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Abstract: The effects of global warming and precipitation changes on water temperature and thermo-
cline parameters, such as thermocline depth, thickness, and strength, were assessed. A catchment
model, coupled with a reservoir thermal model with meteorological input calculated by a down-
scaled general circulation model (GCM) projection under three representative concentration pathways
(RCPs), was applied to the Xin’anjiang Reservoir, located in southeast China. The results indicate
that water temperature in each layer increased (decreased) with the rise (decline) in air temperature,
especially the surface water temperature. There was a significant negative (positive) correlation
between thermocline depth (strength) and air temperature during the period of stratification weak-
ness. The most sensitive phenomenon of water temperature-to-precipitation changes occurred in
the middle layer (depth = 30 m). Additionally, the thermocline depth and thickness increased with
decreases in hydraulic residence time, which were caused by precipitation increases. According to
the simulation experiments driven by RCP outputs, mean water temperature in each water layer in
the future (2096–2100) has a strong response to increases in air temperature, which is projected to
increase by 0.11–0.62 ◦C for RCP2.6, 0.76–1.19 ◦C for RCP4.5, and 1.50–2.35 ◦C for RCP8.5, compared
to the baseline (2012–2016). However, mean water temperature in each water layer from 2096 to
2100 underwent a slight decrease caused by precipitation changes, with a 0.03–0.25 ◦C decrease for
RCP2.6, 0.07–0.40 ◦C for RCP4.5, and 0.04–0.29 ◦C for RCP8.5, compared to 2012–2016. The mean
thermocline depth in the future (2096–2100) will be significantly decreased, while the mean thermo-
cline thickness will be slightly increased. Over a multiyear timescale, the impacts of air temperature
changes are stronger than those induced by precipitation variations. However, the effects of hydraulic
residence time changes caused by precipitation changes (especially rainstorm) should be considered
in the management of deep reservoirs.

Keywords: climate change; thermal regime; stratification; numerical simulation; multiple scenarios

1. Introduction

The thermal regime is the most basic physical feature in lake and reservoir systems, which
plays a very important role in biological metabolism and material decomposition [1–3]. In
other words, water temperature and its seasonal variations significantly affect the structure
of the biological community and the productivity of aquatic ecosystems in lakes and
reservoirs [4,5]. For deep lakes and reservoirs, the thermal stratification determined by the
difference in vertical water temperature is also the main factor associated with a variety
of physical and chemical processes (such as dissolved oxygen distributive profile, light
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penetration underwater, nutrient exchange between epilimnion and hypolimnion, and the
photosynthesis of phytoplankton). For example, the water density stratification formed by
thermal stratification restrains the mixing of the water column, making the hypolimnion
rich in nutrition but insufficiently light, while the epilimnion is sufficiently light but has
limited nutrition [6,7].

A reservoir formed by artificial damming is an important engineering measure for
water resource management, such as water supply, flood control, power generation, irriga-
tion, etc. [8,9]. The construction of the reservoir changes the characteristics of the natural
river course by increasing water depth, decreasing flow velocity, and changing hydraulic
residence time [10,11]. Reservoirs share their characteristics with both rivers and lakes and
have unique physical characteristics. Usually, reservoirs are river-like at the head where
major tributaries enter and are more lake-like near the dam. The vertical stratification due to
temperature differences is one of the most typical and common features in the lake-like area
of reservoirs [12]. However, for different reservoirs, the characteristics of thermal stratifica-
tion and seasonal variations have significant individual differences. This can be influenced
by reservoir morphology (depth and size), solar radiation, light penetration (transparency
and diffuse attenuation coefficient), climate factors (air temperature, precipitation, and
wind), as well as the differences in artificial regulation modes between reservoirs [13–15].
Generally, regional climate determines the thermal stratification formation and weakness
periods of reservoirs. For example, deep reservoirs in tropical areas are stratified for most
of the year, and there is only a short mixing period in winter. In addition, hydrological
conditions and human regulation measures will influence the stability and duration of
thermal stratification structures in reservoirs.

Since the 20th century, with the global warming, the temperature of reservoirs around
the world has increased by varying degrees, which has a complex and profound direct and
indirect impact on the physical, chemical, and biological processes of reservoirs [16,17].
On the one hand, long-term slow temperature rises and short-term extreme heatwaves
will prolong the thermal stratification time, decrease the depth of the mixing layer and the
thermocline depth, and increase the thermal stability [18–21]. Meanwhile, the diffusion
depth of dissolved oxygen and oxycline depth significantly decrease, which strengthens
the anoxic and anaerobic environment at the hypolimnion and sediment–water interface
of the reservoir [22,23]. Correspondingly, the release of phosphate from the sediment is
enhanced, which further boosts algae growth and proliferation [24,25]. However, at the
thermal stratification period, rainstorm runoff can increase the water temperature at the
bottom of the reservoir, weaken the stability of the thermal structure, and induce mixing in
early autumn [26,27].

Reservoirs are built for many different purposes, including flood control, water supply,
power generation, and navigation. Therefore, in addition to climate change, the evolution
of reservoir water environment is also disturbed by human activities such as the reservoir
operation regulation [12]. The impact of climate change on the thermal characteristics of a
reservoir and consequences for oxygen, nutrients, and phytoplankton are more complex than
for a natural lake. However, few studies have quantified such impacts on reservoirs [28,29].

