# A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Modified TPMWB Model

_{t}, PE

_{t}, P

_{t}, and Q

_{t}represent the monthly actual evapotranspiration, potential evapotranspiration, rainfall, and runoff at the t-th month, respectively. NS

_{t}is the generalized effective/net water storage for generating runoff in the month, which can be calculated as (GS

_{t}

_{−1}+ P

_{t}− E

_{t}) with GS

_{t}

_{−1}being the generalized water content at the end of the (t − 1)-th month and the beginning of the t-th month, all with a unit of millimeter. tanh(∙) is the hyperbolic tangent function. After the runoff generation, the water content at the end of the t-th month was calculated according to the water conservation law (Equation (3)). C is a dimensionless parameter used to account for the effect of time-scale transformation, while SC is the second parameter representing the maximum soil water capacity of the catchment with a unit of millimeter. Note that water holding capacities of groundwater and unsaturated zone storage were not separated in order to keep the model structure simple without deviation from the runoff formation mechanism at a monthly time scale.

_{t}and runoff Q

_{t}from water availability NS

_{t}, as follows:

_{obs,i}and Q

_{sim,i}is the observed and simulated runoff, respectively, ${\overline{Q}}_{obs}$ is the mean value of Q

_{obs,i}, and n is length of calibration/validation period.

#### 2.2. Calculation of Standardized Drought Index

_{sim,t}(t = 1, 2,..., 12) is of concern and hereafter denoted as Q for short. In this paper, the traditional curve-fitting method is applied to model the theoretical PDF of simulated monthly runoff. Considering the significant skewness of monthly runoff series, especially in the dry season, together with the potential huge difference among runoff distributions in different months [22], a uniform distribution derived based on the principle of maximum entropy (POME) is adopted to fit the empirical frequencies of monthly runoff, without presupposing any PDF of underlying distributions [47,48].

_{Q}(q), then the Shannon entropy H(q) is defined as follows:

^{i}(i = 1, 2, 3) are the first to third power of q, while $\overline{{q}^{i}}$ (i = 1, 2, 3) are corresponding sampling original moments of q.

_{0}, λ

_{1}, λ

_{2}, and λ

_{3}are the Lagrange multipliers, ${\lambda}_{0}=\mathrm{ln}{\displaystyle \underset{a}{\overset{b}{\int}}\mathrm{exp}\left(-{\lambda}_{1}q-{\lambda}_{2}{q}^{2}-{\lambda}_{3}{q}^{3}\right)}dq.$

^{i}] (i = 1, 2, 3) are the expectations of q

^{i}obtained from observations. The Newton–Raphson method was then employed to iteratively calculate the Lagrange multiplier.

_{Q}(q) is constructed by making maximum use of the information collected from the simulated runoff data while avoiding redundant information as much as possible. Once the PDF is determined, the cumulative distribution function (CDF) can then be estimated by integrating the PDF as follows:

^{−1}(∙) is the inverse of a standard normal CDF.

#### 2.3. Identification of Drought Events and Characteristics

#### 2.4. Correlation Analysis between Drought Characteristics and Watershed Features

^{2}is used to investigate the strength of coupling.

## 3. Study Area and Data

#### 3.1. Study Area

^{2}(see Figure 2). The Danjiangkou (DJK) reservoir divides the whole basin into an upper and a mid-lower sub-basin. A sub-tropical monsoon climate and the varying topography from high mountains in the upper reach to relatively flat plains in the lower give rise to dramatic spatial–temporal diversity of water resources distribution in this area.

#### 3.2. Data

## 4. Results and Discussion

#### 4.1. Performance of the Modified TPMWB Model

_{t}, PE

_{t}, and P

_{t}, in consideration of a time-scale transformation from year to month. For the SC parameter, very robust SC values are obtained through the optimization procedure with almost all calibrated SC values distributing around 300 mm, except for a few outliers such as the Jiajiafang and Jiangwan sub-basins. It is shown that the SC parameter contains a wealth of information related to underlying surface properties of the catchment. Given the acceptable performance of the modified TPMWB model, it can be used to reproduce or predict the hydrographs of calibrated sub-basins with confidence.

