Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Thermocline Detection
2.3. Description of the Models
2.3.1. DYRESM Model
2.3.2. Rainfall–Runoff Model
2.4. Data
2.4.1. Field Data
2.4.2. Observed Meteorological Data
2.4.3. CMIP5 Data
2.5. Scenario Design
2.5.1. Sensitivity Analysis Scenarios
2.5.2. RCP Scenarios
3. Results
3.1. Thermal Stratification
3.1.1. Vertical Variation in Water Temperature
3.1.2. The Formation and Development of the Thermocline
3.2. Model Performance
3.2.1. Performance of the Rainfall–Runoff Model
3.2.2. Performance of DYRESM Model
3.2.3. Performance of CMIP5 Outputs
3.3. Sensitivity Analysis
3.3.1. The Sensitivity of Thermal Stratification under Air-Temperature-Change Scenarios
3.3.2. The Sensitivity of Thermal Stratification under Precipitation Changes with Reservoir-Operation Scenarios
3.4. Simulation of Thermal Structures in Future
4. Discussion
4.1. Effects of Climate Change on the Thermal Stratification of Reservoirs
4.2. Effects of Thermal Stratification on Water Quality of Reservoirs against the Background of Global Warming
5. Conclusions
- (1)
- The water temperature in each layer was sensitive to changes in air temperature and showed a positive correlation with these changes. However, the influence of rising air temperature on thermal stratification parameters is inconsistent.
- (2)
- The effects of precipitation variations in water temperature are more complicated than those of air temperature because of the reservoir operation involved. The middle layer (at the water depth of about 30 m) was the most sensitive water layer.
- (3)
- With the global warming, the peak value of water temperature rises occurred at depth = 40 m under RCP2.6, but at depth = 5 m under RCP8.5. The mean thermocline depth in the future (2096–2100) will significantly decrease, while the mean thermocline thickness will slightly increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Reilly, C.M.; Alin, S.R.; Plisnier, P.D.; Cohen, A.S.; Mckee, B.A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 2003, 424, 766–768. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Holzner, C.P.; Hofer, M.; Simona, M.; Barbieri, A.; Kipfer, R. A time series of environmental tracer data from deep meromictic Lake Lugano, Switzerland. Limnol. Oceanogr. 2007, 52, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Patrick, R. The effects of increasing light and temperature on the structure of diatom communities. Limnol. Oceanogr. 1971, 16, 405–421. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Wilhelm, S.; Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 2008, 53, 226–237. [Google Scholar] [CrossRef]
- Minns, C.K.; Moore, J.E.; Doka, S.E.; John, M.A. Temporal trends and spatial patterns in the temperature and oxygen regimes in the Bay of Quinte, Lake Ontario, 1972–2008. Aquat. Ecosyst. Health 2011, 14, 9–20. [Google Scholar] [CrossRef]
- Thornton, K.W.; Kimmel, B.L.; Payne, F.E. Reservoir Limnology: Ecological Perspectives; A John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Straskraba, M.; Tundisi, J.G.; Duncan, A. State-of-the-art of reservoir limnology and water quality management. In Comparative Reservoir Limnology and Water Quality Management; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1993; pp. 213–288. [Google Scholar]
- Nowlin, W.H.; Davies, J.M.; Nordin, R.N.; Mazumder, A. Effects of water level fluctuation and short-term climate variation on thermal and stratification regimes of a British Columbia reservoir and lake. Lake Reserv. Manag. 2004, 20, 91–109. [Google Scholar] [CrossRef]
- Busker, T.; Roo, A.D.; Gelati, E.; Schwatke, C. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; A John Wiley and Sons: New York, NY, USA, 2008. [Google Scholar]
- Ma, S.W.; Kassinos, S.C.; Kassinos, D.F.; Akylas, E. Effects of selective water withdrawal schemes on thermal stratification in Kouris Dam in Cyprus. Lakes Reserv. Res. Manag. 2008, 13, 51–61. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Anneville, O.; Chandra, S.; Dix, M.; Kuusisto, E.; Livingstone, D.M.; Rimmer, A.; Schladow, S.G.; Silow, E.; Sitoki, L.M. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 2015, 42, 4981–4988. [Google Scholar] [CrossRef]
