Towards Establishing Empirical Rainfall Thresholds for Shallow Landslides in Guangzhou, Guangdong Province, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Landslide Data
3.2. Meteorological Data
3.3. Rainfall Data Analysis
3.3.1. Definition of a Landslide–Triggering Rainfall Event
3.3.2. Rainfall Threshold Analysis
4. Results and Discussion
4.1. E–D Threshold
4.2. EMAP–D Threshold
4.3. The Threshold for Lithological Categories
4.4. Impact of Antecedent Rainfall on Landslides
4.5. CED Threshold
4.6. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dou, J.; Paudel, U.; Oguchi, T.; Uchiyama, S.; Hayakawa, Y.S. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terr. Atmos. Ocean. Sci. 2015, 26, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Vandromme, R.; Thiery, Y.; Bernardie, S.; Sedan, O. ALICE (Assessment of Landslides Induced by Climatic Events): A single tool to integrate shallow and deep landslides for susceptibility and hazard assessment. Geomorphology 2020, 367, 107307. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Zhou, N.Q.; Zhao, S. Urbanization process and induced environmental geological hazards in China. Nat. Hazards 2013, 67, 797–810. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Q.; Wu, D.; Xu, X.; Tan, Y.; Shi, P. Improved Method of Defining Rainfall Intensity and Duration Thresholds for Shallow Landslides Based on TRIGRS. Water 2022, 14, 524. [Google Scholar] [CrossRef]
- Yang, F.; Fan, X.; Siva Subramanian, S.; Dou, X.; Xiong, J.; Xia, B.; Yu, Z.; Xu, Q. Catastrophic debris flows triggered by the 20 August 2019 rainfall, a decade since the Wenchuan earthquake, China. Landslides 2021, 18, 3197–3212. [Google Scholar] [CrossRef]
- Yang, H.; Wei, F.; Ma, Z.; Guo, H.; Su, P.; Zhang, S. Rainfall threshold for landslide activity in Dazhou, southwest China. Landslides 2020, 17, 61–77. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook on Environment 2021; China Statistics Press: Beijing, China, 2021; p. 250.
- Ou, W.H.; Xu, X.Y.; Zhao, B.B. Application of Mobile GIS Technology in Geologic Hazard Forecast and Prevention of Masses. In Proceedings of the International Conference on Computer Science and Environmental Engineering (CSEE), Beijing, China, 17–18 May 2015; pp. 366–372. [Google Scholar]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2013, 70, 353–375. [Google Scholar] [CrossRef]
- Qi, X.; Li, Q.; Jiao, Y.; Tan, F. Experimental study on response law and failure process of slopes in fully weathered granites under precipitation infiltration. Environ. Earth Sci. 2021, 80, 685. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Zhang, T.; Dai, Z.; Wang, L. Influence of intrusive granite dyke on rainfall-induced soil slope failure. Bull. Eng. Geol. Environ. 2020, 79, 5259–5276. [Google Scholar] [CrossRef]
- Yan, X.Q.; Zhou, Z.H.; Tu, P.F. Study on relationship between deformation of reservoir water level fluctuation change of the Shuping landslide. In Proceedings of the International Conference on Mechatronics Engineering and Computing Technology (ICMECT), Shanghai, China, 9–10 April 2014; pp. 881–884. [Google Scholar]
- Lu, J.H.; Qin, J.H. Study on the relationship between deformation and stability of large landslide with the rainfall. In Proceedings of the 3rd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2013), Jinan, China, 24–26 May 2013; pp. 1199–1202. [Google Scholar]
- Tan, F.; Hu, X.; He, C.; Zhang, Y.; Zhang, H.; Zhou, C.; Wang, Q. Identifying the Main Control Factors for Different Deformation Stages of Landslide. Geotech. Geol. Eng. 2018, 36, 469–482. [Google Scholar] [CrossRef]
- Sari, P.T.K.; Lastiasih, Y. A General Formulation to Describe the Empirical Prediction of The Critical Area of a Landslide. J. Eng. Sci. Technol. 2018, 13, 2379–2394. [Google Scholar]
- Vallet, A.; Varron, D.; Bertrand, C.; Fabbri, O.; Mudry, J. A multi-dimensional statistical rainfall threshold for deep landslides based on groundwater recharge and support vector machines. Nat. Hazards 2016, 84, 821–849. [Google Scholar] [CrossRef]
- Yang, D.D.; Qiu, H.J.; Zhu, Y.R.; Liu, Z.J.; Pei, Y.Q.; Ma, S.Y.; Du, C.; Sun, H.S.; Liu, Y.; Cao, M.M. Landslide Characteristics and Evolution: What We Can Learn from Three Adjacent Landslides. Remote Sens. 2021, 13, 4579. [Google Scholar] [CrossRef]