#### 4.2. Hydrological Drought Assessment Based on Standardized Drought Indices

#### 4.2.1. Calculation of Standardized Drought Indices

#### 4.2.2. Drought Characteristics (DC) Analysis

_{SRI}− DC

_{SDI}]/DC

_{SDI}) of drought characteristics between the SRI and SDI are shown in Table 3. It is found that the occurrence of drought events estimated by SRI (43.13 times on average) is less frequent compared with that estimated by SDI (48.19 times on average), with a mean RB of −9.7%. We can also notice that the average drought duration (E[D]) for most sub-basins are, however, overestimated by the SRI as the mean E[D] calculated from SRI for the 30 sub-basins (4.03 months) is obviously longer than that from SDI (3.44 months) with a mean RB of 18.1%. Moreover, the maximum relative error of E[D] reaches 54.6%. This is similar for the average inter-arrival times (E[L]) with a mean and maximum RB of 11.7% and 41.5%, respectively. In fact, a few short and minor droughts would be removed, while several dependent droughts would be combined to a larger independent drought event when extracting drought events from the SRI series, since continuously simulated runoff series may eliminate the random fluctuations in observation series.

#### 4.3. Impacts of Watershed Features on Drought Characteristics

_{t}/NS

_{t}= (NS

_{t}− Q

_{t})/SC], when the watershed is experiencing a meteorological drought, which begins with a decrease in precipitation or a rise in temperature, more available water is used to refill the water shortage in soil and underground aquifers, so hydrological droughts may last longer. The smaller the Runoff Coefficient RC, the less precipitation that can be transferred into runoff; when a meteorological drought occurs in the watershed, it would be necessary to accumulate precipitation not lower than the normal level for a long time to restore the hydrological drought to a normal level, resulting in longer drought duration. The larger the Aridity Index AI, the drier the watershed; when the temperature increases, the evaporation capacity increases and the precipitation decreases, thus the watershed with a large AI may further amplify the drought. Since parameter C is the ratio of E

