# Study of Single Fracture Seepage Characteristics of Fault-Filled Materials Based on CT Technology

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. CT Scan and 3D Model Reconstruction

#### 2.1. Pre-Processing of CT Scan Images

#### 2.2. Fracture Extraction

## 3. Seepage Simulation

#### 3.1. Condition Setting

^{2}was also set in the y-negative direction, and simulations of seepage under different pressure conditions were carried out in the z-positive and negative directions of the model, respectively, to study the seepage characteristics of the fissure model.

#### 3.2. Solver Model Selection

#### 3.3. Experimental Design of Seepage Simulation

#### 3.4. Seepage Simulation Results and Analysis

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Zhao, J.; Bo, L.; Chen, J.; Ning, J. Mechanism of Seepage-Stress Fault Water Inrush and Grouting Seal. Arab. J. Geosci.
**2020**, 13, 4259–4279. [Google Scholar] [CrossRef] - Qian, Z.; Huang, Z.; Song, J. A case study of water inrush incident through fault zone in China and the corresponding treatment measures. Arab. J. Geosci.
**2018**, 11, 381. [Google Scholar] [CrossRef] - Zheng, Z.; Yu, F.; Hao, W.; Jia, R.; Yu, L. The Non-Darcy Characteristics of Fault Water Inrush in Karst Tunnel Based on Flow State Conversion Theory. Therm. Sci.
**2021**, 25, 4415–4421. [Google Scholar] - Wang, P.; Xu, J.; Li, C. Similar Simulation Test Study on Permeability Evolution Mechanism of Fault Sliding Fracture Zone. Arab. J. Geosci.
**2022**, 15, 548. [Google Scholar] [CrossRef] - Shao, J.; Zhou, F.; Sun, W. Evolution Model of Seepage Characteristics in the Process of Water Inrush in Faults. Geofluids
**2019**, 2019, 4926768. [Google Scholar] [CrossRef] [Green Version] - Zhu, Z.; Niu, Z.; Que, X.; Liu, C.; He, Y.; Xie, X. Study on Permeability Characteristics of Rocks with Filling Fractures Under Coupled Stress and Seepage Fields. Water
**2020**, 12, 2782. [Google Scholar] [CrossRef] - Shao, J.; Zhang, Q.; Wu, X.; Lei, Y.; Wu, X.; Wang, Z. Investigation on the Water Flow Evolution in a Filled Fracture under Seepage-Induced Erosion. Water
**2020**, 12, 3188. [Google Scholar] [CrossRef] - Xue, S.; Yuan, L.; Wang, Y.; Xie, J. Numerical Analyses of the Major Parameters Affecting the Initiation of Outbursts of Coal and Gas. Rock Mech. Rock Eng.
**2014**, 47, 1505–1510. [Google Scholar] [CrossRef] - Hao, Z.; Sun, G.; Zhang, G. Mechanism and Inducing Factors of Rockburst Events of Roadways Under Ultrathick Strata. Front. Earth. Sc-Switz.
**2022**, 10, 860929. [Google Scholar] [CrossRef] - Zhang, Q.; Jiang, Q.; Zhang, X.; Wang, D. Model test on development characteristics and displacement variation of water and mud inrush on tunnel in fault fracture zone. Nat. Hazards.
**2019**, 99, 467–492. [Google Scholar] [CrossRef] - Li, S.; Bu, L.; Shi, S.; Li, L.; Zhou, Z. Prediction for Water Inrush Disaster Source and CFD-Based Design of Evacuation Routes in Karst Tunnel. Int. J. Geomech.
**2022**, 22, 05022001. [Google Scholar] [CrossRef] - Salzer, M.; Prill, T.; Spettl, A. Quantitative comparison of segmentation algorithms for FIB-SEM images of porous media. J. Microsc. Oxford
**2014**, 257, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wu, Y.; Li, Y.Z.; Qiao, W.G.; Fan, Z.W.; Zhang, S.; Chen, K.; Zhang, L. Water Seepage in Rocks at Micro-Scale. Water
**2022**, 14, 2827. [Google Scholar] [CrossRef] - Ju, Y.; Xi, C.; Zheng, J.; Gong, W.; Wu, J.; Wang, S.; Mao, L. Study on three-dimensional immiscible water–Oil two-phase displacement and trapping in deformed pore structures subjected to varying geostress via in situ computed tomography scanning and additively printed models. Int. J. Eng. Sci.