- Bordoni, M.; Corradini, B.; Lucchelli, L.; Meisina, C. Preliminary results on the comparsion between empirical and physically-based rainfall thresholds for shallow landslides occurence. Ital. J. Eng. Geol. Environ. 2019, 5–10. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Pan, J.; Li, D.; Wang, J. Rainfall thresholds of shallow landslides in Wuyuan County of Jiangxi Province, China. Open Geosci. 2020, 12, 821–831. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2005, 65, 167–184. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Jakob, M.; Weatherly, H. A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 2003, 54, 137–156. [Google Scholar] [CrossRef]
- Maturidi, A.M.A.M.; Kasim, N.; Abu Taib, K.; Azahar, W.N.A.W.; Tajuddin, H.B.A. Empirically Based Rainfall Threshold for Landslides Occurrence in Peninsular Malaysia. KSCE J. Civ. Eng. 2021, 25, 4552–4566. [Google Scholar] [CrossRef]
- Vaz, T.; Zêzere, J.L.; Pereira, S.; Oliveira, S.C.; Garcia, R.A.C.; Quaresma, I. Regional rainfall thresholds for landslide occurrence using a centenary database. Nat. Hazards Earth Syst. Sci. 2018, 18, 1037–1054. [Google Scholar] [CrossRef] [Green Version]
- Salee, R.; Chinkulkijniwat, A.; Yubonchit, S.; Horpibulsuk, S.; Wangfaoklang, C.; Soisompong, S. New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Nat. Hazards 2022, 113, 125–141. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Kim, M.; Catani, F.; Choi, B.; Seo, J.I. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 2021, 18, 569–582. [Google Scholar] [CrossRef]
- Jordanova, G.; Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T.; Auflic, M.J. Determination of Empirical Rainfall Thresholds for Shallow Landslides in Slovenia Using an Automatic Tool. Water 2020, 12, 1449. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat. Hazards 2020, 100, 655–670. [Google Scholar] [CrossRef] [Green Version]
- Harilal, G.T.; Madhu, D.; Ramesh, M.V.; Pullarkatt, D. Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 2019, 16, 2395–2408. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Liu, S. Rainfall Event–Duration Thresholds for Landslide Occurrences in China. Water 2020, 12, 494. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhang, L.M.; Cheung, R.W.M. Relationships between natural terrain landslide magnitudes and triggering rainfall based on a large landslide inventory in Hong Kong. Landslides 2018, 15, 727–740. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, G.; Meng, X.; Jin, J.; Zhao, Y.; Lin, L.; Li, Y.; Zhang, Y. Probabilistic rainfall threshold of landslides in Data-Scarce mountainous Areas: A case study of the Bailong River Basin, China. Catena 2022, 213, 106190. [Google Scholar] [CrossRef]
- Gong, Q.H.; Wang, J.; Zhang, J.X.; Yuan, S.X.; Chen, J. Shallow Landslide Spatial Early Warning Model Induced by Heavy Rainfall in South China Area. In Proceedings of the 8th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention (RAC), Xi’an, China, 20–21 October 2018; pp. 218–223. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2013, 11, 167–194. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D.; Potter, A.; Daniell, J.J. Application of machine learning methods to spatial interpolation of environmental variables. Environ. Model. Softw. 2011, 26, 1647–1659. [Google Scholar] [CrossRef]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region. Adv. Meteorol. 2015, 2015, 563629. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.X.; Xu, W.B.; Jing, S.C.; Zhou, L.M.; Zhang, W.Z. Research of Critical Precipitation Distribution in Sichuan Province Based on Spatial Interpolation Method. In Proceedings of the 2nd International Conference on Energy and Environmental Protection (ICEEP 2013), Guilin, China, 19–21 April 2013; pp. 3469–3474. [Google Scholar]
- Chen, F.W.; Liu, C.W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Gariano, S.L.; Brunetti, M.T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Nolasco-Javier, D.; Kumar, L. Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: A case study in northern Philippines. Nat. Hazards 2018, 90, 921–941. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression in R: A Vignette; 2010. Available online: https://www.cambridge.org/core/books/abs/quantile-regression/quantile-regression-in-r-a-vignette/68519EFD81B88FDAD81553833C0C9278 (accessed on 12 October 2022).