_{t}/PE

_{t}, and the compression transformation tanh(P

_{t}/PE

_{t}), when the precipitation is small and evapotranspiration is large, that is, in the dry period, in the basin with large C, the actual evapotranspiration accounts for a higher proportion of evapotranspiration capacity, which results in a relatively small runoff.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci.
**2006**, 10, 535–552. [Google Scholar] [CrossRef] - Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci.
**2014**, 18, 3635–3649. [Google Scholar] [CrossRef] - Hong, X.; Guo, S.; Xiong, L.; Liu, Z. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: A case study in Poyang Lake basin, China. Theor. Appl. Climat.
**2015**, 122, 543–556. [Google Scholar] [CrossRef] - Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Assessing droughts using meteorological drought indices in Victoria, Australia. Hydrol. Res.
**2015**, 46, 463–476. [Google Scholar] [CrossRef] - Portela, M.M.; Dos Santos, J.F.; Silva, A.T.; Benitez, J.B.; Frank, C.; Reichert, J.M. Drought analysis in southern Paraguay, Brazil and northern Argentina: Regionalization, occurrence rate and rainfall thresholds. Hydrol. Res.
**2015**, 46, 792–810. [Google Scholar] [CrossRef] - de Freitas, G.N. São Paulo drought: Trends in streamflow and their relationship to climate and human-induced change in Cantareira watershed, Southeast Brazil. Hydrol. Res.
**2015**, 51, 750–767. [Google Scholar] [CrossRef] - Zhang, R.; Chen, X.; Zhang, Z.; Shi, P. Evolution of hydrological drought under the regulation of two reservoirs in the headwater basin of the Huaihe River, China. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 487–499. [Google Scholar] [CrossRef] - Hong, X.; Guo, S.; Wang, L.; Yang, G.; Liu, D.; Guo, H.; Wang, J. Evaluating water supply risk in the middle and lower reaches of Hanjiang river basin based on an integrated optimal water resources allocation model. Water
**2016**, 8, 364. [Google Scholar] [CrossRef] - Firoz, A.B.M.; Nauditt, A.; Fink, M.; Ribbe, L. Quantifying human impacts on hydrological drought using a combined modelling approach in a tropical river basin in central Vietnam. Hydrol. Earth Syst. Sci.
**2018**, 22, 547–565. [Google Scholar] [CrossRef] - Tijdeman, E.; Hannaford, J.; Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci.
**2018**, 22, 1051–1064. [Google Scholar] [CrossRef] - Fan, K.; Zhang, Q.; Gu, X.; Singh, V.P.; Xu, C.Y.; Shen, Z.; Wang, G. Global soil moisture drought identification and responses to natural and anthropogenic forcings. J. Hydrol.
**2022**, 610, 127993. [Google Scholar] [CrossRef] - Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol.
**2011**, 403, 157–175. [Google Scholar] [CrossRef] - McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Euro. Water
**2005**, 9, 3–11. [Google Scholar] - Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim.
**2010**, 23, 1696–1718. [Google Scholar] [CrossRef] - Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol.
**2010**, 391, 202–216. [Google Scholar] [CrossRef] - Fischer, T.; Gemmer, M.; Su, B.; Scholten, T. Hydrological long-term dry and wet periods in the Xijiang River basin, South China. Hydrol. Earth Syst. Sci.
**2013**, 17, 135–148. [Google Scholar] [CrossRef] - Hong, X.; Guo, S.; Zhou, Y.; Xiong, L. Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 1235–1247. [Google Scholar] [CrossRef] - Sun, X.; Li, Z.; Tian, Q. Assessment of hydrological drought based on nonstationary runoff data. Hydrol. Res.
**2020**, 51, 894–910. [Google Scholar] [CrossRef] - Yue, S.; Sheng, X.; Yang, F. Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China. Nat. Hazards Earth Syst. Sci.
**2022**, 22, 995–1014. [Google Scholar] [CrossRef] - Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag.
**2009**, 23, 881–897. [Google Scholar] [CrossRef] - Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate computation of a streamflow drought index. J. Hydrol. Eng.
**2012**, 17, 318–332. [Google Scholar] [CrossRef] - Bloomfield, J.P.; Marchant, B.P. Analysis of groundwater drought building on the standardized precipitation index approach. Hydrol. Earth Syst. Sci.
**2013**, 17, 4769–4787. [Google Scholar] [CrossRef] - Waseem, M.; Ajmal, M.; Kim, T.W. Development of a new composite drought index for multivariate drought assessment. J. Hydrol.
**2015**, 527, 30–37. [Google Scholar] [CrossRef] - Zhang, Y.; Huang, S.; Huang, Q.; Leng, G.; Wang, H.; Wang, L. Assessment of drought evolution characteristics based on a nonparametric and trivariate integrated drought index. J. Hydrol.
**2019**, 579, 124230. [Google Scholar] [CrossRef] - Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett.
**2008**, 35, L02405. [Google Scholar] [CrossRef] - Staudinger, M.; Stahl, K.; Seibert, J. A drought index accounting for snow. Water Resour. Res.
**2014**, 50, 7861–7872. [Google Scholar] [CrossRef] - Xiong, L.; Guo, S. A two-parameter monthly water balance model and its application. J. Hydrol.
