Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plant Growth
3.2. Plant Leaf Nutrients
3.3. Fish Growth
4. Discussion
4.1. Plant Growth
4.2. Nutrients in Plant Tissue
4.3. Nutrients in Aquaponics Water
4.4. Fish Growth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakocy, J.; Eberling, J. Aquaponics: Integrating Fish and Plant Culture. In Recirculating Aquaculture; Timmons, M., Eberling, J., Eds.; Ithaca Publishing Co. LLC.: Ithaca, NY, USA, 2013; pp. 663–710. ISBN 13 978-0971264656. [Google Scholar]
- Lennard, W. Commercial Aquaponics Systems: Integrating Recirculating Fish Culture with Hydroponic Plant Production; Wilson Lennard: Melbourne, VIC, Australia, 2017; ISBN1 1642048372. ISBN2 9781642048377. [Google Scholar]
- Lennard, W.; Goddek, S. Aquaponics: The Basics. In Aquaponics Food Production Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 113–143. [Google Scholar]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production—Integrated Fish and Plant Farming. FAO Fish. Aquac. Tech. Pap. 2014, 589, I. [Google Scholar]
- Proksch, G.; Ianchenko, A.; Kotzen, B. Aquaponics in the Built Environment. In Aquaponics Food Production Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 523–558. [Google Scholar]
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An International Survey of Aquaponics Practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of Aquaponics as an Emerging Technological Innovation System. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef] [Green Version]
- The World Bank Urban Population-Nepal. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=NP (accessed on 23 January 2022).
- Thapa, R.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.B.; Murayama, Y. Scenario Based Urban Growth Allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Byrd, G.; Maharjan, S.; Jha, B.; Gurung, S. A Review of Soilless Agriculture in Nepal. World Appl. Sci. J. 2021, 39, 69–83. [Google Scholar] [CrossRef]
- Robaina, L.; Pirhonen, J.; Mente, E.; Sánchez, J.; Goosen, N. Fish Diets in Aquaponics. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Bernell, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 333–352. [Google Scholar]
- Knaus, U.; Palm, H.W. Effects of Fish Biology on Ebb and Flow Aquaponical Cultured Herbs in Northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 466, 51–63. [Google Scholar] [CrossRef]
- Tokunaga, K.; Tamaru, C.; Ako, H.; Leung, P. Economics of Small-Scale Commercial Aquaponics in Hawai’i. J. World Aquac. Soc. 2015, 46, 20–32. [Google Scholar] [CrossRef]
- Ogello, E.O.; Munguti, J.M.; Sakakura, Y.; Hagiwara, A. Complete Replacement of Fish Meal in the Diet of Nile Tilapia (Oreochromis niloticus L.) Grow-out with Alternative Protein Sources. A Review. Int. J. Adv. Res. 2014, 2, 692–978. [Google Scholar]
- Daniel, N. A Review on Replacing Fish Meal in Aqua Feeds Using Plant Protein Sources. Int. J. Fish. Aquat. Sci. 2018, 6, 164–179. [Google Scholar]
- Eck, M.; Körner, O.; Jijakli, M.H. Nutrient Cycling in Aquaponics Systems. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer Nature: Chem, Switzerland, 2019. [Google Scholar]
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’brien, G. Animal Protein Sources as a Substitute for Fishmeal in Aquaculture Diets: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An Overview on Significance of Fish Nutrition in Aquaculture Industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–366. [Google Scholar]
- Stoneham, T.; Kuhn, D.; Taylor, D.; Neilson, A.; Smith, S.; Gatlin, D.; Chu, H.; O’Keefe, S. Production of Omega-3 Enriched Tilapia through the Dietary Use of Algae Meal or Fish Oil: Improved Nutrient Value of Fillet and Offal. PLoS ONE 2018, 13, e0194241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwasek, K.; Thorne-Lyman, A.L.; Phillips, M. Critical Reviews in Food Science and Nutrition Can Human Nutrition Be Improved through Better Fish Feeding Practices? A Review Paper Can Human Nutrition Be Improved through Better Fish Feeding Practices? A Review Paper. Crit. Rev. Food Sci. Nutr. 2020, 60, 3822–3835. [Google Scholar] [CrossRef] [PubMed]