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Chigira, M. Micro-sheeting of granite and its relationship with landsliding specifically after the heavy rainstorm in June 1999, Hiroshima Prefecture, Japan. Eng. Geol. 2001, 59, 219–231. [Google Scholar] [CrossRef]
- Feng, W.; Bai, H.; Lan, B.; Wu, Y.; Wu, Z.; Yan, L.; Ma, X. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei village, Longchuan County, Guangdong, China. Landslides 2022, 19, 1957–1970. [Google Scholar] [CrossRef]
- Bai, H.; Feng, W.; Yi, X.; Fang, H.; Wu, Y.; Deng, P.; Dai, H.; Hu, R. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Nat. Hazards 2021, 108, 3181–3201. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Dai, H.; Mao, J.; Zhuo, L. Probabilistic thresholds for landslides warning by integrating soil moisture conditions with rainfall thresholds. J. Hydrol. 2019, 574, 276–287. [Google Scholar] [CrossRef]
- Chen, C.-W.; Saito, H.; Oguchi, T. Rainfall intensity–duration conditions for mass movements in Taiwan. Prog. Earth Planet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, J. Regression analyses for the minimum intensity-duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China). Bull. Eng. Geol. Environ. 2014, 73, 917–928. [Google Scholar] [CrossRef]
- Distefano, P.; Peres, D.J.; Scandura, P.; Cancelliere, A. Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks. Nat. Hazards Earth Syst. Sci. 2022, 22, 1151–1157. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar] [CrossRef]
Rockiness | Composition | Era | Area/km2 |
---|---|---|---|
Extrusive rock | Rhyolite porphyry, dacitic porphyry, rhyolite, and andesite | Middle to Late Jurassic and Cretaceous to Paleocene | 1046.19 |
Metamorphic rock | Gneiss, slate, mixed rock, mixed gneiss, and gneissic metamorphic quartzite | Yuan Gu Zeus | 647.78 |
Intrusive rock | Granite, granite porphyry, black mica granite, and amphibole | Caledonian to Yanshanian | 4020.44 |
Clastic rock | Sandstone, sand conglomerate, and siliceous rock | Devonian to Triassic | 1139.00 |
Carbonate rock | Limestone, clastic tuff, and dolomitic tuff | Carboniferous to Triassic | 446.45 |
Rockiness | E–D Threshold | EMAP–D Threshold | ||
---|---|---|---|---|
α | γ | α | γ | |
Extrusive rock | 3.92 | 1.68 | 0.0053 | 1.18 |
Carbonate rock | 13.04 | 1.06 | 0.0063 | 1.18 |
Intrusive rock | 4.73 | 1.36 | 0.0021 | 1.45 |
Metamorphic rock | 4.71 | 1.28 | 0.0020 | 1.41 |
Clastic rock | 4.39 | 1.38 | 0.0052 | 0.98 |
No. in Figure 11 | Reference | Equation | Range (Day) | Region |
---|---|---|---|---|
1 | (Salee, et al., 2022) [27] | E = 3.322D1.13 | 1 ≤ D ≤ 26 | The southern part of Thailand |
2 | (Jiang, et al., 2022) [34] | E = 5.01D0.64 | 1 ≤ D ≤ 10 | Bailong River Basin, China |
3 | (Zhao, et al., 2019) [48] | E = 9.97D0.42 | 1 ≤ D ≤ 100 | Emilia-Romagna, northern Italy |
4 | (Gariano, et al., 2015) [30] | E = 6D0.52 | 1 ≤ D ≤ 100 | Liguria, NW Italy |
5 | (Chen, et al., 2014) [49] | E = 10.545D0.83 | 1 ≤ D ≤ 3 | Taiwan |
6 | (Chen, et al., 2014) [50] | E = 0.34D0.91346 | 1 ≤ D ≤ 14 | Yan’an, Shaanxi, China |
7 | (Distefano, et al., 2022) [51] | E = 2.40D0.68 | 1 ≤ D ≤ 3 | Sicily, Italy |
8 | (Caine, et al., 1980) [52] | E = 14.82D0.61 | 0.007 ≤ D ≤ 10 | World |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, R.; Liu, H.; Zheng, X.; Zhang, Q.; Liu, W.; Chen, L. Towards Establishing Empirical Rainfall Thresholds for Shallow Landslides in Guangzhou, Guangdong Province, China. Water 2022, 14, 3914. https://doi.org/10.3390/w14233914
Deng R, Liu H, Zheng X, Zhang Q, Liu W, Chen L. Towards Establishing Empirical Rainfall Thresholds for Shallow Landslides in Guangzhou, Guangdong Province, China. Water. 2022; 14(23):3914. https://doi.org/10.3390/w14233914
Chicago/Turabian StyleDeng, Rilang, Huifen Liu, Xianchang Zheng, Qinghua Zhang, Wei Liu, and Lingwei Chen. 2022. "Towards Establishing Empirical Rainfall Thresholds for Shallow Landslides in Guangzhou, Guangdong Province, China" Water 14, no. 23: 3914. https://doi.org/10.3390/w14233914
APA StyleDeng, R., Liu, H., Zheng, X., Zhang, Q., Liu, W., & Chen, L. (2022). Towards Establishing Empirical Rainfall Thresholds for Shallow Landslides in Guangzhou, Guangdong Province, China. Water, 14(23), 3914. https://doi.org/10.3390/w14233914