**1999**, 216, 111–123. [Google Scholar] [CrossRef] - Guo, S.; Wang, J.; Xiong, L.; Ying, A.; Li, D. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. J. Hydrol.
**2002**, 268, 1–15. [Google Scholar] [CrossRef] - Mouelhi, S.; Michel, C.; Perrin, C.; Andréassian, V. Stepwise development of a two-parameter monthly water balance model. J. Hydrol.
**2006**, 318, 200–214. [Google Scholar] [CrossRef] - Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q.X. Water balance modeling over variable time scales based on the Budyko framework-Model development and testing. J. Hydrol.
**2008**, 360, 117–131. [Google Scholar] [CrossRef] - Wang, Q.; Pagano, T.C.; Zhou, S.; Hapuarachchi, H.A.P.; Zhang, L.; Robertson, D.E. Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol.
**2011**, 404, 166–175. [Google Scholar] [CrossRef] - Vandewiele, G.L.; Xu, C.Y.; Win, N.L. Methodology and comparative study of monthly water balance models in Belgium, China and Burma. J. Hydrol.
**1992**, 134, 315–347. [Google Scholar] [CrossRef] - Xu, C.Y.; Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Manag.
**1998**, 12, 20–50. [Google Scholar] [CrossRef] - Vasiliades, L.; Loukas, A.; Liberis, N. A water balance derived drought index for Pinios River basin, Greece. Water Resour. Manag.
**2011**, 25, 1087–1101. [Google Scholar] [CrossRef] - Li, S.; Xiong, L.; Dong, L.; Zhang, J. Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrol. Process.
**2013**, 27, 3981–3993. [Google Scholar] [CrossRef] - Wang, W.; Wei, J.; Shao, Q.X.; Xing, W.; Yong, B.; Yu, Z.; Jiao, X. Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 1117–1133. [Google Scholar] [CrossRef] - Hu, Q.; Wang, Y.; Liu, K.; Wang, Z. Monthly runoff simulation based on improved two-parameter monthly water volume balance model. J. Hohai Univ. Nat. Sci.
**2007**, 35, 638–642. (In Chinese) [Google Scholar] - Harman, C.; Troch, P.A. What makes Darwinian hydrology “Darwinian”? Asking a different kind of question about landscapes. Hydrol. Earth Syst. Sci.
**2014**, 18, 417–433. [Google Scholar] [CrossRef] - Wang, D.B.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. Geophys. Res. Lett.
**2014**, 41, 4569–4577. [Google Scholar] [CrossRef] - Mo, K.C. Model-based drought indices over the United States. J. Hydrometeorol.
**2008**, 9, 1212–1230. [Google Scholar] [CrossRef] - Wang, D.B.; Hejazi, M.; Cai, X.M.; Valocchi, A.J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res.
**2011**, 47, W09527. [Google Scholar] [CrossRef] - Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural, and hydrological droughts in China. Global Planet. Chang.
**2015**, 126, 23–34. [Google Scholar] [CrossRef] - Guo, Y.; Huang, S.; Huang, Q.; Leng, G.; Fang, W.; Wang, L.; Wang, H. Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Sci. Total Environ.
**2020**, 712, 136502. [Google Scholar] [CrossRef] [PubMed] - Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol.
**2021**, 596, 126091. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev.
**1957**, 106, 620–630. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics, II. Phys. Rev.
**1957**, 108, 171–190. [Google Scholar] [CrossRef] - Shannon, C.E. The mathematical theory of communications. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] - Smith, J.E. Moment methods for decision analysis. Manag. Sci.
**1993**, 39, 340–358. [Google Scholar] [CrossRef] - Hao, Z.; Singh, V.P. Entropy-based method for extreme rainfall analysis in Texas. J. Geophys. Res. Atmos.
**2013**, 118, 263–273. [Google Scholar] [CrossRef] - Hao, Z.; Singh, V.P. Entropy-based method for bivariate drought analysis. J. Hydrol. Eng.
**2013**, 18, 780–786. [Google Scholar] [CrossRef] - Mead, L.R.; Papanicolaou, N. Maximum entropy in the problem of moments. J. Math. Phys.
**1984**, 25, 2404–2417. [Google Scholar] [CrossRef] - Zuo, D.D.; Hou, W.; Yan, P.C.; Feng, T.C. Research on drought in southwest China based on the theory of run and two-dimensional joint distribution theory. Acta Phys. Sin.
**2014**, 63, 230204. [Google Scholar] - Wu, R.; Zhang, J.; Bao, Y.; Guo, E. Run theory and copula-based drought risk analysis for Songnen Grassland in Northeastern China. Sustainability
**2019**, 11, 6032. [Google Scholar] [CrossRef] - Malagò, A.; Bouraoui, F.; De Roo, A. Diagnosis and treatment of the SWAT hydrological response using the budyko framework. Sustainability
**2018**, 10, 1373. [Google Scholar] [CrossRef] - Chen, H.; Guo, S.; Xu, C.Y.; Singh, V.P. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J. Hydrol.
**2007**, 344, 171–184. [Google Scholar] [CrossRef] - Chen, H.; Guo, J.; Xiong, W.; Guo, S.; Xu, C.Y. Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin. Adv. Atmos. Sci.
**2010**, 27, 274–284. [Google Scholar] [CrossRef] - Xiong, L.; Yu, K.; Gottschalk, L. Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resour. Res.
**2014**, 50, 7134–7152. [Google Scholar] [CrossRef] - Eagleson, P.S. Dynamics of flood frequency. Water Resour. Res.
**1972**, 8, 878–898. [Google Scholar] [CrossRef]

