K.; Gudder, D.A. The Ecology of Cladophora. J. Phycol. 1992, 28, 415–427. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Lamarra, V.A.; Adams, V.D.; Thomas, C.; Herron, R.; Birdsey, P.; Kollock, V.; Pitts, M. A Historical Perspective and Present Water Quality Conditions in Bear Lake, Utah-Idaho. Lake Reserv. Manag. 1984, 1, 213–218. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Bright, J.; Dean, W.E.; Rosenbaum, J.G.; Moser, K.; Anderson, R.S.; Colman, S.M.; Heil, C.W.; Jiménez-Moreno, G.; Reheis, M.C.; et al. A Quarter-Million Years of Paleoenvironmental Change at Bear Lake, Utah and Idaho. Spec. Pap. Geol. Soc. Am. 2009, 450, 311–351. [Google Scholar] [CrossRef]
- Glassic, H.C.; Gaeta, J.W. Littoral Habitat Loss Caused by Multiyear Drought and the Response of an Endemic Fish Species in a Deep Desert Lake. Freshw. Biol. 2019, 64, 421–432. [Google Scholar] [CrossRef]
- Kendall, C.; Silva, S.R.; Kelly, V.J. Carbon and Nitrogen Isotopic Compositions of Particulate Organic Matter in Four Large River Systems across the United States. Hydrol. Process. 2001, 15, 1301–1346. [Google Scholar] [CrossRef]
- Staehr, P.A.; Testa, J.M.; Kemp, W.M.; Cole, J.J.; Sand-Jensen, K.; Smith, S.V. The Metabolism of Aquatic Ecosystems: History, Applications, and Future Challenges. Aquat. Sci. 2012, 74, 15–29. [Google Scholar] [CrossRef]
- Brothers, S.; Vadeboncoeur, Y. Shoring up the Foundations of Production to Respiration Ratios in Lakes. Limnol. Oceanogr. 2021, 66, 2762–2778. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Vander Zanden, M.J.; Lodge, D.M. Putting the Lake Back Together: Reintegrating Benthic Pathways into Lake Food Web Models. Bioscience 2002, 52, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Lohrer, A.M.; Thrush, S.F.; Hewitt, J.E.; Kraan, C. The Up-Scaling of Ecosystem Functions in a Heterogeneous World. Sci. Rep. 2015, 5, srep10349. [Google Scholar] [CrossRef] [Green Version]
- Puts, I.C.; Bergström, A.-K.; Verheijen, H.A.; Norman, S.; Ask, J. An Ecological and Methodological Assessment of Benthic Gross Primary Production in Northern Lakes. Ecosphere 2022, 13, e3973. [Google Scholar] [CrossRef]
- Ozersky, T.; Barton, D.R.; Hecky, R.E.; Guildford, S.J. Dreissenid Mussels Enhance Nutrient Efflux, Periphyton Quantity and Production in the Shallow Littoral Zone of a Large Lake. Biol. Invasions 2013, 15, 2799–2810. [Google Scholar] [CrossRef]
- Althouse, B.; Higgins, S.; Vander Zanden, M.J. Benthic and Planktonic Primary Production along a Nutrient Gradient in Green Bay, Lake Michigan, USA. Freshw. Sci. 2014, 33, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Katona, L. Diversity and Function of Algal Biofilms in the Laurentian Great Lakes. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2021. [Google Scholar]
- Higgins, S.N.; Hecky, R.E.; Guildford, S.J. The Collapse of Benthic Macroalgal Blooms in Response to Self-Shading. Freshw. Biol. 2008, 53, 2557–2572. [Google Scholar] [CrossRef]
- Berggren, M.; Lapierre, J.F.; Del Giorgio, P.A. Magnitude and Regulation of Bacterioplankton Respiratory Quotient across Freshwater Environmental Gradients. ISME J. 2012, 6, 984–993. [Google Scholar] [CrossRef]
- Vachon, D.; Sadro, S.; Bogard, M.J.; Lapierre, J.; Baulch, H.M.; Rusak, J.A.; Denfeld, B.A.; Laas, A.; Klaus, M.; Karlsson, J.; et al. Paired O2–CO2 Measurements Provide Emergent Insights into Aquatic Ecosystem Function. Limnol. Oceanogr. Lett. 2020, 5, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Pilati, A.; Wurtsbaugh, W.A. Importance of Zooplankton for the Persistence of a Deep Chlorophyll Layer: A Limnocorral Experiment. Limnol. Oceanogr. 2003, 48, 249–260. [Google Scholar] [CrossRef]
- del Giorgio, P.A.; Peters, R.H. Balance between Phytoplankton Production and Respiration in Lakes. Can. J. Fish. Aquat. Sci. 1993, 50, 282–289. [Google Scholar] [CrossRef]