- Saros, J.E.; Northington, R.M.; Osburn, C.L.; Burpee, B.T.; Anderson, N.J. Thermal stratification in small arctic lakes of Southwest Greenland affected by water transparency and epilimnetic temperatures. Limnol. Oceanogr. 2016, 61, 1530–1542. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef] [Green Version]
- Arvola, L.; George, G.; Livingstone, D.M.; Jrvinen, M.; Weyhenmeyer, G.A. The impact of the changing climate on the thermal characteristics of lakes. In The Impact of Climate Change on European Lakes; George, G., Ed.; Springer: Berlin, Germany, 2009; pp. 85–101. [Google Scholar]
- He, Q.; Qiu, Y.; Liu, H.; Sun, X.; Kang, L.; Cao, L.; Li, H.; Ai, H. New insights into the impacts of suspended particulate matter on phytoplankton density in a tributary of the Three Gorges Reservoir, China. Sci. Rep. 2017, 7, 13518. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, Y.; Javed, A.; Arhonditsis, G.B. An ensemble modeling framework to study the effects of climate change on the trophic state of shallow reservoirs. Sci. Total Environ. 2019, 697, 134078. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, D.F.; Little, J.C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model. Water Res. 2002, 36, 4627–4635. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Zhou, Y.; Wang, M.; Liu, X. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 2015, 75, 249–258. [Google Scholar] [CrossRef]
- Burris, V.L.; McGinnis, D.F.; Little, J.C. Predicting oxygen transfer and water flow rate in airlift aerators. Water Res. 2002, 36, 4605–4615. [Google Scholar] [CrossRef]
- Gantzer, P.A.; Bryant, L.D.; Little, J.C. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs. Water Res. 2009, 43, 1700–1710. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, D.; Cheng, T. Effects of flood on thermal structure of a stratified reservoir. Procedia Environ. Sci. 2011, 10, 1811–1817. [Google Scholar]
- Huang, T.; Li, X.; Rijnaarts, H.; Grotenhuis, T.; Ma, W.; Sun, X.; Xu, J. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China. Sci. Total Environ. 2014, 485–486, 820–827. [Google Scholar] [CrossRef]
- Becker, V.; Caputo, L.; Ordónez, J.; Marcé, R.; Armengol., J.; Crossetti, L.; Huszar, V. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 2010, 44, 3345–3354. [Google Scholar] [CrossRef]
- Wang, S.; Qian, X.; Han, B.; Luo, L.; Hamilton., D.P. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Res. 2012, 46, 2591–2604. [Google Scholar] [CrossRef] [PubMed]
- Coloso, J.J.; Cole, J.J.; Pace, M.L. Short-term variation in thermal stratification complicates estimation of lake metabolism. Aquat. Sci. 2010, 73, 305–315. [Google Scholar] [CrossRef]
- Hao, J.; Chen, Y.; Wang, F.; Lin, P. Seasonal thermocline in the China Seas and northwestern Pacific Ocean. J. Geophys. Res. 2012, 117, C02022. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Wang, M.; Yu, Z. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr. 2014, 59, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Qiu, D. National Oceanic Comprehensive Survey Report: Thermocline, Halocline, Pycnocline Phenomena in China Coastal Waters; Science Press: Beijing, China, 1964; p. 116. (In Chinese) [Google Scholar]
- Liu, Q.; Yang, H.; Wang, Q. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea. Chin. J. Oceanol. Limnol. 2000, 18, 104–109. [Google Scholar]
- Liu, M.; Zhang, Y.; Shi, K.; Zhu, G.; Wu, Z.; Liu, M.; Zhang, Y. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. Sci. Total Environ. 2019, 651, 614–624. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, B.; Zhang, Y.; Ba, L. World oceanic thermocline characteristics in winter and summer [in Chinese with English abstract]. Mar. Sci. Bull. 2002, 21, 16–22. [Google Scholar]
- Wang, Y.; Huang, B.; Zhang, R.; Teng, J.; Dong, Z.; Wang, H. Distribution characteristics of world oceanic thermocline based on Argo data [in Chinese with English abstract]. Adv. Mar. Sci. 2008, 26, 428–435. [Google Scholar]