- Hua, K. A Meta-Analysis of the Effects of Replacing Fish Meals with Insect Meals on Growth Performance of Fish. Aquaculture 2021, 530, 735732. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Charlie Shultz, R.; Bailey, D.S.; Thoman, E.S. Aquaponic Production of Tilapia and Basil: Comparing a Batch and Staggered Cropping System. Acta Hortic. 2004, 648, 63–69. [Google Scholar] [CrossRef]
- Sace, C.F.; Fitzsimmons, K.M. Recirculating Aquaponic Systems Using Nile Tilapia (Oreochromis Niloticus Niloticus) and Freshwater Prawn (Macrobrachium Rosenbergii) Polyculture and the Productivity of Selected Leafy Vegetables. Merit Res. J. Bus. Manag. 2013, 1, 11–29. [Google Scholar]
- Knaus, U.; Palm, H.W. Effects of the Fish Species Choice on Vegetables in Aquaponics under Spring-Summer Conditions in Northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 473, 62–73. [Google Scholar] [CrossRef]
- Pasch, J.; Appelbaum, S.; Palm, H.W.; Knaus, U. Growth of Basil (Ocimum basilicum) in Aeroponics, DRF, and Raft Systems with Effluents of African Catfish (Clarias gariepinus) in Decoupled Aquaponics (s.s.). AgriEngineering 2021, 3, 559–574. [Google Scholar] [CrossRef]
- Lennard, W.; Ward, J. A Comparison of Plant Growth Rates between an NFT Hydroponic System and an NFT Aquaponic System. Horticulturae 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Maucieri, C.; Nicoletto, C.; Zanin, G.; Birolo, M.; Trocino, A.; Sambo, P.; Borin, M.; Xiccato, G. Effect of Stocking Density of Fish on Water Quality and Growth Performance of European Carp and Leafy Vegetables in a Low-Tech Aquaponic System. PLoS ONE 2019, 14, e0217561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, S.; Kandil, A.; Elshenawy, M.; Abdelbaki, M.; Abulseoud, M. Evaluation of Mint and Sweet Basil Herbs Production Integrated into the Aquaponic Tilapia Production System. Arab. Univ. J. Agric. Sci. 2020, 28, 563–573. [Google Scholar] [CrossRef]
- Nadia, Z.; Prosun, P.; Salam, M. Production Potential of Broccoli (Brassica Oleracea Var. Italica) in Hydroponics and Tilapia Based Aquaponics. J. Bangladesh Agric. Univ. 2020, 18, 768–778. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces-A Review. Water 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Fox, B.K.; Howerton, R.; Tamaru, C.S. Construction of Automatic Bell Siphons for Backyard Aquaponic Systems. Biotechnology 2010, 10, 1–11. [Google Scholar]
- Jahan, D.A.; Hussain, L.; Islam, M.A.; Khan, M. Comparative Study of Mustard Oil Cake and Soybean Meal Based Artificial Diet for Rohu, Labeo Rohita (Ham.) Fingerlings. Agriculturists 2013, 11, 61–66. [Google Scholar] [CrossRef]
- Putri, A.; Sukanta, E. Proximate Analysis of Rice Bran as Alternative Comestible. In Proceedings of the Fourth Gruber-Soedigdo Lecture Conference, Groningen, The Netherlands, 25–28 September 2012. [Google Scholar]
- Bhandari, S.; Kaphle, K.; Lamsal, R.K. Local Feeds in Aquaculture and Their Feeding Efficiency: Review from Nepal. Int. J. Vet. Sci. Anim. Husb. 2019, 4, 6–9. [Google Scholar]
- Ridha, M.T.; Cruz, E.M. Effect of Biofilter Media on Water Quality and Biological Performance of the Nile Tilapia Oreochromis Niloticus L. Reared in a Simple Recirculating System. Aquac. Eng. 2001, 24, 157–166. [Google Scholar] [CrossRef]
- Purwandari, Y.; Effendi, H.; Wardiatno, Y. The Use of Gouramy (Osphronemus Goramy) Rearing Wastewater for Growing Romaine Lettuce (Lactuca sativa L. Var. Longifolia) in Aquaponic System. Artic. Asian J. Microbiol. 2017, 19, 121–128. [Google Scholar]
- Hodar, A.R.; Vasava, R.; Joshi, N.H. Fish Meal and Fish Oil Replacement for Aqua Feed Formulation by Using Altrnative Sources: A Review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Alfiko, Y.; Xie, D.; Astuti, R.T.; Wong, J.; Wang, L. Insects as a Feed Ingredient for Fish Culture: Status and Trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important Antinutrients in Plant Feedstuffs for Aquaculture: An Update on Recent Findings Regarding Responses in Salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, P.S.; Becker, K. Antinutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization Aquaculture Feed and Fertilizer Resource Information System. Available online: https://www.fao.org/fishery/affris/species-profiles/common-carp (accessed on 10 June 2022).