- Higgins, S.N.; Malkin, S.Y.; Todd Howell, E.; Guildford, S.J.; Campbell, L.; Hiriart-Baer, V.; Hecky, R.E. An Ecological Review of Cladophora Glomerata (Chlorophyta) in the Laurentian Great Lakes. J. Phycol. 2008, 44, 839–854. [Google Scholar] [CrossRef] [PubMed]
- Kazanjian, G.; Velthuis, M.; Aben, R.; Stephan, S.; Peeters, E.T.H.M.; Frenken, T.; Touwen, J.; Xue, F.; Kosten, S.; Van De Waal, D.B.; et al. Impacts of Warming on Top-down and Bottom-up Controls of Periphyton Production. Sci. Rep. 2018, 8, 9901. [Google Scholar] [CrossRef]
- Lester, W.W.; Adams, M.S.; Farmer, A.M. Effects of Light and Temperature on Photosynthesis of the Nuisance Alga Cladophora Glomerata (L.) Kutz from Green Bay, Lake Michigan. New Phytol. 1988, 109, 53–58. [Google Scholar] [CrossRef]
- Malkin, S.Y.; Guildford, S.J.; Hecky, R.E. Modeling the Growth Response of Cladophora in a Laurentian Great Lake to the Exotic Invader Dreissena and to Lake Warming. Limnol. Oceanogr. 2008, 53, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Planas, D.; Maberly, S.C.; Parker, J.E. Phosphorus and Nitrogen Relationships of Cladophora Glomerata in Two Lake Basins of Different Trophic Status. Freshw. Biol. 1996, 35, 609–622. [Google Scholar] [CrossRef]
- Auer, M.T.; McDonald, C.P.; Kuczynski, A.; Huang, C.; Xue, P. Management of the Phosphorus-Cladophora Dynamic at a Site on Lake Ontario Using a Multi-Module Bioavailable P Model. Water 2021, 13, 375. [Google Scholar] [CrossRef]
- Böhlke, J.K. Sources, Transport, and Reaction of Nitrate in Ground Water. In Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed: U.S. Geological Survey Water-Resources Investigations Report 03-4035; U.S. Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Cloern, J.E.; Canuel, E.A.; Harris, D. Stable Carbon and Nitrogen Isotope Composition of Aquatic and Terrestrial Plants of the San Francisco Bay Estuarine System. Limnol. Oceanogr. 2002, 47, 713–729. [Google Scholar] [CrossRef]
- Whorley, S.B.; Wehr, J.D. Periphyton C and N Stable Isotopes Detect Agricultural Stressors in Low-Order Streams. Freshw. Sci. 2022, 41, 153–166. [Google Scholar] [CrossRef]
- Périllon, C.; Pöschke, F.; Lewandowski, J.; Hupfer, M.; Hilt, S. Stimulation of Epiphyton Growth by Lacustrine Groundwater Discharge to an Oligo-Mesotrophic Hard-Water Lake. Freshw. Sci. 2017, 36, 555–570. [Google Scholar] [CrossRef]
- Brönmark, C.; Klosiewski, S.P.; Stein, R.A. Indirect Effects of Predation in a Freshwater, Benthic Food Chain. Ecology 1992, 73, 1662–1674. [Google Scholar] [CrossRef] [Green Version]
- Malkin, S.Y.; Sorichetti, R.J.; Wiklund, J.A.; Hecky, R.E. Seasonal Abundance, Community Composition, and Silica Content of Diatoms Epiphytic on Cladophora Glomerata. J. Great Lakes Res. 2009, 35, 199–205. [Google Scholar] [CrossRef]
- Liess, A.; Hillebrand, H. Invited Review: Direct and Indirect Effects in Herbivore—Periphyton Interactions. Arch. Hydrobiol. 2004, 159, 433–453. [Google Scholar] [CrossRef]
- Flint, R.W.; Goldman, C.R. The Effects of a Benthic Grazer on the Primary Productivity of the Littoral Zone of Lake Tahoe. Limnol. Oceanogr. 1975, 20, 935–944. [Google Scholar] [CrossRef]
- Creed, R.P.J. Direct and Indirect Effects of Crayfish Grazing in a Stream Community. Ecology 1994, 75, 2091–2103. [Google Scholar] [CrossRef]
- Larson, E.R.; Egly, R.M.; Williams, B.W. New Records of the Non-Native Virile Crayfish Faxonius Virilis (Hagen, 1870) from the Upper Snake River Drainage and Northern Bonneville Basin of the Western United States. BioInvasions Rec. 2018, 7, 177–183. [Google Scholar] [CrossRef]
- Brahney, J.; Bothwell, M.L.; Capito, L.; Gray, C.A.; Null, S.E.; Menounos, B.; Curtis, P.J. Glacier Recession Alters Stream Water Quality Characteristics Facilitating Bloom Formation in the Benthic Diatom Didymosphenia Geminata. Sci. Total Environ. 2021, 764, 142856. [Google Scholar] [CrossRef]