Therefore, the main aims of this study are to: (1) analyze the thermal stratification cycle
characteristics of a large-deep reservoir located at the subtropical and monsoonal climate
area, (2) examine the sensitivity of water temperature at different depths and thermal
stratification to meteorological factors (air temperature and precipitation) and reservoir
operation, and (3) address the possible changes in thermal structure and stratification
of the reservoir under three representative concentration pathways (RCPs) by using the
outputs from a Coupled Model Inter-comparison Project Phase 5 (CMIP5) GCM, namely,
CSIRO-Mk3.6.0, to drive a hydrological model coupled with a hydrodynamics model.
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2. Materials and Methods
2.1. Study Area

The Xin’anjiang Reservoir (Figure 1), located in southeast China, is an artificial, large
(area 573 km2) and deep lake (mean depth 30 m and maximum depth around 100 m),
which was built in 1959. It is a long, narrow river-type reservoir formed by the construction
of the Xin’anjiang hydroelectric dam. The lake has a capacity of 178.4 × 108 m3 when
the water level is at its normal height of 108 m asl. The hydraulic residence time is
approximately 2 years. The basin area of the Xin’anjiang Reservoir is 10,442 km2, with
5 main rivers (Xin’anjiang River, Dongyuangang River, Wuqiangxi River, Fenglingang River,
and Yunyuangang River) flowing into the lake. Approximately 70% of the total inflow
comes from these 5 rivers and over 50% of the total inflow comes from the Xin’anjiang River
which is the biggest inflow river of the lake. The Xin’anjiang Reservoir is an important
strategic water source in the Yangtze River Delta in China, supplying drinking water for
the tens of millions of residents downstream. Additionally, the Xin’anjiang Reservoir is a
famous tourist resort due to its beautiful scenery and excellent water quality.
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Figure 1. The location and water depth of the Xin’anjiang Reservoir, China.

2.2. Thermocline Detection

A common method (the gradient criterion method (GC)) is used to identify the ther-
mocline in the Xin’anjiang Reservoir [30–32]. The mathematical expression of thermocline
can be expressed as follows:

∂T/∂Z = (Ti−1 − Ti)/(Zi − Zi−1), i = 2 · · ·K (1)

where K is the total number of water layers from the surface to bottom of the lake and Zi
and Ti are the water depth and temperature of the ith layer, respectively. This is called
normal distribution if the value of ∂T/∂Z is greater than zero; otherwise, it is called an
inversion layer. It is necessary that the vertical temperature gradient should be larger than
a certain fixed value, although there is no objective way to determine this criterion. It has
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been reported that the criterion 0.2 ◦C/m is suitable when the water depth ≤200 m [33–35],
and 0.05°C/m is adopted when the water depth >200 m [36,37]. The uniform criterion of
0.2 ◦C/m was chosen in this study based on experiences measuring the vertical distribution
of temperature in the Xin’anjiang Reservoir.

Meanwhile, the thermal structure of the lake and reservoir can be also examined by
calculating the distribution and variability of thermocline depth, thickness, and strength.
Based on the equation mentioned above, thermocline depth is defined as the upper bound-
ary depth of the thermocline layer. Thermocline thickness is the absolute difference between
thermocline depth and the bottom depth of the thermocline. The average value of ∂T/∂Z
between the upper and lower thermocline boundary is the strength of the thermocline.

2.3. Description of the Models
2.3.1. DYRESM Model

The one-dimensional hydrodynamics model, called Dynamic Reservoir Simulation
Model (DYRESM), for lakes and reservoirs was used in this study to simulate and predict
the variation of water temperature, along with depth and time, for the Xin’anjiang Reservoir.
The model was developed by the Centre for Water Research (CWR) at The University of
Western Australia. The hydrodynamic component is process-based rather than empirical.
The DYRESM model has shown good performance in predicting the vertical distribution of
temperature, salinity, and density in lakes and reservoirs, satisfying the one-dimensional
approximation [38–40]. More details on the theoretical background of the DYRESM can be
found in the literature [41].

The DYRESM computer model does not require calibration because it relies on pa-
rameterizations derived from detailed process studies (both from the field and in the
laboratory) [41]. The performance of the DYRESM model in simulating water temper-
ature was evaluated using the root-mean-square-error (RMSE) and Pearson correlation
coefficients (r) between estimated and observed values by the following equations [42,43]:

RMSE =

√
1
n ∑n

i=1

[(
Si − S

)
−
(
Oi − O

)]2 (2)

r =
∑n

i=1
(
Oi − O

)(
Si − S

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(
Si − S

)2
(3)

where n is the number of data records, Oi and Si are the observed and simulated values,
and O and S are the means of the observed and simulated values, respectively.

RMSE compares the actual difference between the estimated and the observed values
term-by-term to provide information on the short-term performance of a model [44]. The
smaller the value, the better the model’s performance. Moreover, r reflects the linear
correlation between two variables: O and S. The value of r is between −1 and 1. The greater
the absolute value, the stronger the correlation.

2.3.2. Rainfall–Runoff Model

The lumped daily rainfall–runoff model, called the Xin’anjiang model, developed
by Zhao et al. (1980) [45], was used to estimate the streamflow entering the Xin’anjiang
Reservoir. The model consists of four modules: a three-layer evapotranspiration module, a
runoff generation module, a runoff separation module, and a runoff routing module. The
schematic diagram of the Xin’anjiang model can be found in the study by Zhao et al. (1980,
1992) [45,46]. The parameters of the model were optimized using the generalized pattern
search algorithm with linear inequality constraints in MATLAB. The Xin’anjiang model
was calibrated by maximizing the Nash–Sutcliffe Efficiency (NSE) as follows [47,48]:

NSE = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2 (4)
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NSE reflects the degree of agreement between simulated and observed values.
NSE = 1.0 indicates perfect agreement, while NSE ≤ 1.0 indicates poor agreement. Mean-
while, the linear inequality constraint, called the water balance error (WBE), is used to
compel the total simulated streamflow to within five percent of the total observed stream-
flow, as follows [49]:

WBE = 100
(
∑n

i=1 Qsim,i − ∑n
i=1 Qobs,i

)
/ ∑n

i=1 Qobs,i (5)

2.4. Data
2.4.1. Field Data

To calibrate and validate the rainfall–runoff model, the observed streamflow data at
the Tunxi hydrometric station (located in the upstream sub-catchment of the Xin’anjiang
Reservoir Basin) for 2001–2018 were used. These observed streamflow data were sourced
from the Hydrological Yearbook published by the Hydrological Bureau of Ministry of
Water Resources of China. This time series was checked for outliers and errors for use in
hydrological modeling.