- Belton, B.; Karim, M.; Thilsted, S.; Murshed-E-Jahan, K.; Collis, W.; Phillips, M. Review of Aquaculture and Fish. Consumption in Bangladesh; The WorldFish Center: Penang, Malaysia, 2011; ISBN 9789832346791. [Google Scholar]
- Jha, A.; Wagle, S. Carp Feed Management and Feeding Practices in Eastern Terai Region of Nepal. In Proceedings of the 2nd NEFIS International Convention on “Sustainable Fisheries and Aquaculture Diversification”, Kathmandu, Nepal, 8–9 March 2018. [Google Scholar]
- Potki, N.; Falahatkar, B.; Alizadeh, A. Growth, Hematological and Biochemical Indices of Common Carp Cyprinus Carpio Fed Diets Containing Corn Gluten Meal. Aquac. Int. 2018, 26, 1573–1586. [Google Scholar] [CrossRef]
- Nwanna, L.C.; Schwarz, F.J. Effect of Supplemental Phytase on Growth, Phosphorus Digestibility and Bone Mineralization of Common Carp (Cyprinus carpio L.). Aquac. Res. 2007, 38, 1037–1044. [Google Scholar] [CrossRef]
- Ahmed, A.R.; Jha, A.N.; Davies, S.J. The Effect of Dietary Organic Chromium on Specific Growth Rate, Tissue Chromium Concentrations, Enzyme Activities and Histology in Common Carp, Cyprinus carpio L. Biol. Trace Elem. Res. 2012, 149, 362–370. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Ramazi, G.; Soudagar, M. Effects of Dietary Corn Gluten Supplementation on Body Composition and Growth Performance in Common Carp (Cyprinus carpio) Juvenile. Glob. Vet. 2012, 9, 85–88. [Google Scholar]
- Sándor, Z.J.; Révész, N.; Varga, D.; Tóth, F.; Ardó, L.; Gyalog, G. Nutritional and Economic Benefits of Using DDGS (Distiller’ Dried Grains Soluble) as Feed Ingredient in Common Carp Semi-Intensive Pond Culture. Aquac. Rep. 2021, 21, 100819. [Google Scholar] [CrossRef]
- Kamali-Sanzighi, M.; Akrami, R.; Ghelichi, A.; Shamloofar, M. Partial Replacement of Plant Sources by Waste Date (Phoneix Dactylifera) in the Diet of Fingerling Common Carp (Cyprinus Carpio) on Growth Performance, Feed Utilization, Hematological Parameters and Resistance to Stress. Turk. J. Fish. Aquat. Sci. 2019, 19, 775–784. [Google Scholar] [CrossRef]
- Alam, M.; Maughan, O.E.; Matter, W.J. Growth Response of Indigenous and Exotic Carp Species to Different Protein Sources in Pelleted Feeds MKAlam Florida Game and Fresh Water Fish Commission, Lakeland, Florida USA. Aquac. Res. 1996, 27, 673–679. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, N.P.; Deo, A.D.; Kumar, S. Comparative Growth Performance, in Vivo Digestibility and Enzyme Activities of Labeo Rohita Fed with DORB Based Formulated Diet and Commercial Carp Feed. Turk. J. Fish. Aquat. Sci. 2018, 18, 1025–1036. [Google Scholar] [CrossRef]
- Tewari, G.; Angad, G.; Singh, J.; Angad, H.G.; Pandey, A.; Shanthanagouda, A.H.; Hundal, J.S. Effect of Pea Pod as Feed Ingredient on Growth Performance of Omon Carp, Cyprinus Carpio. J. Exp. Zool. India 2019, 22, 795–799. [Google Scholar]
- Rai, A.K.; Bista, J.D. Effect of Different Feed Ingredients on the Growth of Caged Common Carp. Nepal Agric. Res. J. 2000, 4, 60–63. [Google Scholar] [CrossRef]