- Imberger, J.; Hamblin, P.F. Dynamics of lakes, reservoirs and cooling ponds. Ann. Rev. Fluid. Mech. 1982, 14, 153–187. [Google Scholar] [CrossRef]
- Imberger, J. The diurnal mixed layer. Limnol. Oceaongr. 1985, 30, 737–770. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Schladow, S.G. Prediction of water quality in lakes and reservoirs. Part I—Model description. Ecol. Model. 1997, 96, 91–110. [Google Scholar] [CrossRef]
- Imerito, A. Dynamic Reservoir Simulation Model DYRESM V4.0 Science Manual; Centre for Water Research, University of Western Australia: Perth, Australia, 2011. [Google Scholar]
- Trolle, D.; Jørgensen, T.B.; Jeppesen, E. Predicting the effects of reduced external nitrogen loading on the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYRESM-CAEDYM model. Limnologica 2008, 38, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Trolle, D.; Skovgaard, H.; Jeppesen, E. The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM-CAEDYM. Ecol. Model 2008, 219, 138–152. [Google Scholar] [CrossRef]
- Ma, C.C.Y.; Iqbal, M. Statistical comparison of solar radiation correlations-monthly average global and diffuse radiation on horizontal surfaces. Sol. Energy 1984, 33, 143–148. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Y.; Fang, L.; Liu, X.; Zhang, Q. The Xinanjiang model. In Hydrological Forecasting Proceedings Oxford Symposium; IASH: Wallingford, UK, 1980; pp. 351–356. [Google Scholar]
- Zhao, R. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Li, H.X.; Zhang, Y.Q.; Chiew, F.H.S.; Xu, S.G. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J. Hydrol. 2009, 370, 155–162. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhang, Y.Q.; Vaze, J.; Wang, B.D. Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches. J. Hydrol. 2012, 420–421, 403–418. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiew, F.H.S. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour. Res. 2009, 45, W07412. [Google Scholar] [CrossRef]
- Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Downscaling the contribution to uncertainty in climate-change assessments: Representative concentration pathway (RCP) scenarios for the South Alborz Range, Iran. Meteorol. Appl. 2018, 25, 414–422. [Google Scholar] [CrossRef]
- Choubin, B.; Malekian, A.; Samadi, S.; Khalighi-Sigaroodi, S.; Sajedi-Hosseini, F. An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorol. Appl. 2017, 24, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.D.; Futter, M.N.; Moldan, F.; Valinia, S.; Frogbrook, Z.; Kothawala, D.N. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nat. Geosci. 2017, 10, 832–835. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res-Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Gordon, H.B.; Rotstayn, L.; Mcgregor, J.L.; Dix, M. The CSIRO Mk3 Climate System Model, Technical Report No. 60; CSIRO Atmospheric Research: Melbourne, Australia, 2002; p. 130. [Google Scholar]
- IPCC. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Core Writing Team, IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Livingstone, D.M.; Dokulil, M.T. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnol. Oceanogr. 2001, 46, 1220–1227. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Donk, E.V.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Verburg, P.; Hecky, R.E.; Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 2003, 301, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Thackeray, S.; Jones, I.; Maberly, S. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 2008, 96, 523–535. [Google Scholar] [CrossRef]
- Winder, M. Limnology: Lake warming mimics fertilization. Nat. Clim. Chang. 2012, 2, 771–772. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Kling, G.W. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnol. Oceanogr. 1988, 33, 27–40. [Google Scholar] [CrossRef]