To evaluate the performance of the DYRESM model in simulating water temperature
for the Xin’anjiang Reservoir, a field investigation was carried out each month, from March
2012 to March 2014. The vertical distribution of water temperature was recorded using the
XR-620 profiler (Richard Brancker Research Ltd., Ottawa, Ontario, Canada) at three sites:
Xiaojinshan, Santandao, and Daba. When measuring the water temperature, the profiler
was automatically dropped to the lake bottom by an electric winch at a speed of 0.1 m/s,
with recording data every 2 s. Mean values of water temperature obtained from the three
monitoring sites were used in this study to represent the average water temperature of the
whole lake.

The water level data from March 2012 to December 2016, which were also used to
evaluate the performance of the DYRESM model when simulating the water balance of the
reservoir, were obtained from the local environmental monitoring station.

2.4.2. Observed Meteorological Data

To simulate the water temperature profile and the resultant stratification (or mixing)
between layers, the DYRESM requires daily average input data for six meteorological vari-
ables, including air temperature (◦C), short-wave radiation (W/m2), cloud cover (fraction of
whole sky), vapor pressure (hPa), wind speed (m/s), and rainfall (m). Daily meteorological
data for 1959–2016 measured in the Tunxi and Chunan station (Figure 1) were down-
loaded from the China Meteorological Data Service Center (CMDC) (http://data.cma.cn/)
(accessed on 1 May 2020) and preprocessed into the format required by the model.

In addition, air temperature and precipitation data from 1959 to 2005 were used to
assess the performance of CMIP5 GCM outputs in the Xin’anjiang Reservoir Basin.

2.4.3. CMIP5 Data

Global climate models (GCMs) are important tools that can be used to assess the
thermal stratification response of reservoirs and lakes to climate-driven forcing [50,51].
Four Coupled Model Inter-comparison Project Phase 5 (CMIP5) GCMs (https://esgf-node.
llnl.gov/search/cmip5/) (accessed on 1 February 2020), including BCC-CSM1.1 (from
China), CSIRO-Mk3.6.0 (from Australia), CCSM4 (from USA), and GISS-E2-R (from USA),
were used to evaluate the applicability in the study area. The dataset most suitable for the
Xin’anjiang Reservoir Basin will be selected to simulate the thermal stratification of the
large deep reservoir in the future.

Each selected CMIP5 GCM dataset comprised three meteorological elements (daily
precipitation, maximum temperature, and minimum temperature) for a historical period
(1901–2005) and a future period (2006–2100). In data preprocessing, the GCMs data were
downscaled into 0.5◦ × 0.5◦ by using a statistical downscaling method.

http://data.cma.cn/
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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2.5. Scenario Design
2.5.1. Sensitivity Analysis Scenarios

Eight sensitivity analysis scenarios were designed to detect the influence of meteoro-
logical factors (air temperature and precipitation) on thermal structure. The control group
simulation was from 2 March 2012 to 1 March 2013, 365 days in total. The DYRESM model
was initialized with the vertical water temperature profile on 2 March 2012.

Four air-temperature scenarios that represent air temperature rising and decreasing
were proposed to identify how air temperature changes affect water temperature, namely
AIRT-4 (daily temperature is 4 ◦C lower than that of the control group), AIRT-2 (daily
temperature is 2 ◦C lower than that of the control group), AIRT+2 (daily temperature is
2 ◦C higher than that of the control group), and AIRT+4 (daily temperature is 4 ◦C higher
than that of the control group). All four scenarios assume that precipitation is the same as
those in the control group.

Four precipitation-change scenarios (including OPER-20, OPER-10, OPER+10, and
OPER+20) were carried out to analyze the effects of precipitation changes in the basin
on reservoir water temperature. Generally, precipitation mainly affects reservoir thermal
structure and external load by changing inflows, and then affects the chemical and bio-
logical processes of the reservoir. To ensure the optimum operation of the reservoir, these
four scenarios assume that the water levels were the same as those in the control group.
Accordingly, outflows and hydraulic residence time (reservoir volume divided by the mean
annual discharge from the waterbody) are changes in all precipitation change scenarios [52].
Daily precipitation in the basin is 20% and 10% lower than that of the control group in
OPER-20 and OPER-10 scenarios, and 10% and 20% higher than that of the control group
in OPER+10 and OPER+20 scenarios.

2.5.2. RCP Scenarios

Three scenarios of representative concentration pathways (RCPs) were selected to
assess how different emission scenarios impact water temperature in the Xin’anjiang Reser-
voir. These three scenarios include a stringent mitigation scenario (RCP2.6), an intermediate
scenario (RCP4.5), and a very high greenhouse gas emissions scenario (RCP8.5), named
according to their total radiative forcing in 2100 relative to pre-industrial values (+2.6, +4.5,
and +8.5 W/m2, respectively).