**Figure 3.**Observed and simulated monthly runoff hydrographs at: (

**a**) Sheqi; (

**b**) Taikou; (

**c**) Wanyugou; (

**d**) Youshuijie.

**Figure 4.**Standardized hydrological index series calculated from simulated runoff (SRI) and observed streamflow (SDI) at: (

**a**) Sheqi; (

**b**) Taikou; (

**c**) Wanyugou; (

**d**) Youshuijie.

No. | Watershed | Area (km ^{2}) | Data Period | P (mm∙yr ^{−1}) | PE (mm∙yr ^{−1}) | Q (mm∙yr ^{−1}) | AI (-) | RC (-) |
---|---|---|---|---|---|---|---|---|

1 | Baitugang | 1134 | 1963–1989 | 923 | 864 | 389 | 0.94 | 0.42 |

2 | Baiyan | 690 | 1965–1989 | 779 | 708 | 286 | 0.91 | 0.37 |

3 | Bandian | 425 | 1955–1989 | 742 | 896 | 176 | 1.21 | 0.24 |

4 | Caodian | 683 | 1960–1987 | 1142 | 1205 | 443 | 1.06 | 0.39 |

5 | Chadianzi | 1683 | 1967–1989 | 868 | 624 | 319 | 0.72 | 0.37 |

6 | Chaiping | 2364 | 1969–1989 | 845 | 880 | 369 | 1.04 | 0.44 |

7 | Dazhuhe | 2651 | 1968–1989 | 1229 | 735 | 899 | 0.60 | 0.73 |

8 | Guihuayuan | 1275 | 1964–1989 | 859 | 721 | 446 | 0.84 | 0.52 |

9 | Houhui | 816 | 1958–1989 | 902 | 849 | 318 | 0.94 | 0.35 |

10 | Huayuan | 2601 | 1964–1987 | 1113 | 1207 | 356 | 1.08 | 0.32 |

11 | Jiajiafang | 1281 | 1960–1989 | 839 | 885 | 279 | 1.05 | 0.33 |

12 | Jiangwan | 781 | 1959–1989 | 849 | 890 | 309 | 1.05 | 0.36 |

13 | Kouzihe | 421 | 1963–1989 | 863 | 865 | 316 | 1.00 | 0.37 |

14 | Lianghekou | 2816 | 1967–1989 | 889 | 716 | 438 | 0.81 | 0.49 |

15 | Miping | 1404 | 1967–1989 | 794 | 875 | 209 | 1.10 | 0.26 |

16 | Nankuanping | 3936 | 1965–1989 | 773 | 869 | 264 | 1.12 | 0.34 |

17 | Nanshahe | 243 | 1967–1989 | 1208 | 585 | 705 | 0.48 | 0.58 |

18 | Pingshi | 748 | 1960–1989 | 975 | 1010 | 336 | 1.04 | 0.34 |

19 | Qingfeng | 2082 | 1963–1989 | 931 | 875 | 298 | 0.94 | 0.32 |

20 | Qingniwan | 1377 | 1965–1989 | 798 | 869 | 293 | 1.09 | 0.37 |

21 | Shengxiancun | 2143 | 1961–1988 | 890 | 738 | 414 | 0.83 | 0.47 |

22 | Sheqi | 1044 | 1966–1989 | 796 | 981 | 200 | 1.23 | 0.25 |

23 | Shuhe | 581 | 1969–1989 | 881 | 851 | 391 | 0.97 | 0.44 |

24 | Taikou | 2073 | 1965–1989 | 883 | 888 | 466 | 1.01 | 0.53 |

25 | Tiesuoguan | 433 | 1966–1989 | 1106 | 632 | 611 | 0.57 | 0.55 |

26 | Wanyugou | 560 | 1965–1989 | 1013 | 996 | 494 | 0.98 | 0.49 |