- Takeuchi, T.; Satoh, S.; Kiron, V. Cyprinus Carpio. In Nutrition Requirements and Feeding of Finfish in Aquaculture; Webster, C., Lim, C., Eds.; COBI: Oxon, UK; New York, NY, USA, 2002; pp. 245–261. [Google Scholar]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on Tilapia and Vegetable Production in the UVI Aquaponic System. In Proceedings of the New Dimensions on Farmed Tilapia: Proceedings of the Sixth International Symposium on Tilapia Aquaculture, Manila, Phillippines, 12–16 September 2004; pp. 676–690. [Google Scholar]
- Lennard, W.A.; Leonard, B.V. A Comparison of Three Different Hydroponic Sub-Systems (Gravel Bed, Floating and Nutrient Film Technique) in an Aquaponic Test System. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Sikawa, D.C.; Yakupitiyage, A. The Hydroponic Production of Lettuce (Lactuca sativa L.) by Using Hybrid Catfish (Clarias Macrocephalus × C. Gariepinus) Pond Water: Potentials and Constraints. Agric. Water Manag. 2010, 97, 1317–1325. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, H.M. Lettuce (Lactuca sativa L. Var. Sucrine) Growth Performance in, Complemented Solution Encourages the Development of Decoupled Aquaponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Effendi, H.; Wahyuningsih, S.; Wardiatno, Y. The Use of Nile Tilapia (Oreochromis Niloticus) Cultivation Wastewater for the Production of Romaine Lettuce (Lactuca sativa L. Var. Longifolia) in Water Recirculation System. Appl. Water Sci. 2017, 7, 3055–3063. [Google Scholar] [CrossRef] [Green Version]
- Sularz, O.; Smoleń, S.; Koronowicz, A.; Kowalska, I.; Leszczyńska, T. Chemical Composition of Lettuce (Lactuca sativa L.) Biofortified with Iodine by KIO3, 5-Iodo-, and 3.5-Diiodosalicylic Acid in a Hydroponic Cultivation. Agronomy 2020, 10, 1022. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R.; Williams, E.; Smith, R.F. Establishing Lettuce Leaf Nutrient Optimum Ranges Through DRIS Analysis. Hortscience 2007, 42, 143–146. [Google Scholar] [CrossRef]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida. Univ. Fla. IFAS Ext. 2012, HS964, 1–48. [Google Scholar]
- Campbell, R. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Southern Region Agricultural Experiment Station: Raleigh, NC, USA, 2000; ISBN 1581613946. [Google Scholar]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient Recycling from Fish Wastewater by Vegetable Production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M. Microbial Diversity in Different Compartments of an Aquaponics System. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics-Integrating Fish and Plant Culture. SRAC Publ. 2006, 454, 1–16. [Google Scholar]
- Yıldız, H.Y.; Bekcan, S. Role of Stocking Density of Tilapia (Oreochromis Aureus) on Fish Growth, Water Quality and Tomato (Solanum lycopersicum) Plant Biomass in the Aquaponic System. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2819–2824. [Google Scholar] [CrossRef]
- Seawright, D.; Stickney, R.; Walder, R. Nutrient Dynamics in Integrated Aquaculture-Hydroponics Systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Pineda-Pineda, J.; Miranda-Velázquez, I.; Rodríguez-Pérez, J.E.; Ramírez-Arias, J.A.; Pérez-Gómez, E.A.; García-Antonio, I.N.; Morales-Parada, J.J. Nutrimental Balance in Aquaponic Lettuce Production. Acta Hortic. 2017, 1170, 1093–1100. [Google Scholar] [CrossRef]