To address the effects of air temperature changes and precipitation changes in the
future on vertical thermal structure, three groups of climate change scenarios (air tempera-
ture change, precipitation change, and interactive change) driven by RCP outputs were
carried out. In the air-temperature-change scenarios (GP1), we used baseline precipitation
records and air temperature outputs of CSIRO-Mk3.6.0 from 2096 to 2100 under RCP2.6,
RCP4.5, and RCP8.5, respectively, to drive the hydrological model and DYRESM model. In
the precipitation-change scenarios (GP2), we used baseline air temperature records and
precipitation outputs of CSIRO-Mk3.6.0 from 2096 to 2100 (RCP2.6, RCP4.5, and RCP8.5)
to drive the two models. In the interactive-change scenarios (GP3), the input files of air
temperature and precipitation for the hydrological model and DYRESM model were all
from CSIRO-Mk3.6.0 predictions (2096–2100, RCP2.6, RCP4.5, and RCP8.5).

3. Results
3.1. Thermal Stratification
3.1.1. Vertical Variation in Water Temperature

The annual changes in water temperature from March 2012 to March 2014 for each
layer observed at the three sites in the Xin’anjiang Reservoir are shown in Figure 2. The
arithmetic means of water temperature from the three monitoring sites represents the
average of the whole reservoir.
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In spring (March–May), the water temperature of the Xin’anjiang Reservoir began
to vertically stratify, with the surface-layer (0–10 m) water temperature of 11.9–15.0 ◦C,
middle-layer (10–30 m) water temperature of 9.7–11.9 ◦C, and bottom-layer (>30 m) water
temperature of 9.4 ◦C. At the beginning of spring (March), the difference in water tempera-
ture between the surface layer and bottom layer of the reservoir was less than 3.0 ◦C. With
the weather warming up, the surface waters of the reservoir heated more rapidly than the
middle and bottom. The difference in water temperature in May between the surface layer
and the bottom layer of the reservoir was greater than 10.0 ◦C.

In late summer (August), the surface-layer water temperature reached a peak value of
29.3–30.3 ◦C. Normally, the highest value of surface-layer water temperature lagged behind
that of the air temperature by about one month, that is, the highest value of air temperature
over the reservoir generally occurred in late July or early August. However, the seasonal
variations in water temperature in the middle layer were inconsistent with that of the
surface layer. The highest water temperature of the middle layer was observed in autumn
(October), which ranged from 18.6 to 19.5 ◦C. For the bottom layer, there were no monthly
and seasonal variations in water temperature, confirming that the water temperature
of the bottom water layer was not affected by seasonal variations in air temperature.
The difference in water temperature between the surface and the bottom was more than
15.0 ◦C in summer, with a maximum value of 19.7 ◦C in August. However, during the rest of
the stratification period, from September to December, the difference in water temperature
between the surface layer and the bottom layer gradually decreased.

From December to February of the next year, thermal stratification in the reser-
voir gradually disappeared. The water temperature of the surface layer decreased to
13.5–14.3 ◦C, as solar radiation was the weakest in a year. The difference in water tempera-
ture between the surface layer and the bottom layer was about 3.0 ◦C. There was a short
mixing period in winter until the next thermal stratification formation.

3.1.2. The Formation and Development of the Thermocline

The monthly variations in the mean thermocline depth, thickness, and strength of the
Xin’anjiang Reservoir are presented in Figure 3. For the whole reservoir, the thermocline
was not obvious in March, but formed gradually in April. In late spring (May), the
thermocline tended to be stable, with the thermocline depth of the reservoir being 3–5 m,
the thermocline thickness being 12–17 m, and the thermocline strength being about 0.6–0.7.
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From June to August, seasonal surface thermocline matured, the thermocline depth was
relatively stable at 1–3 m, and the thermocline thickness gradually increased and reached
the maximal value near 35 m. During this period, the mean thermocline strength of the
Xin’anjiang Reservoir remained at the high record of 0.7. From the beginning of September
to December, the thermocline depth significantly increased, and the thermocline thickness
decreased month by month. No thermocline was monitored in March 2012, February–
March 2013, and March 2014. Generally, the thermocline in the Xin’anjiang Reservoir began
to form at the end of March or the beginning of April, gradually developed and matured
from May to August, and became weaker and weaker from late September to December or
January of the next year.
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Figure 3. Monthly variations in thermocline depth, thickness, and strength from March 2012 to
March 2014 in the Xin’anjiang Reservoir.

3.2. Model Performance
3.2.1. Performance of the Rainfall–Runoff Model

The results of the model calibration and validation for the Xin’anjiang model are shown
in Figure 4. Two-thirds of the observed streamflow data (2001–2013) for the Xin’anjiang
Reservoir Basin were used to calibrate the Xin’anjiang model and the calibrated parameter
values were used to simulate streamflow for the remaining one-third period (2014–2018).
In the timeline chart in Figure 4, the simulated streamflow (calibration and validation)
agrees well with the available observed data. The NSE of streamflow and the total WBE
for all the modelling runs are also shown in Figure 4. The line chart in Figure 4 shows
that the rainfall–runoff model performed reasonably well in terms of model calibration,
with high NSE values and low WBE values. The calibration NSE value was 0.94 for the
Xin’anjiang model for the Xin’anjiang Reservoir Basin, while the total WBE in calibration
was −4.16%. The observed and simulated streamflow over the non-calibration period were
compared to determine the suitability of the model for this study. The results indicate
that the rainfall–runoff models performed reasonably well in the validation period. The
validation NSE value for the study basin was 0.90 for the Xin’anjiang model and the total
WBE in validation was −13.59%. The total WBE in model validation was slightly higher
than that in calibration but always below 15% for the Xin’anjiang Reservoir Basin, with an
almost uniform plot of the underestimation and overestimation of flows. The calibrated
model runs separately over five sub-catchments, and the runoff is then integrated.
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Figure 4. Comparison of modeled monthly streamflow obtained from the Xin’anjiang model and
observed records of the Tunxi station in the Xin’anjiang Reservoir Basin.