27 | Wuguan | 724 | 1959–1989 | 772 | 888 | 227 | 1.15 | 0.29 |

28 | Xianhekou | 772 | 1966–1989 | 974 | 733 | 489 | 0.75 | 0.50 |

29 | Xinzhou | 4660 | 1964–1989 | 1055 | 830 | 598 | 0.79 | 0.57 |

30 | Youshuijie | 911 | 1961–1989 | 939 | 734 | 536 | 0.78 | 0.57 |

No. | Watershed | C (-) | SC (-) | NSE (%) | RE (%) |
---|---|---|---|---|---|

1 | Baitugang | 0.94 | 300.63 | 0.83. | 10.4 |

2 | Baiyan | 0.98 | 301.01 | 0.75 | 12.8 |

3 | Bandian | 1.14 | 301.11 | 0.80 | 4.1 |

4 | Caodian | 0.85 | 302.08 | 0.84 | 15.5 |

5 | Chadianzi | 1.23 | 300.61 | 0.85 | 21.9 |

6 | Chaiping | 0.76 | 302.35 | 0.86 | 10.2 |

7 | Dazhuhe | 0.36 | 301.84 | 0.84 | 7.7 |

8 | Guihuayuan | 0.62 | 300.63 | 0.74 | 11.0 |

9 | Houhui | 1.03 | 302.78 | 0.82 | 7.8 |

10 | Huayuan | 0.95 | 302.08 | 0.81 | 15.2 |

11 | Jiajiafang | 1.03 | 390.16 | 0.80 | 1.8 |

12 | Jiangwan | 1.00 | 512.38 | 0.78 | 2.7 |

13 | Kouzihe | 1.02 | 301.83 | 0.86 | 14.4 |

14 | Lianghekou | 1.22 | 302.35 | 0.83 | 18.7 |

15 | Miping | 1.15 | 300.93 | 0.81 | 5.7 |

16 | Nankuanping | 0.93 | 300.63 | 0.84 | 12.2 |

17 | Nanshahe | 0.91 | 301.81 | 0.86 | 17.8 |

18 | Pingshi | 1.00 | 300.63 | 0.75 | 13.1 |

19 | Qingfeng | 1.09 | 303.66 | 0.80 | 2.1 |

20 | Qingniwan | 0.90 | 305.02 | 0.85 | 12.3 |

21 | Shengxiancun | 0.86 | 301.01 | 0.76 | 30.4 |

22 | Sheqi | 1.13 | 306.95 | 0.88 | 5.9 |

23 | Shuhe | 0.89 | 300.63 | 0.86 | 4.6 |

24 | Taikou | 0.73 | 305.02 | 0.81 | 1.2 |

25 | Tiesuoguan | 0.85 | 300.63 | 0.86 | 22.1 |

26 | Wanyugou | 0.75 | 300.93 | 0.86 | 5.8 |

27 | Wuguan | 1.09 | 302.08 | 0.82 | 6.7 |

28 | Xianhekou | 0.67 | 302.08 | 0.81 | 13.2 |

29 | Xinzhou | 0.69 | 303.13 | 0.82 | 3.8 |

30 | Youshuijie | 0.65 | 300.31 | 0.86 | 10.6 |

Ave. | 0.91 | 311.91 | 0.82 | 10.7 | |

Min. | 0.36 | 300.31 | 0.74 | 1.2 | |

Max. | 1.23 | 512.38 | 0.88 | 30.4 |

No. | Watershed | Number (Times) | E[D] (Month) | E[S] (-) | E[I] (-/Month) | E[L] (Month) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

SRI | SDI | RB(%) | SRI | SDI | RB(%) | SRI | SDI | RB(%) | SRI | SDI | RB(%) | SRI | SDI | RB(%) | ||

1 | Baitugang | 50 | 53 | −5.6 | 3.42 | 3.29 | 4.0 | 2.53 | 2.34 | 8.0 | 0.53 | 0.67 | −21.3 | 6.42 | 6.04 | 6.3 |

