Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Reactor Setup and Operation
2.3. Water Quality Analysis
2.4. Metagenomic Analysis
3. Results and Discussion
3.1. Performance of Membran-Aerated Biofilm Reactor
3.1.1. Rate and Efficiency for Nitrogen Conversion
3.1.2. Rate and Efficiency for Pollutant Degradation
3.1.3. COD Consumption and Denitrification Mechanism
3.2. Microbial Community Analysis
3.3. Functional Genes for Nitrogen Metabolism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pickett, M.T.; Roberson, L.B.; Calabria, J.L.; Bullard, T.J.; Turner, G.; Yeh, D.H. Regenerative water purification for space applications: Needs, challenges, and technologies towards ‘closing the loop’. Life Sci. Space Res. 2020, 24, 64–82. [Google Scholar]
- Guo, S.S.; Mao, R.X.; Zhang, L.L.; Tang, Y.K.; Li, Y.H. Progress and prospect of research on controlled ecological life support technique. Reach Rev. Hum. Space Explor. 2017, 6, 1–10. [Google Scholar]
- Kelsey, L.K.; Pasadilla, P.; Cognata, T. Closing the Water Loop for Exploration: 2018 Status of the Brine Processor Assembly. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Carter, L.; Pruitt, J.; Christopher, A.B.; Schaezler, R.; Bankers, L. Status of ISS Water Management and Recovery. In Proceedings of the 45th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2015. [Google Scholar]
- Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 2017, 91, 87–98. [Google Scholar]
- Meyer, C.E.; Schneider, W.F. NASA Advanced Explorations Systems: 2018 Advancements in Life Support Systems. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 17–19 September 2018. [Google Scholar]
- Garland, J.; Rector, T.; Anderson, M. The Effects of Alternative Biological Primary Processing Approaches on the Efficiency of an Integrated Water Processing System. SAE Technical Paper, 2005, 2005-01-2980. Available online: https://www.sae.org/publications/technical-papers/content/2005-01-2980/ (accessed on 11 October 2022).
- Schaezler, R.N.; Cook, A.J. Report on ISS O2 Production, Gas Supply and Partial Pressure Management. In Proceedings of the International Conference on Environmental Systems, Bellevue, WA, USA, 26 December 2015. [Google Scholar]
- Bingham, S.A. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. Nutr. 2003, 133 (Suppl. 3), 921S–924S. [Google Scholar]
- De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Res. 2020, 185, 116223. [Google Scholar]
- Campbell, M.L.; Finger, B.W.; Verostko, C.E.; Wines, K.R.; Pariani, G.M.; Pickering, K.D. Integrated Water Recovery System Test. SAE Technical Paper, 2003, 2003-01-2577. Available online: https://www.sae.org/publications/technical-papers/content/2003-01-2577/ (accessed on 11 October 2022).
- Morse, A.; Jackson, A.; Rainwater, K. Nitrification Using a Membrane-Aerated Biological Reactor. SAE Technical Paper, 2003, 2003-01-2559. Available online: https://www.sae.org/publications/technical-papers/content/2003-01-2559/ (accessed on 11 October 2022).
- Rector, T.J.; Garland, J.L.; Starr, S.O. Dispersion characteristics of a rotating hollow fiber membrane bioreactor: Effects of module packing density and rotational frequency. J. Membr. Sci. 2006, 278, 144–150. [Google Scholar]
- Landes, N.; Jackson, W.A.; Morse, A. Evaluation of a microgravity compatible membrane bioreactor for simultaneous nitrification/denitrification. SAE Trans. 2007, 116, 83–90. [Google Scholar]
- Jackson, W.A.; Morse, A.; McLamore, E.; Wiesner, T.; Xia, S. Nitrification-Denitrification Biological Treatment of a High-Nitrogen Waste Stream for Water-Reuse Applications. Water Environ. Res. 2009, 81, 423–431. [Google Scholar]
- Sevanthi, R.; Christenson, D.; Morse, A.; Jackson, W.A.; Meyer, C.; Vega, L. Impact of waste stream composition and loading regime on the performance of a new flight compatible membrane-aerated biological reactor. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Sevanthi, R.; Salehi, M.; Morse, A.; Jackson, A.; Callahan, M. Long term biological treatment of space habitation waste waters in a one stage MABR: Comparison of operation for N and C oxidation with and without simultaneous denitrification. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Côté, P.; Bersillon, J.-L.; Huyard, A. Bubble-free aeration using membranes: Mass transfer analysis. J. Membr. Sci. 1989, 47, 91–106. [Google Scholar]