3.2.2. Performance of DYRESM Model

The balance between precipitation, evaporation, water outflow, and inflow determined
the water level in the Xin’anjiang Reservoir. After each simulation step, the model error
was calculated, represented by the RMSE for water level. To gain further insight into the
performance of the DYRESM model, the r between simulated water level and observed
data was calculated. Figure 5 indicates that the DYRESM model could accurately reproduce
water level during the whole simulation period (March 2012 to December 2016). The RMSE
and r values for water level between the model output and the monitoring data were 0.13
and 0.999, respectively.
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Figure 5. Comparison of modeled daily water level obtained from the DYRESM and observed records
of the Xin’anjiang Reservoir.

As shown in Figure 6, there was a generally good agreement between the model output
of water temperature and the monitoring data. The assigned values for the parameters used
in the DYRESM are listed in Table 1. The heat budget reproduced the water temperature in
all years of simulation quite well. For the epilimnion, the model produced the same seasonal
dynamics as those that were measured. However, for the metalimnion and hypolimnion, it
tended to over-estimate the measured values in the summer of 2013 and under-estimated
the values in the subsequent winter. The RMSE values for water temperature in each layer
between the model output and monitoring data were 0.96–1.78 °C. Meanwhile, the r values
for water temperature in each layer between the modeling and monitoring values were
0.689–0.989. The results indicate that there is no evidence of systematic bias in the modeled
water temperature of each layer in the model running period. The results suggest that
the reservoir model used in this study is robust for an independent simulation period in
different climate change scenarios.
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Figure 6. Comparison of simulated daily water temperature obtained from the DYRESM and
observed data of the Xin’anjiang Reservoir from 2012 to 2014.

Table 1. Assigned values for parameters used in the DYRESM.

Parameter Value Description

1.3 × 10−3 Bulk aerodynamic momentum transport coefficient
0.088 Mean albedo of water
0.96 Emissivity of a water surface
6 Critical wind speed
0.012 Bubbler entrainment coefficient
0.083 Buoyant plume entrainment coefficient
0.08 Shear production efficiency
0.15 Potential energy mixing efficiency
0.15 Wind stirring efficiency
1.0 × 107 Effective surface area coefficient
0.15 BBL detrainment diffusivity
500 Vertical mix coefficient

3.2.3. Performance of CMIP5 Outputs

The Taylor diagram method proposed by Taylor was used to evaluate the applicability
of datasets from CMIP5 GCMs to the simulation of historical meteorological indicators [53].
Two assessment criteria, RMSE and r, were adopted. A Taylor diagram can be plotted from
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statistics of different series based on the relation of RMSE2 = σS
2 + σO

2 − 2σSσOr, where
σO and σS are standard deviations of observed values and standard deviations of simulated
values, respectively. When the value of r is larger and the values of σO and σS are more
approximate, the RMSE is smaller, which indicates that the model performs well. More
detailed information about the Taylor diagram method can be found in the study by Taylor
(2001) [53].

The performance of the four downscaled GCMs was assessed for each of the two
meteorological predictors in the Xin’anjiang Reservoir Basin by plotting a Taylor diagram
against CMDC data; see Figure 7. For monthly air temperature, all four CMIP5 models
were suitable to simulate the historical data (1959–2005). CSIRO-Mk3.6.0 outperformed
the other models, with the lowest RMSE of 1.865 and the highest r of 0.976 for monthly air
temperature. The performance indexes of precipitation are generally qualified, but not as
good as those of air temperature. For monthly precipitation, the RMSE between observed
data and the four CMIP5 model outputs was 101.47–103.98 mm, while the r between the
observed data and four CMIP5 model outputs was 0.483–0.561. Above all, the output
from CSIRO-Mk3.6.0 was selected to estimate the effect of climate change between future
and historical periods due to it having the best performance in climate simulations in the
basin [54].
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3.3. Sensitivity Analysis
3.3.1. The Sensitivity of Thermal Stratification under Air-Temperature-Change Scenarios

Before the simulation of future climate change effects, the sensitivity analysis of
water temperature of the Xin’anjiang Reservoir was carried out to assess the impact of
air temperature variations on thermal stratification by running a DYRESM model from
2 March 2012 to 1 March 2013. The sequences of input parameters for sensitivity studies
on air temperature were generated by changing the absolute value of daily air temper-
ature to historical meteorology records, then driving the model to obtain the responses
of water-temperature profile time series. The results, shown in Figure 8a, illustrated that
the water temperature from the surface to the bottom of the Xin’anjiang Reservoir was
significantly sensitive to air temperature changes. Water temperature in each layer increases
with increases in air temperature and decreases with decreases in air temperature. Figure 8a
indicates that, as water depth increased, the variation ranges of water temperature under
all four air-temperature-change scenarios markedly decreased. The maximum range of
water temperature variations caused by air temperature changes was found in the surface
layer and were likely to range from −2.10 ◦C to −1.90 ◦C under AIRT-4, −1.06 ◦C to
−1.02 ◦C under AIRT-2, 0.92 ◦C to 1.09 ◦C under AIRT+2, and 1.85 ◦C to 2.19 ◦C under
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AIRT+4. The minimum range of water temperature variations caused by air tempera-
ture changes was obtained in the bottom layer. When the air temperature increased (de-
creased) 1 ◦C, the bottom layer water temperature of the Xin’anjiang Reservoir increased by
~0.12 ◦C (decreased by ~0.2 ◦C).
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reservoir regulation scenarios).