**2022**, 171, 103615. [Google Scholar] [CrossRef] - Wang, M.; Yang, S.; Li, J.; Zheng, Z.; Wen, J.; Ma, Q.; Wang, Q.; Chen, H. Cold water-flooding in a heterogeneous high-pour-point oil reservoir using computerized tomography scanning: Characteristics of flow channel and trapped oil distribution. J. Pet. Sci. Eng.
**2021**, 202, 108594. [Google Scholar] [CrossRef] - Dong, C.; Nemkumar, B.; Wang, Q.; Sun, W. Investigation on porosity of partly carbonated paste specimens blended with fly ash through dual CT scans. Constr. Build. Mater.
**2019**, 196, 692–702. [Google Scholar] - Yang, Y.; Yang, H.; Tao, L.; Yao, J.; Wang, W.; Zhang, K. Microscopic Determination of Remaining Oil Distribution in Sandstones with Different Permeability Scales Using Computed Tomography Scanning. J. Energy Resour. Technol.
**2019**, 141, 092903. [Google Scholar] [CrossRef] - Zhou, G.; Zhang, Q.; Bai, R.; Ni, G. Characterization of Coal Micro-Pore Structure and Simulation on the Seepage Rules of Low-Pressure Water Based on CT Scanning Data. Minerals
**2016**, 6, 78. [Google Scholar] [CrossRef] [Green Version] - Choi, C.; Lee, Y.; Song, J. Equivalent Pore Channel Model for Fluid Flow in Rock Based on Microscale X-ray CT Imaging. Materials
**2020**, 13, 2619. [Google Scholar] [CrossRef] - Qiu, L.; Zhou, G.; Zhang, W.; Han, W. Simulations on the micro-seepage rules of gas and water based on micro-CT/CFD and the related contrastive analysis. Arab. J. Geosci.
**2019**, 12, 549. [Google Scholar] [CrossRef] - Liu, W.; Wang, G.; Han, D.; Xu, H.; Chu, X. Accurate characterization of coal pore and fissure structure based on CT 3D reconstruction and NMR. J. Nat. Gas. Sci. Eng.
**2021**, 96, 104242. [Google Scholar] [CrossRef] - Zhao, L.; Ni, G.; Wang, Y.; Jiang, H.; Wen, Y.; Dou, H.; Jing, M. Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics. Energy
**2022**, 259, 125044. [Google Scholar] [CrossRef] - Liu, J.; Wang, Y.; Song, R. A Pore Scale Flow Simulation of Reconstructed Model Based on the Micro Seepage Experiment. Geofluids
**2017**, 2017, 7459346. [Google Scholar] [CrossRef] - Wang, G.; Jiang, C.; Shen, J.; Han, D.; Qin, X. Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation. Int. J. Coal. Geol.
**2019**, 211, 103204. [Google Scholar] [CrossRef] - Wang, G.; Shen, J.; Liu, S.; Jiang, C.; Qin, X. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int. J. Rock. Mech. Min.
**2019**, 123, 104082. [Google Scholar] [CrossRef] - Yao, B.; Chen, Z.; Wei, J.; Bai, T.; Liu, S. Predicting Erosion-Induced Water Inrush of Karst Collapse Pillars Using Inverse Velocity Theory. Geofluids
**2018**, 2018, 2090584. [Google Scholar] [CrossRef] [Green Version] - Li, L.; Hu, J.; Li, S.; Qin, C.; Liu, H.; Chen, D.; Wang, J. Development of a Novel Triaxial Rock Testing Method Based on Biaxial Test Apparatus and Its Application. Rock. Mech. Rock. Eng.
**2021**, 54, 1597–1607. [Google Scholar] [CrossRef] - Wang, Y.; Sun, S.; Yu, B. On Full-Tensor Permeabilities of Porous Media from Numerical Solutions of the Navier-Stokes Equation. Adv. Mech. Eng.
**2013**, 5, 137086. [Google Scholar] [CrossRef] [Green Version] - Shi, R.; Lin, J.; Yang, H. Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage. Processes
**2021**, 9, 1789. [Google Scholar] [CrossRef] - Zou, L.; Jing, L.; Cvetkovic, V. Modeling of flow and mixing in 3D rough-walled rock fracture intersections. Adv. Water Resour.
**2017**, 107, 1–9. [Google Scholar] [CrossRef]