- Shete, A.P.; Verma, A.K.; Chadha, N.K.; Prakash, C.; Chandrakant, M.H.; Nuwansi, K.K.T. Evaluation of Different Hydroponic Media for Mint (Mentha Arvensis) with Common Carp (Cyprinus carpio) Juveniles in an Aquaponic System. Aquac. Int. 2017, 25, 1291–1301. [Google Scholar] [CrossRef]
- Velichkova, K.; Sirakov, I.; Veleva, P. Use of Lemna Minuta Kunth. for Composition of Sustainable Diets and Influence on Hydrochemical, Technological and Blood Biochemical Parameters in Common Carp (Cyprinus carpio L.) Cultivated in Aquaponics. Bulg. J. Agric. Sci. 2020, 26, 674–679. [Google Scholar]
- Irhayyim, T.; Fehér, M.; Lelesz, J.; Bercsényi, M.; Bársony, P. Nutrient Removal Efficiency and Growth of Watercress (Nasturtium Officinale) under Different Harvesting Regimes in Integrated Recirculating Aquaponic Systems for Rearing Common Carp (Cyprinus carpio L.). Water 2020, 12, 1419. [Google Scholar] [CrossRef]
- Homoki, D.; Odunayo, T.; Minya, D.; Kovács, L.; Lelesz, J.; Bársony, P.; Fehér, M.; Kövics, G.; Stündl, L. Effect of Dissolved Oxygen on Common Carp (Cyprinus Carpio) and Basil (Ocimum basilicum) in the Aquaponics System. Acta Agrar. Debr. 2021, 1, 89–96. [Google Scholar] [CrossRef]
- Nozzi, V.; Graber, A.; Schmautz, Z.; Mathis, A.; Junge, R. Nutrient Management in Aquaponics: Comparison of Three Approaches for Cultivating Lettuce, Mint and Mushroom Herb. Agonomy 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Kim, H.J. Characterizing Nutrient Composition and Concentration in Tomato-, Basil-, and Lettuce-Based Aquaponic and Hydroponic Systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Oyugi, D.; Cucherrousset, J.; Baker, D.; Britton, J. Effects of Termperature on the Foragng and Growth Rate of Juvenile Common Carp, Cyprinus Carpio. J. Therm. Biol. 2012, 37, 89–94. [Google Scholar] [CrossRef]
- Song-bo, C.; Wei-xing, C.; Zhao-ting, F. Effect of Water Temperature on Feeding Rhythm in Common Carp (Cyprinus carpio Haematopterus Temminck et Schlegel). J. Northeast Agric. Univ. (Engl. Ed.) 2012, 19, 57–61. [Google Scholar] [CrossRef]
- Yassine, T.; Khalafalla, M.M.; Mamdouh, M.; Elbialy, Z.I.; Salah, A.S.; Ahmedou, A.; Mamoon, A.; El-Shehawi, A.M.; van Doan, H.; Dawood, M.A.O. The Enhancement of the Growth Rate, Intestinal Health, Expression of Immune-Related Genes, and Resistance against Suboptimal Water Temperature in Common Carp (Cyprinus Carpio) by Dietary Paraprobiotics. Aquac. Rep. 2021, 20, 17. [Google Scholar] [CrossRef]
- Tessema, A.; Getahun, A.; Mengistou, S.; Fetahi, T.; Dejen, E. Reproductive Biology of Common Carp (Cyprinus carpio Linnaeus, 1758) in Lake Hayq, Ethiopia. Fish. Aquat. Sci. 2020, 23, 16. [Google Scholar] [CrossRef]
- Saad, A.S.; Habashy, M.M. Survival and growth rates of early stages of some fish species reared with the freshwater crayfish, procambarus clarkii (gerard, 1852). Egypt. J. Aquat. Biol. Fish. 2002, 6, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Sirakov, I.; Velichkova, K. The Influence of Aquaponically Grown Duckweed (Lemna Minuta Kunth) Used for Composition of Sustainable Diets on Hydrochemical and Technological Parameters in Carp (Cyprinus carpio L.). Turk. J. Fish. Aquat. Sci. 2018, 18, 1037–1044. [Google Scholar] [CrossRef]