The formation, maturation, and weakening processes of the thermocline simulated
using the DYRESM model under the four scenarios of the air-temperature-change regime
are shown in Figure 9 and Table 2. The results indicated that continuous warming would
cause greater water-column stability and increase the duration of stratification compared to
the absence of continuous warming. From October to December (the period of stratification
weakness), the thermocline depth increased by 0.65–3.27 m under AIRT-4, 0.26–1.68 m
under AIRT-2, decreased by 0.94–2.59 m under AIRT+2 and 1.29–5.09 m under AIRT+4. The
duration of thermocline even extended to January of next year under two air-temperature-
rising scenarios with the mean thermocline depths of ~43 m (AIRT+2) and ~44 m (AIRT+4),
respectively. In contrast, there was no obvious regularity in the variation in thermocline
depth under all air-temperature-change scenarios from March to September (the period
of stratification formation and maturation). These results are consistent with the finding
that a highly significant negative linear relationship existed between air temperature and
thermocline depth in the period of stratification weakness but could not be found during
the formation of stratification [32].

Table 2. Characterization of the stratification events under air-temperature-change scenarios and
precipitation change with reservoir-regulation scenarios.

Model
Scenarios

Start of
Seasonal
Stratifica-
tion

End of
Seasonal
Stratifica-
tion

Duration of
Thermo-
cline

Mean
Surface
Tempera-
ture

Mean
Water Level

Mean
Inflow

Mean
Outflow

Hydraulic
Residence
Time

(d) (◦C) (m) (m3/s) (m3/s) (d)

Baseline 2012/3/14 2012/12/30 292 20.3 101.7 388.0 419.4 396
AIRT-4 2012/3/23 2012/12/22 275 18.4 101.7 388.0 419.4 396
AIRT-2 2012/3/22 2012/12/26 280 19.4 101.7 388.0 419.4 396
AIRT+2 2012/3/14 2013/1/3 296 21.4 101.7 388.0 419.4 396
AIRT+4 2012/3/13 2013/1/7 301 22.5 101.7 388.0 419.4 396
OPER-20 2012/3/14 2013/1/5 298 20.3 101.7 278.7 296.0 561
OPER-10 2012/3/14 2013/1/3 296 20.3 101.7 332.9 354.0 469
OPER+10 2012/3/14 2012/12/25 287 20.3 101.7 443.6 495.0 336
OPER+20 2012/3/14 2012/12/22 284 20.3 101.7 499.7 575.5 289
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Figure 9. Simulated temperature profiles of the Xin’anjiang Reservoir under air-temperature-change
scenarios (AIRT-4, AIRT-2, AIRT+2, and AIRT+4).

During October–December, mean thermocline thickness was significantly reduced
by 2.92 m and 1.11 m under AIRT-4 and AIRT-2 and slightly increased by 0.74 m and
0.95 m under AIRT+2 and AIRT+4, respectively. However, in the other months, thermocline
thickness changed under all four air-temperature-change scenarios but could not show
obvious, regular changes.

Changes in thermocline strength caused by air temperature variations were signif-
icant and a clear pattern was discovered based on all the simulated outputs, including
stratification formation, maturation, and weakness. As expected, higher air temperatures
led to higher thermocline strength, while lower air temperatures led to lower thermocline
strength. Mean thermocline strength of the whole sensitivity analysis period increased
by 0.04 ◦C/m and 0.10 ◦C/m under AIRT+2 and AIRT+4 scenarios and decreased by
−0.01 ◦C/m and −0.03 ◦C/m under AIRT-2 and AIRT-4, respectively.

3.3.2. The Sensitivity of Thermal Stratification under Precipitation Changes with
Reservoir-Operation Scenarios

The outputs from the different model scenarios of precipitation change with reservoir
regulation illustrated the reservoir thermal regime’s response to variations in the climate
and human activities (Figure 8b and Table 2). Figure 8b shows that changes in hydraulic
residence time caused by outflow variations had slight effects on the surface and bottom
temperature, but significant effects on middle-layer temperature, under four reservoir
operation scenarios. Decreases in hydraulic residence time (OPER+10 and OPER+20) led to
a higher water temperature, with a peak value of water temperature differences of +0.83 ◦C
recorded in the middle layer compared to the baseline. In contrast, increases in hydraulic
residence time (OPER-20 and OPER-10) resulted in a lower water temperature, with the



Water 2022, 14, 3279 14 of 21

difference in water temperature ranging from −0.22 to −0.12 ◦C in the surface layer and
−1.15 to −0.26 ◦C in the middle layer. There is a 70-m drop between the water surface of
the reservoir and the water outlet elevation of the Xin’anjiang hydropower station located
at the dam. The vertical mixing scheme before the dam would likely be significantly
influenced by the increasing (decreasing) discharge from bottom of the dam. That is to
say, surface water temperature, which has a significant positive linear relationship with air
temperature, can dramatically affect the water temperature of the middle layer through
this vertical mixing.

Monthly vertical water temperature profiles under different modeling scenarios of arti-
ficial regulation of reservoir, as shown in Figure 10, indicated that the effects of precipitation
and hydrological conditions on thermal structure varied considerably with season. During
the period of thermocline formation, March-July, the thermocline depth was rarely affected
by whether precipitation and discharge increased or decreased. From the beginning of
August to December, mean thermocline depth was significantly increased by 0.7 m under
the OPER+10 scenario and 2.1 m under OPER+20 scenario and was significantly decreased
by 1.1 m under the OPER-10 scenario and 1.8 m under OPER-20 scenario. Shortening the
hydraulic residence time would dramatically increase thermocline depth in autumn and
lead to early mixing in winter.
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with reservoir regulation scenarios (OPER-20, OPER-10, OPER+10, and OPER+20).