- Pe’rez-Fuentetaja, A.; Dillon, P.J.; Yan, N.D.; Mcqueen, D.J. Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian shield lakes. Aquat. Ecol. 1999, 33, 127–133. [Google Scholar] [CrossRef]
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- North, R.P.; North, R.L.; Livingstone, D.M.; Köster, O.; Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: Consequences of a climate regime shift. Glob. Chang. Biol. 2014, 20, 811–823. [Google Scholar] [CrossRef]
- Hupfer, M.; Lewandowski, J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 2008, 93, 415–432. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Effler, S.W.; Matthews, D.A.; Kaser, J.W.; Prestigiacomo, A.R.; Smith, D.G. Runoff event impacts on a water supply reservoir suspended sediment loading, turbid plume behavior, and sediment deposition. J. Am. Water Resour. As. 2006, 42, 1697–1701. [Google Scholar]
- Smith, J.S.; Winston, R.J.; Tirpak, R.A.; Wituszynski, D.M.; Boening, K.M.; Martin, J.F. The seasonality of nutrients and sediment in residential stormwater runoff: Implications for nutrient-sensitive waters. J. Environ. Manag. 2020, 276, 111248. [Google Scholar] [CrossRef]
- Sterner, R.W.; Reinl, K.L.; Lafrancois, B.M.; Brovold, S.; Miller, T.R. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior. Limnol. Oceanogr. 2020, 65, 2984–2998. [Google Scholar] [CrossRef]
- Mukundan, R.; Hoang, L.; Gelda, R.K.; Yeo, M.; Owens, E.M. Climate change impact on nutrient loading in a water supply watershed. J. Hydrol. 2020, 586, 124868. [Google Scholar]
- Wang, S.; Qian, X.; Han, B.; Luo, L.; Ye, R.; Xiong, W. Effects of different operational modes on the flood-induced turbidity current of a canyon-shaped reservoir: Case study on Liuxihe Reservoir, South China. Hydrol. Process. 2013, 27, 4004–4016. [Google Scholar] [CrossRef]
Parameter Value | Description |
---|---|
1.3 × 10−3 | Bulk aerodynamic momentum transport coefficient |
0.088 | Mean albedo of water |
0.96 | Emissivity of a water surface |
6 | Critical wind speed |
0.012 | Bubbler entrainment coefficient |
0.083 | Buoyant plume entrainment coefficient |
0.08 | Shear production efficiency |
0.15 | Potential energy mixing efficiency |
0.15 | Wind stirring efficiency |
1.0 × 107 | Effective surface area coefficient |
0.15 | BBL detrainment diffusivity |
500 | Vertical mix coefficient |
Model Scenarios | Start of Seasonal Stratification | End of Seasonal Stratification | Duration of Thermocline | Mean Surface Temperature | Mean Water Level | Mean Inflow | Mean Outflow | Hydraulic Residence Time |
---|---|---|---|---|---|---|---|---|
(d) | (°C) | (m) | (m3/s) | (m3/s) | (d) | |||
Baseline | 2012/3/14 | 2012/12/30 | 292 | 20.3 | 101.7 | 388.0 | 419.4 | 396 |
AIRT-4 | 2012/3/23 | 2012/12/22 | 275 | 18.4 | 101.7 | 388.0 | 419.4 | 396 |
AIRT-2 | 2012/3/22 | 2012/12/26 | 280 | 19.4 | 101.7 | 388.0 | 419.4 | 396 |
AIRT+2 | 2012/3/14 | 2013/1/3 | 296 | 21.4 | 101.7 | 388.0 | 419.4 | 396 |
AIRT+4 | 2012/3/13 | 2013/1/7 | 301 | 22.5 | 101.7 | 388.0 | 419.4 | 396 |
OPER-20 | 2012/3/14 | 2013/1/5 | 298 | 20.3 | 101.7 | 278.7 | 296.0 | 561 |
OPER-10 | 2012/3/14 | 2013/1/3 | 296 | 20.3 | 101.7 | 332.9 | 354.0 | 469 |
OPER+10 | 2012/3/14 | 2012/12/25 | 287 | 20.3 | 101.7 | 443.6 | 495.0 | 336 |
OPER+20 | 2012/3/14 | 2012/12/22 | 284 | 20.3 | 101.7 | 499.7 | 575.5 | 289 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lan, J.; Qin, B.; Luo, L.; Jin, J.; Zhu, G.; Wu, Z. Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China. Water 2022, 14, 3279. https://doi.org/10.3390/w14203279
Li H, Lan J, Qin B, Luo L, Jin J, Zhu G, Wu Z. Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China. Water. 2022; 14(20):3279. https://doi.org/10.3390/w14203279
Chicago/Turabian StyleLi, Huiyun, Jia Lan, Boqiang Qin, Liancong Luo, Junliang Jin, Guangwei Zhu, and Zhixu Wu. 2022. "Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China" Water 14, no. 20: 3279. https://doi.org/10.3390/w14203279
APA StyleLi, H., Lan, J., Qin, B., Luo, L., Jin, J., Zhu, G., & Wu, Z. (2022). Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China. Water, 14(20), 3279. https://doi.org/10.3390/w14203279