2 | Baiyan | 44 | 48 | −8.8 | 3.70 | 3.23 | 14.6 | 2.69 | 2.40 | 11.9 | 0.51 | 0.64 | −20.6 | 6.75 | 6.13 | 10.0 |

3 | Bandian | 42 | 48 | −12.9 | 4.76 | 4.94 | −3.6 | 3.81 | 4.28 | −10.9 | 0.42 | 0.50 | −15.9 | 9.71 | 8.56 | 13.5 |

4 | Caodian | 46 | 58 | −20.2 | 4.22 | 3.15 | 33.7 | 2.97 | 2.86 | 3.8 | 0.54 | 0.55 | −0.5 | 6.93 | 5.53 | 25.5 |

5 | Chadianzi | 40 | 40 | 0.0 | 3.48 | 3.68 | −5.6 | 2.81 | 2.75 | 2.2 | 0.61 | 0.59 | 3.8 | 6.50 | 6.83 | −4.8 |

6 | Chaiping | 38 | 34 | 11.8 | 3.82 | 4.09 | −6.7 | 2.65 | 3.03 | −12.3 | 0.60 | 0.62 | −4.1 | 6.53 | 7.18 | −9.1 |

7 | Dazhuhe | 52 | 52 | 0.0 | 2.90 | 2.70 | 7.5 | 2.02 | 1.94 | 4.2 | 0.58 | 0.66 | −12.1 | 5.00 | 4.98 | 0.4 |

8 | Guihuayuan | 47 | 51 | −7.9 | 3.83 | 2.83 | 35.5 | 2.53 | 2.35 | 7.7 | 0.58 | 0.71 | −17.7 | 6.38 | 6.03 | 5.9 |

9 | Houhui | 49 | 59 | −16.4 | 4.53 | 3.61 | 25.4 | 3.02 | 3.27 | −7.5 | 0.51 | 0.61 | −16.3 | 7.78 | 6.48 | 20.0 |

10 | Huayuan | 41 | 44 | −7.7 | 3.85 | 3.38 | 14.1 | 2.88 | 3.05 | −5.7 | 0.52 | 0.50 | 4.3 | 6.59 | 6.30 | 4.6 |

11 | Jiajiafang | 44 | 61 | −27.3 | 4.32 | 3.21 | 34.4 | 3.19 | 3.01 | 5.8 | 0.48 | 0.53 | −8.9 | 8.02 | 5.90 | 36.1 |

12 | Jiangwan | 43 | 44 | −3.2 | 4.60 | 4.07 | 13.1 | 3.39 | 2.95 | 15.1 | 0.48 | 0.51 | −5.6 | 8.49 | 8.21 | 3.4 |

13 | Kouzihe | 46 | 53 | −13.1 | 4.02 | 3.67 | 9.5 | 2.73 | 2.97 | −8.1 | 0.49 | 0.53 | −8.3 | 6.96 | 6.02 | 15.5 |

14 | Lianghekou | 34 | 49 | −30.8 | 4.18 | 2.70 | 54.6 | 3.32 | 2.89 | 15.0 | 0.61 | 0.77 | −20.3 | 7.82 | 5.53 | 41.5 |

15 | Miping | 30 | 35 | −14.2 | 4.67 | 4.10 | 13.9 | 3.63 | 4.02 | −9.6 | 0.51 | 0.57 | −11.3 | 8.90 | 7.77 | 14.5 |

16 | Nankuanping | 39 | 37 | 5.4 | 4.49 | 4.48 | 0.1 | 3.07 | 3.32 | −7.5 | 0.51 | 0.56 | −9.9 | 7.59 | 7.89 | −3.8 |

17 | Nanshahe | 50 | 48 | 4.2 | 2.78 | 2.81 | −1.1 | 2.25 | 2.30 | −2.4 | 0.69 | 0.72 | −5.0 | 5.46 | 5.69 | −4.0 |

18 | Pingshi | 40 | 51 | −21.7 | 5.08 | 3.79 | 34.0 | 3.57 | 3.59 | −0.5 | 0.48 | 0.57 | −14.9 | 8.78 | 6.99 | 25.6 |