Different from the change rules of thermocline depth, thermocline thickness was
obviously affected by precipitation and hydrological conditions during matured and early
weakness periods (June–October). When hydraulic residence time increased, the maximum
difference in thermocline thickness was −5.16 m (recorded in August) under OPER-20
and −3.23 m (recorded in August) under OPER-10, respectively, compared to the baseline.
However, when hydraulic residence time decreased, the maximum change in thermocline
thickness was 2.94 m (recorded in October) under OPER+10 and 3.39 m (recorded in
October) under OPER+20, respectively, relative to the baseline.
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The monthly and seasonal variations in thermocline strength caused by precipitation
and hydrological conditions were not uniform. The significant effects occurred from June
to October. If the water level was kept the same as the baseline, the greater the rainfall
and discharge (shorter hydraulic residence time) and the smaller the thermocline strength
during this period. The peak value of increases in thermocline strength was 0.13 (in August)
under OPER-20 and 0.09 (in July) under OPER-10, while the maximum decrease in the
value of thermocline strength was 0.06 (in October) under OPER+10 and 0.07 (in October)
under OPER+20.

3.4. Simulation of Thermal Structures in Future

The calibrated model parameters for both the baseline models (2012–2016) were used
to simulate the inflow and water temperature of the Xin’anjiang Reservoir for the last 5 years
of the 21st century (2096–2100). In the model simulations, the baseline calibrated parameters
were used with the air temperature and precipitation time series for future investigations
of the effects of climate change on the thermal structure between the two periods. Relative
to the baseline, changes in the mean annual air temperature in the Xin’anjiang Reservoir
basin over the period of 2096–2100 are projected to exceed 0.17 ◦C (0.94% of the baseline air
temperature), 1.67 ◦C (9.14% of the baseline air temperature), and 3.94 ◦C (21.62% of the
baseline air temperature) for RCP2.6, RCP4.5, and RCP8.5, respectively. The study region
will continue to warm consistently with the global mean [55]. The decrease in annual
precipitation in the study area over the prediction period is 14.6 mm (0.63% of the baseline
precipitation) for RCP2.6, 120.45 mm (5.82% of the baseline precipitation) for RCP4.5, and
14.6 mm (0.63% of the baseline precipitation) for RCP8.5. Thus, in general, the climate in
the prediction period (2096–2100) in the Xin’anjiang Reservoir Basin will be much warmer
and dryer than that of the baseline (2012–2016). However, for long timescales, the increase
in atmospheric CO2 concentrations will make conditions around the Qiandao Lake much
warmer and wetter.

The differences in water temperature were simulated in each layer between the base-
line and future periods under these three groups of RCP scenarios (RCP2.6, RCP4.5, and
RCP8.5). In the future, in 2096–2100, the mean annual water temperature in each layer
shows a strong response to the increased air temperature, which is projected to increase by
0.5 (surface) to 5.9% (depth = 40 m) for RCP2.6 and by 10.1 (surface) to 19.1% (depth = 40 m)
for RCP8.5. The maximum water temperature increase is at the depth of 40 m under RCP2.6
and the depth of 5 m under RCP8.5. This result is possibly because the CSIRO-Mk3.6.0
model sees the most pronounced warming in winter under RCP2.6. As air temperature
clearly increases through the winter, the surface water becomes warmer and rapidly moves
down in the short mixing period. However, under RCP8.5, the air temperature increases
most dramatically in summer and the density gradient in the thermocline can act as a
physical barrier that prevents vertical mixing between the epilimnion and hypolimnion
during this period. The mean annual water temperature is slightly affected by precipitation
changes, which decreased by 0.2 to 2.2% for RCP2.6 and by 0.2 to 2.4% for RCP8.5 relative
to the baseline period. It is indicated that, at the end of the 21st century, the effect of air
temperature changes on the vertical distribution of water temperature in the Xin’anjiang
Reservoir is more significant than that of precipitation changes, as shown in Figure 11. As
a good indicator of climate change in lakes and reservoirs, water temperature can reflect
climatic forcing more immediately and sensitively than any other parameters [56,57].
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Figure 11. The influence of precipitation changes and air temperature changes on the water tem-
perature of the Xin’anjiang Reservoir accounts for the proportion of the combined effect of these
two meteorological factors under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively.

With global warming, the mean thermocline depth in the period of stratification
weakness (October to December) from 2096 to 2100 in the Xin’anjiang Reservoir decreases
by 0.52 m under RCP2.6 and 1.59 m under RCP8.5, as shown in Figure 12. During the same
period, the mean thermocline thickness is slightly increased by 0.16 m and 0.84 m under
RCP2.6 and RCP8.5, respectively. Increases in mean thermocline strength in the future
are not obvious, at 0.02 ◦C/m under RCP8.5 (no increase under RCP2.6). The influence
of climate change on the annual mean thermocline depth, thickness, and strength in the
future is mainly governed by the increase in air temperature.
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4. Discussion
4.1. Effects of Climate Change on the Thermal Stratification of Reservoirs

Thermal stratification forms the basic physical phenomena in the reservoir system,
which is the main factor causing various physical and chemical processes [13,27,35]. It also
plays a very important role in biological metabolism and material decomposition [58–61].
According to monitoring and modeling studies in recent years, we identified that the
Xin’anjiang Reservoir was stratified for more than ten months in a year, with the water
temperature gradient being negative during the stratification period.