- Fang, Y.; Novak, P.J.; Hozalski, R.M.; Cussler, E.L.; Semmens, M.J. Condensation studies in gas permeable membranes. J. Membr. Sci. 2004, 231, 47–55. [Google Scholar]
- Zhang, L.; Li, T.; Ai, W.; Zhang, C.; Tang, Y.; Yu, Q.; Li, Y. Water management in a controlled ecological life support system during a 4-person-180-day integrated experiment: Configuration and performance. Sci. Total Environ. 2019, 651, 2080–2086. [Google Scholar]
- Jia, L.; Liu, H.; Kong, Q.; Li, M.; Wu, S.; Wu, H. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Res. 2020, 169, 115285. [Google Scholar]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar]
- Zhang, H.; Feng, J.; Chen, S.; Zhao, Z.; Li, B.; Wang, Y.; Jia, J.; Li, S.; Wang, Y.; Yan, M.; et al. Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb. Ecol. 2019, 77, 304–316. [Google Scholar]
- Wang, J.; Liu, X.; Jiang, X.; Zhang, L.; Hou, C.; Su, G.; Wang, L.; Mu, Y.; Shen, J. Facilitated bio-mineralization of N, N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. Water Res. 2020, 186, 116306. [Google Scholar]
- Xu, X.; Zhu, J.; Thies, J.E.; Wu, W. Methanol-linked synergy between aerobic methanotrophs and denitrifiers enhanced nitrate removal efficiency in a membrane biofilm reactor under a low O2:CH4 ratio. Water Res. 2020, 174, 115595. [Google Scholar]
- Fuka, M.M.; Braker, S.H.G.; Philippot, L. Molecular Tools to Assess the Diversity and Density of Denitrifying Bacteria in their Habitats. In Biology of the Nitrogen Cycle; Elsevier: Amsterdam, The Netherlands, 2007; pp. 313–330. [Google Scholar]
- Liu, X.; Huang, M.; Bao, S.; Tang, W.; Fang, T. Nitrate removal from low carbon-to-nitrogen ratio wastewater by combining iron-based chemical reduction and autotrophic denitrification. Bioresour. Technol. 2020, 301, 122731. [Google Scholar]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar]
- Dietl, A.; Ferousi, C.; Maalcke, W.J.; Menzel, A.; de Vries, S.; Keltjens, J.T.; Jetten, M.S.M.; Kartal, B.; Barends, T.R.M. The inner workings of the hydrazine synthase multiprotein complex. Nature 2015, 527, 394–397. [Google Scholar]
- Maalcke, W.J.; Reimann, J.; de Vries, S.; Butt, J.N.; Dietl, A.; Kip, N.; Mersdorf, U.; Barends, T.R.M.; Jetten, M.S.M.; Keltjens, J.T.; et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem. 2016, 291, 17077–17092. [Google Scholar]
- Kirstein, K.; Bock, E. Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch. Microbiol. 1993, 160, 447–453. [Google Scholar]
Composition | Concentration (mg/L) | ||
---|---|---|---|
toothpaste | 0.1 g/L | TOC | 400–650 |
shampoo | 0.1 g/L | TN | 500–800 |
facial | 0.1 g/L | COD | 500–700 |
shower | 0.1 g/L | LAS | 20–40 |
hand soap | 0.1 g/L | ||
laundry | 0.15 g/L | ||
urine | 10 vol% |
Phase | Period | Influent | HRT (d) |
---|---|---|---|
Phase 0 (P0) | Day 1–7 | Nutrient media | 0.92 |
Phase 1 (P1) | Day 8–20 | 10% strength EPB | 2.24 |
Phase 2 (P2) | Day 21–37 | 25% strength EPB | 2.24 |
Phase 3 (P3) | Day 38–61 | 40% strength EPB | 2.24 |
Phase 4 (P4) | Day 62–89 | 70% strength EPB | 2.99 |
Phase 5-1 (P5-1) | Day 90–117 | full strength EPB | 2.99 |
Phase 5-2 (P5-2) | Day 118–140 | full strength EPB | 3.94 |
Phase 5-3 (P5-3) | Day 141–198 | full strength EPB | 4.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, C.; Zhang, L.; Ai, W.; Dong, W. Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications. Water 2022, 14, 3704. https://doi.org/10.3390/w14223704
Zhan C, Zhang L, Ai W, Dong W. Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications. Water. 2022; 14(22):3704. https://doi.org/10.3390/w14223704
Chicago/Turabian StyleZhan, Chengbo, Liangchang Zhang, Weidang Ai, and Wenyi Dong. 2022. "Green and Sustainable Treatment of Urine Wastewater with a Membrane-Aerated Biofilm Reactor for Space Applications" Water 14, no. 22: 3704. https://doi.org/10.3390/w14223704