- Abdulrahman, N.M. Evaluation of Spirulina Spp. as Food Supplement and Its Effect on Growth Performance of Common Carp Fingerlings. Inernatioinal J. Fish. Aquat. Stud. 2013, 2, 89–92. [Google Scholar]
- Mazid, M.A.; Zaher, M.; Begum, N.N.; Ali, M.Z.; Nahar, F. Formulation of Cost-Effective Feeds from Locally Available Ingredients for Carp Polyculture System for Increased Production. Aquaculture 1997, 151, 71–78. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of PH on Nitrogen Transformations in Media-Based Aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Sirakov, I.; Velichkova, K.; Stoyanova, S.; Kaymakanova, M.; Slavcheva-Sirakova, D.; Atanasova, R.; Staykov, Y. Effect of Synbiotic Dietary Supplementation on Growth, Physiological and Immunological Parameters in Common Carp (Cyprinus carpio L.) Fingerlings and on Yield and Physiological Parameters of Lettuce (Lactuca sativa L.), Cultivated in Mesocosmos Aquaponics System. Bulg. J. Agric. Sci. 2018, 24, 140–149. [Google Scholar]
Commercial Fish Food | Commercial Chicken Food | Homemade | |
---|---|---|---|
Ingredients 1 | Fish meal | Maize | Mustard oil cake |
Spirulina | Soya rice | Rice bran | |
Wheat germ | Calcium powder | ||
Krill powder | Grit | ||
Yeast | Vitamins and minerals | ||
Vitamins and minerals | |||
Labeled Protein % | 35 | 25 | no label |
Composition 2 | |||
Crude Protein | 35.7 | 18.2 | 22.5 |
Crude Fat | 6.0 | 2.9 | 2.1 |
Crude Fiber | 2.2 | 2.1 | 9.5 |
Crude Ash | 9.1 | 4.6 | 9.0 |
Cost | 800–1200 npr/kg 3 | 60–80 npr/kg | 60 npr/kg |
Treatment 1 | Statistic | NH4 | NO2 | NO3 | PO4 | GH 2 | KH 3 | pH |
---|---|---|---|---|---|---|---|---|
CFF | Mode 4 | 0.25 5 | 0.25 | 80 | 2.5 | 180 | 120 | 8.0 |
Max | 0.5 | 0.25 | 120 | 5 | 180 | 180 | 8.4 | |
Min | 0 | 0 | 20 | 1 | 180 | 80 | 7.4 | |
CCF | Mode | 0.25 | 0 | 40 | 5 | 180 | 120 | 8.2 |
Max | 0.5 | 0.25 | 120 | 5 | 180 | 180 | 8.4 | |
Min | 0.25 | 0 | 20 | 1 | 180 | 120 | 7.4 | |
H | Mode | 0.25 | 0 | 40 | 2.5 | 180 | 120 | 8.2 |
Max | 1.0 | 0.5 | 120 | 5 | 180 | 180 | 8.4 | |
Min | 0 | 0 | 10 | 1 | 180 | 80 | 7.8 |
Variable | CFF 1 | CCF | H | Difference | |||
---|---|---|---|---|---|---|---|
Mean | SE 2 | Mean | SE | Mean | SE | ||
Leaf len. (cm) at mid-growth | 10.5 | 0.29 | 10.8 | 0.37 | 9.8 | 0.12 | NS 3 |
Leaf len. (cm) at harvest | 20.2 | 0.94 | 17.1 | 1.01 | 20.9 | 1.21 | NS |
Daily leaf growth 4 (cm) | 0.52 | 0.06 | 0.38 | 0.13 | 0.46 | 0.04 | NS |
Stem and leaf wt. (g) | 37.1 | 4.46 | 34.2 | 7.71 | 34,8 | 6.30 | NS |
Root len. (cm) | 9.4 | 0.47 | 10.4 | 0.69 | 9.5 | 0.70 | NS |
Nutrient | CFF 1 | CCF | H | Difference at 0.05 Level of Significance 3 | |||
---|---|---|---|---|---|---|---|
Mean | SE 2 | Mean | SE | Mean | SE | ||
Nitrogen 4 | 5.14 | 0.07 | 5.11 | 0.09 | 4.56 | 0.18 | H < CFF = CCF |
Phosphorous 5 | 0.21 | 0.01 | 0.28 | 0.02 | 0.20 | 0.02 | CFF > CCF = H |
Potassium 6 | 3.65 | 0.18 | 3.73 | 0.14 | 4.13 | 0.27 | NS 7 |
Calcium 8 | 45.0 | 2.60 | 37.5 | 1.50 | 51.8 | 1.30 | H > CCF, H = CFF, CFF = CCF |
Magnesium 8 | 239.3 | 49.3 | 281.3 | 59.6 | 231.0 | 40.7 | NS |
Sulfur 8 | 83.3 | 19.8 | 41.4 | 4.6 | 88.5 | 45.0 | NS |
Statistic | CFF 1 | CCF | H | Difference 2 | |||