Global warming causes different degrees of warming in global lakes and reservoirs,
which has a complex and profound direct and indirect impact on the physical, chemical,
and biological processes of lakes and reservoirs [16]. The phenomena of water temperature
rise caused by climate change will change the thermal structure of the water body, affecting
thermocline depth, thickness, and strength. Zhang et al. established a linear relationship
between air temperature and water temperature of the Xin’anjiang Reservoir using the
historical data and predicated that the increase in surface-water temperature would cause
a decrease in the thermocline depth and increase in thermocline thickness and strength
in the future [32]. Komatsu et al. simulated the influence of long-term climate change on
the thermal stratification of the Shimajigawa reservoir in Japan and considered that the
surface water temperature of the reservoir would increase by 3.8 ◦C in the last 10 years
of this century [62]. The warming amplitude of the surface layer was greater than that of
the bottom layer in summer, and the stratification time could be extended by 36 days at
the most.

The sensitivity studies demonstrate that inflows of the reservoir are sensitive to long-
term trends and the variability of precipitation in the basin. Since a primary function of
reservoirs is to store water, the reservoir may stabilize the flow of water by regulating the
downstream outflow. Thus, when the precipitation in the basin changes, the hydraulic
residence time, which is defined as the reservoir volume divided by the outflow rate, is
lengthened or shortened with changes in inflows and outflows. The shorter hydraulic resi-
dence time caused by increased daily precipitation in our study led to a higher thermocline
depth and longer mixing period. Huang et al. monitored the effects of high inflows on the
thermal regime of a deep, stratified reservoir in a temperate monsoon zone in Northwest
China and considered that the increase in water temperature in the hypolimnion after the
high volumes of inflow led to reservoir-mixing at the beginning of November [27].

However, the massive inflow induced by storm runoff might decrease thermocline
depth because the increasing content of suspended solids in inflows can be caused by
the rainstorms. After the storm runoff, the strong convective mixing effect increased the
turbidity in the upper water of the reservoir. It has been demonstrated that there was a
strong negative relationship between turbidity and thermocline depth in tropical and tem-
perate lakes and reservoirs [63,64]. The reason for this phenomenon is that solar radiation
penetrated the surface of the water decays more rapidly in high-turbidity conditions [56].

4.2. Effects of Thermal Stratification on Water Quality of Reservoirs against the Background of
Global Warming

Thermal behaviors in reservoirs have a significant impact on the water quality pro-
cess, especially for dissolved oxygen in water [65,66]. The strengthening of the water
temperature stratification of reservoirs caused by global warming makes it difficult for the
surface dissolved oxygen to penetrate into the bottom. The long-term anoxic and anaerobic
conditions appear in the bottom of reservoirs due to the high concentration of organic
matter and rapid oxygen consumption. For example, a high-frequency monitor of long
thermal stratification events in Lake Müggelsee in Germany showed that hypolimnetic
oxygen concentrations strongly decreased depending on the duration and intensity of
stratification, and the low oxygen conditions could persist for up to a maximum of 9 days
during the extreme summer in 2006 [6].
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With global warming, the anaerobic conditions are more easily formed in the bottom
layer of reservoirs, which promotes the release of nutrients from the sediment at the water–
soil interface [67]. For a deep reservoir at the East Asian Monsoon, with air temperatures
that gradually decrease in winter, the water temperature of the surface layer begins to
decrease and the water density in surface layer increases accordingly. The upwelling and
downwelling between the surface and bottom waters will take place as a result of the water
density gradient being unstable. In this case, the algae in the surface layer will be brought
to the bottom of the water, which can also replenish oxygen to the bottom, and the bottom
nutrients can be brought to the surface with the rising water flow [61]. This phenomenon
may accelerate reservoirs’ eutrophication process and play a key role in algae growth.

Against the background of global warming, annual precipitation will slightly increase,
and the frequency of extreme rainstorm events will be greatly increased in the future [68].
The extreme rainfall events caused by global warming will also have a great impact on
water quality by affecting the thermal stratification of the reservoir. Intense rainfall–runoff
is responsible for the short-term cyanobacterial blooms that occurred in many lakes or
reservoirs [69–71]. The main result is that the water temperature of the rainstorm flood is
higher than that of the reservoir bottom layer during the thermal stratification in summer.
Meanwhile, a large amount of sediment with nutrients carried by the upstream flood will
result in a significant increase in the density of inflows. Therefore, the high-density inflows
will infiltrate the bottom of the reservoir to form the muddy water density current and
increase the water temperature at the bottom of the reservoir. The stability of the thermal
stratification structure will be weakened, and the reservoir water body will be induced
to mix ahead of time. During the period of stratification weakness of the thermocline,
nutrients such as nitrogen and phosphorus that accumulated at the bottom of the reservoir
are transported to the upper water body, thus providing sufficient nutrients for the growth
of algae in the coming year. This phenomenon has been reported in many lakes and
reservoirs [27,72,73].

5. Conclusions

A rainfall–runoff model and a hydrodynamics model were coupled to investigate
the potential effects of long-term climatic change and artificial operation on the thermal
structure of a reservoir. The model validation indicates that this coupled model can be
applied to the assessment of climatic change impacts on large-deep reservoirs in the East
Asian monsoon regions. The main conclusions are summarized as follows:

(1) The water temperature in each layer was sensitive to changes in air temperature and
showed a positive correlation with these changes. However, the influence of rising air
temperature on thermal stratification parameters is inconsistent.

(2) The effects of precipitation variations in water temperature are more complicated
than those of air temperature because of the reservoir operation involved. The middle
layer (at the water depth of about 30 m) was the most sensitive water layer.

(3) With the global warming, the peak value of water temperature rises occurred at
depth = 40 m under RCP2.6, but at depth = 5 m under RCP8.5. The mean thermocline
depth in the future (2096–2100) will significantly decrease, while the mean thermocline
thickness will slightly increase.

Our findings in this work indicate that air temperature is the main factor affecting
the future thermal structure of the Xin’anjiang Reservoir; however, the effects of hydraulic
residence time changes caused by inflow and outflow volume variations (especially during
rainstorm period) should not be ignored.
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