19 | Qingfeng | 34 | 49 | −30.8 | 4.79 | 3.21 | 49.3 | 3.78 | 3.42 | 10.6 | 0.53 | 0.63 | −16.9 | 9.18 | 6.50 | 41.1 |

20 | Qingniwan | 42 | 41 | 3.3 | 4.21 | 3.93 | 7.3 | 2.86 | 2.85 | 0.4 | 0.58 | 0.62 | −5.6 | 7.05 | 7.15 | −1.5 |

21 | Shengxiancun | 51 | 62 | −18.3 | 3.25 | 2.70 | 20.6 | 2.63 | 2.68 | −1.7 | 0.68 | 0.67 | 1.8 | 6.47 | 5.32 | 21.7 |

22 | Sheqi | 29 | 39 | −25.2 | 5.52 | 4.02 | 37.2 | 3.87 | 3.57 | 8.3 | 0.48 | 0.50 | −4.7 | 9.41 | 7.32 | 28.6 |

23 | Shuhe | 31 | 32 | −3.6 | 4.77 | 3.83 | 24.6 | 3.36 | 3.09 | 8.9 | 0.48 | 0.69 | −29.9 | 7.94 | 7.59 | 4.6 |

24 | Taikou | 46 | 48 | −4.6 | 3.83 | 2.97 | 28.7 | 2.52 | 2.34 | 7.7 | 0.54 | 0.72 | −25.5 | 6.43 | 6.07 | 6.0 |

25 | Tiesuoguan | 53 | 51 | 3.9 | 3.02 | 3.09 | −2.4 | 2.19 | 2.28 | −3.9 | 0.60 | 0.67 | −10.3 | 5.36 | 5.59 | −4.1 |

26 | Wanyugou | 49 | 52 | −5.8 | 3.43 | 2.85 | 20.3 | 2.40 | 2.87 | −16.4 | 0.56 | 0.70 | −19.9 | 6.06 | 5.65 | 7.3 |

27 | Wuguan | 42 | 52 | −19.2 | 4.62 | 3.74 | 23.6 | 3.51 | 3.62 | −3.0 | 0.49 | 0.59 | −18.0 | 8.67 | 7.05 | 22.9 |

28 | Xianhekou | 45 | 49 | −8.5 | 3.38 | 2.82 | 19.8 | 2.63 | 2.97 | −11.5 | 0.68 | 0.68 | 0.0 | 6.31 | 5.75 | 9.7 |

29 | Xinzhou | 50 | 55 | −8.8 | 3.38 | 2.72 | 24.3 | 2.45 | 2.14 | 14.1 | 0.62 | 0.72 | −14.1 | 6.02 | 5.61 | 7.3 |

30 | Youshuijie | 47 | 50 | −6.2 | 3.98 | 3.57 | 11.4 | 2.98 | 2.63 | 13.5 | 0.64 | 0.63 | 1.5 | 7.28 | 6.88 | 5.8 |

Ave. | 43.13 | 48.19 | −9.7 | 4.03 | 3.44 | 18.1 | 2.94 | 2.93 | 1.2 | 0.55 | 0.62 | −10.9 | 7.23 | 6.48 | 11.7 | |

Min. | 29 | 32 | −30.8 | 2.78 | 2.70 | −6.7 | 2.02 | 1.94 | −16.4 | 0.42 | 0.50 | −29.9 | 5.00 | 4.98 | −9.1 | |

Max. | 53 | 62 | 11.8 | 5.52 | 4.94 | 54.6 | 3.87 | 4.28 | 15.1 | 0.69 | 0.77 | 4.3 | 9.71 | 8.56 | 41.5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hong, X.; Guo, S.; Chen, G.; Guo, N.; Jiang, C. A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought. *Water* **2022**, *14*, 3715.
https://doi.org/10.3390/w14223715

**AMA Style**

Hong X, Guo S, Chen G, Guo N, Jiang C. A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought. *Water*. 2022; 14(22):3715.
https://doi.org/10.3390/w14223715

**Chicago/Turabian Style**

Hong, Xingjun, Shenglian Guo, Guiya Chen, Na Guo, and Cong Jiang. 2022. "A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought" *Water* 14, no. 22: 3715.
https://doi.org/10.3390/w14223715