- France, R.L. Carbon-13 Enrichment in Benthic Compared to Planktonic Algae: Foodweb Implications. Mar. Ecol. Prog. Ser. 1995, 124, 307–312. [Google Scholar] [CrossRef]
- Graham, J.M.; Arancibia-Avila, P.; Graham, L.E. Physiological Ecology of a Species of the Filamentous Green Alga Mougeotia under Acidic Conditions: Light and Temperature Effects on Photosynthesis and Respiration. Limnol. Oceanogr. 1996, 41, 253–262. [Google Scholar] [CrossRef]
- Graham, J.M.; Auer, M.T.; Canale, R.P.; Hoffmann, J.P. Ecological Studies and Mathematical Modeling of Cladophora in Lake Huron: 4. Photosynthesis and Respiration as Functions of Light and Temperature. J. Great Lakes Res. 1982, 8, 100–111. [Google Scholar] [CrossRef]
- Choo, K.S.; Nilsson, J.; Pedersén, M.; Snoeijs, P. Photosynthesis, Carbon Uptake and Antioxidant Defence in Two Coexisting Filamentous Green Algae under Different Stress Conditions. Mar. Ecol. Prog. 2005, 292, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Stokes, L.W.; Olson, T.A. The Photosynthetic Pigments of Lake Superior Periphyton and Their Relation to Primary Productivity; Water Resources Research Center: St. Paul, MN, USA, 1970. [Google Scholar]
- Brothers, S.; Vadeboncoeur, Y.; Sibley, P. Benthic Algae Compensate for Phytoplankton Losses in Large Aquatic Ecosystems. Glob. Chang. Biol. 2016, 22, 3865–3873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierszen, M.E.; Hrabik, T.R.; Stockwell, J.D.; Cotter, A.M.; Hoffman, J.C.; Yule, D.L. Depth Gradients in Food-Web Processes Linking Habitats in Large Lakes: Lake Superior as an Exemplar Ecosystem. Freshw. Biol. 2014, 59, 2122–2136. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.; Hawkins, C. Trophic Interactions Between Fish and Invertebrates in Bear Lake, Utah-Idaho; Utah State University: Logan, UT, USA, 1990. [Google Scholar]
- Lischke, B.; Mehner, T.; Hilt, S.; Attermeyer, K.; Brauns, M.; Brothers, S.; Grossart, H.P.; Köhler, J.; Scharnweber, K.; Gaedke, U. Benthic Carbon Is Inefficiently Transferred in the Food Webs of Two Eutrophic Shallow Lakes. Freshw. Biol. 2017, 62, 1693–1706. [Google Scholar] [CrossRef]
- del Giorgio, P.A.; Cole, J.J. Bacterial Growth Efficiency in Natural Aquatic Systems. Annu. Rev. Ecol. Syst. 1998, 29, 503–541. [Google Scholar] [CrossRef] [Green Version]
- Kuczynski, A.; Bakshi, A.; Auer, M.T.; Chapra, S.C. The Canopy Effect in Filamentous Algae: Improved Modeling of Cladophora Growth via a Mechanistic Representation of Self-Shading. Ecol. Modell. 2020, 418, 108906. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; McIntyre, P.B.; Vander Zanden, M.J. Borders of Biodiversity: Life at the Edge of the World’s Large Lakes. Bioscience 2011, 61, 526–537. [Google Scholar] [CrossRef]
- Allan, J.D.; McIntyre, P.B.; Smith, S.D.P.; Halpern, B.S.; Boyer, G.L.; Buchsbaum, A.; Burton, G.A.; Campbell, L.M.; Chadderton, W.L.; Ciborowski, J.J.H.; et al. Joint Analysis of Stressors and Ecosystem Services to Enhance Restoration Effectiveness. Proc. Natl. Acad. Sci. USA 2013, 110, 372–377. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Page, M.; Goldhammer, T.; Hilt, S.; Tolentino, S.; Brothers, S. Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production. Water 2022, 14, 2136. https://doi.org/10.3390/w14132136
Page M, Goldhammer T, Hilt S, Tolentino S, Brothers S. Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production. Water. 2022; 14(13):2136. https://doi.org/10.3390/w14132136
Chicago/Turabian StylePage, Maycee, Tobias Goldhammer, Sabine Hilt, Scott Tolentino, and Soren Brothers. 2022. "Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production" Water 14, no. 13: 2136. https://doi.org/10.3390/w14132136
APA StylePage, M., Goldhammer, T., Hilt, S., Tolentino, S., & Brothers, S. (2022). Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production. Water, 14(13), 2136. https://doi.org/10.3390/w14132136