---|---|---|---|---|---|---|---|
Relative Weight Gain 3 | Mean | SE 4 | Mean | SE | Mean | SE | |
T1 5 | 19.5 | 3.25 | 16.6 | 1.85 | 15.9 | 0.80 | |
T2 6 | 30.3 | 5.89 | 24.7 | 3.71 | 19.6 | 1.46 | |
% Change | 53.4 | 5.59 | 47.1 | 6.60 | 30.4 | 3.09 | H < CFF = CCF |
Specific Weight Gain 7 | |||||||
T1 | 2.9 8 | 0.18 | 2.8 | 0.12 | 2.7 | 0.05 | |
T2 | 3.4 | 0.22 | 3.17 | 0.2 | 3.0 | 0.06 | |
% Change | 0.33 | 0.03 | 0.29 | 0.03 | 0.21 | 0.02 | |
Length Increase | H < CFF, H = CCF, CFF = CCF | ||||||
T1 | 9.6 | 0.96 | 9.2 | 0.41 | 8.9 | 0.16 | |
T2 | 11.1 | 0.82 | 10.5 | 0.51 | 9.8 | 0.22 | |
% Change | 16.7 | 3.59 | 13.7 | 1.70 | 10.3 | 0.68 | NS |
Condition Index 9 | 1.58 | 0.03 | 1.58 | 0.02 | 1.45 | 0.03 | CFF = CCF > H |
% Survival | 0.94 | 0.03 | 0.96 | 0.02 | 0.98 | 0.01 | NS |
Type of Study | N | P | K | References |
---|---|---|---|---|
Recommended sufficiency levels in soil | 4.5–6.5 | 0.30–0.80 | 6.0–10.0 | [64] |
Soil-based | 4.4 | 0.70 | 8.1 | [61] |
Soil-based | 3.1–6.0 | 0.35–0.75 | 2.5–7.7 | [62] |
Soil-based | 2.5–5.0 | 0.35–0.85 | 3.0–9.0 | [63] |
Aquaponics | 4.3–4.7 | 0.9–1.1 | 9.8–11.0 | [69] |
Aquaponics | 0.55 | 2.46 | [59] | |
Aquaponics | 4.5–6.2 | 0.6–0.9 | 2.4–3.7 | [70] |
Aquaponics | 4.6–5.1 | 0.20–0.28 | 3.7–4.1 | This study |
Type of Study | Ca | Mg | SO4 | References |
---|---|---|---|---|
Recommended sufficiency levels in soil | 1–2 | 0.36–0.75 | 0.2–0.6 | [64] |
Soil-based | 0.4–1.1 | 0.2–0.5 | 0.2–0.4 | [62] |
Soil-based | 1.0 | 0.3 | 0.3 | [63] |
Soil-based | 1.3 | 0.39 | 0.21 | [61] |
Aquaponics | 1.4–2.0 | 1.0–1.8 | [70] | |
Aquaponics | 0.1 | 0.2–0.4 | 0.1 | This study |
Type of Study | Fish Food 1 | Initial Wt (g) | Days of Study | Water Temp. (C) | SGR 2 | Reference/Comments |
---|---|---|---|---|---|---|
Tanks | FM, S, C | 40–49 | 42 | 0.15 | [83] | |
Tanks | C, S | 13.5 | 56 | 16 | 0.57 | [45] |
Pond | C | 333 | 210 | 0.12 | [51] | |
Tanks | C | 11.5 | 63 | 25 | 0.70 | [48] |
Tanks | FM, C, S | 115 | 126 | 27 | 1.02 | [46] |
Tanks | FM, C | 10 | 56 | 25 | 1.79 | [47] chromium added |
Tanks | R, M | <1 | 90 | 29 | 1.02 | [53] pea pod added |
Pond | R, M | <1 | 330 | 27 | 0.51 | [84] polyculture |
Tanks 3 | FM | 141 | 58 | 24 | 0.60 | [74] |
Tanks 3 | FM | 50–70 | 52 | 0.24 | [85] pH varied | |
Tanks 3 | FM | 36 | 70 | 27 | 0.39 | [25] fish species varied |
Tanks 3 | FM | 40 | 30 | 23 | 0.77 | [86] symbiotic added |
Tanks 3 | FM | 13–23 | 128 | 15–22 | 0.33 | This study |
C, S | 13–19 | 0.29 | This study | |||
R, M | 13–16 | 0.21 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrd, G.V.; Jha, B.R. Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food. Water 2022, 14, 3870. https://doi.org/10.3390/w14233870
Byrd GV, Jha BR. Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food. Water. 2022; 14(23):3870. https://doi.org/10.3390/w14233870
Chicago/Turabian StyleByrd, George Vernon, and Bibhuti Ranjan Jha. 2022. "Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food" Water 14, no. 23: 3870. https://doi.org/10.3390/w14233870
APA StyleByrd, G. V., & Jha, B. R. (2022). Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food. Water, 14(23), 3870. https://doi.org/10.3390/w14233870