**Figure 1.**Mine Location Map: (

**a**) Map of China. (

**b**) Map of Shandong. (

**c**) Diagram of Anju Coal Mine in Jining Mining District.

**Figure 3.**z forward inlet pressure cloud map: (

**a**) 0.1 Mpa pressure cloud map. (

**b**) 0.5 Mpa pressure cloud map. (

**c**) 1 Mpa pressure cloud map. (

**d**) 3 Mpa pressure cloud map. (

**e**) 5 Mpa pressure cloud map. (

**f**) 10 Mpa pressure cloud map.

**Figure 4.**z forward inlet velocity vector diagram:(

**a**) 0.1 Mpa speed vector. (

**b**) 0.5 Mpa speed vector. (

**c**) 1 Mpa speed vector. (

**d**) 3 Mpa speed vector. (

**e**) 5 Mpa speed vector. (

**f**) 10 Mpa speed vector illustration.

**Figure 5.**z negative inlet pressure cloud map: (

**a**) 0.1 Mpa pressure cloud map. (

**b**) 0.5 Mpa pressure cloud map. (

**c**) 1 Mpa pressure cloud map. (

**d**) 3 Mpa pressure cloud map. (

**e**) 5 Mpa pressure cloud map. (

**f**) 10 Mpa pressure cloud map.

**Figure 6.**z negative inlet velocity vector diagram:(

**a**) 0.1 Mpa speed vector. (

**b**) 0.5 Mpa speed vector. (

**c**) 1 Mpa speed vector. (

**d**) 3 Mpa speed vector. (

**e**) 5 Mpa speed vector. (

**f**) 10 Mpa speed vector.

**Figure 8.**The 3 Mp pressure cloud and speed vector illustration: (

**a**) fracture mesh model. (

**b**) pressure cloud map. (

**c**) speed vector illustration.

**Figure 9.**The 3 Mp pressure cloud and speed vector illustration: (

**a**) fracture grid motion trajectory. (

**b**) z forward motion trajectory diagram. (

**c**) z negative motion trajectory diagram.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sun, W.; Wang, S.; Dong, F.; Xue, Y.
Study of Single Fracture Seepage Characteristics of Fault-Filled Materials Based on CT Technology. *Water* **2022**, *14*, 3679.
https://doi.org/10.3390/w14223679

**AMA Style**

Sun W, Wang S, Dong F, Xue Y.
Study of Single Fracture Seepage Characteristics of Fault-Filled Materials Based on CT Technology. *Water*. 2022; 14(22):3679.
https://doi.org/10.3390/w14223679

**Chicago/Turabian Style**

Sun, Wenbin, Shaoyu Wang, Faxu Dong, and Yandong Xue.
2022. "Study of Single Fracture Seepage Characteristics of Fault-Filled Materials Based on CT Technology" *Water* 14, no. 22: 3679.
https://doi.org/10.3390/w14223679