Spatiotemporal Analysis of Groundwater Storage Changes, Controlling Factors, and Management Options over the Transboundary Indus Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Time-Series Decomposition
2.3.2. Spatial and Temporal Analysis
2.4. Performance Assessment of the Groundwater Storage Changes
3. Results
3.1. Spatiotemporal Groundwater Dynamics and Controlling Factors at the Basin Level
3.2. Spatiotemporal Groundwater Dynamics in Different Reaches
3.3. Spatiotemporal Groundwater Dynamics at the Regional Level
4. Discussion
5. Conclusions
- When analyzed over time, almost all GWC values were negative, with an overall decreasing trend from January 2003 to December 2016. The fluctuations in GWCs were stronger before 2010 than in the second half of the study period. An increase in evapotranspiration was found to be the main controlling factor for the groundwater and total water storage changes across IRB.
- In the spatial analysis, GWC trended downward over the whole Indus Basin. The decline was severe (−131 to −108 mm) in UIB, highlighting a need for sub-basin analysis. We recommend the development of quantitative groundwater aquifer-related maps to visualize water withdrawals, groundwater recharge, groundwater storage changes, groundwater levels, aquifer thickness and yields, and tube well density over the whole IRB. These maps provide useful support to develop area-specific groundwater management strategies.
- The reach-specific analysis showed that the upper reach is more vulnerable to groundwater decline compared to the other reaches due to glacier recession. We recommend the adaption of climate mitigation strategies to cater for the climate change impact on glacier recession. This study concludes that groundwater abstraction and groundwater consumption are the most significant driving factors in the middle reach. These results highlight the need for a robust mechanism to monitor the quantity and quality of groundwater abstractions in the middle reach. The outcomes for the lower reach reveal that the high water allowances provided to the canals under WAA 1991 are the main driver of lower groundwater storage change. So, surface water allowances in Pakistan should be allocated based on a detailed understanding of groundwater withdrawals and depletion.
- On the regional scale, the groundwater decline was severe in Himachal Pradesh, Indian Punjab, Haryana, upper Punjab of Pakistan, and China. Due to these regional differences, it is evident that a region-specific groundwater strategic framework is necessary. Hence, a comprehensive mechanism for monitoring and establishing regulatory and permitting arrangements and pricing structures should be developed to envisage sustainable management of the land area and water resources. Because the number and density of tube wells and boreholes have largely increased in recent years, we propose the construction of a database containing georeferenced locations of all existing and new tube wells and boreholes in the regions. Such a database would not only support but also improve management decisions.
- The correlation between the observed and estimated GWC both at KRB (i.e., R2 = 0.35) and LBDC (i.e., R2 = 0.78) shows that there are spatial heterogeneities across IRB, which needs to be considered during planning initiatives.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinzelbach, W.; Bauer, P.; Siegfried, T.; Brunner, P. Sustainable Groundwater Management—Problems and Scientific Tools. Episodes 2003, 26, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization, Faoa. Irrigation in Southern and Eastern Asia in Figures—AQUASTAT Survey—2011: Indus River Basin; Food and Agriculture Organization: Rome, Italy, 2011; pp. 1–14. [Google Scholar]
- Siebert, S.; Faures, J.M.; Frenken, K.; Hoogeveen, J. Groundwater Use for Irrigation—A Global Inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Qamar, M.U.; Becker, R.; Zaman, M.; Conrad, C.; Salim, S. Numerical Modelling and Remote Sensing Based Approaches for Investigating Groundwater Dynamics under Changing Land-Use and Climate in the Agricultural Region of Pakistan. J. Hydrol. 2020, 581, 124408. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial Quantification of Groundwater Abstraction in the Irrigated Indus Basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lytton, L.; Ali, A.; Garthwaite, B.; Punthakey, J.F.; Basharat, S. Groundwater in Pakistan’s Indus Basin: Present and Future Prospects. 2021, p. 164. Available online: http://hdl.handle.net/10986/35065 (accessed on 16 April 2021).
- Cheema, M.J.M.; Qamar, M.U. Transboundary Indus River Basin: Potential Threats to Its Integrity; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128127827. [Google Scholar]
- Arfan, A.; Zhang, Z.; Zhang, W.; Gujree, I. Long-Term Perspective Changes in Crop Irrigation Requirement Caused by Climate and Agriculture Land Use Changes in Rechna Doab, Pakistan. Water 2019, 11, 1567. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhou, T.; Wu, P.; Wang, Y.; Zhao, X.; Yin, Y. Impacts of Future Climate and Agricultural Land-Use Changes on Regional Agricultural Water Use in a Large Irrigation District of Northwest China. L. Degrad. Dev. 2019, 30, 1158–1171. [Google Scholar] [CrossRef]
- Watto, M.A. The Economics of Groundwater Irrigation in the Indus Basin, Pakistan: Tube-Well Adoption, Technical and Irrigation Water Efficiency and Optimal Allocation. Ph.D. Thesis, University of Western Australia, Crawley WA, Australia, 2015; pp. 1–218. [Google Scholar]
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable Groundwater Management in Pakistan: Challenges and Pportunities. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Lin, M.; Biswas, A.; Bennett, E.M. Spatio-Temporal Dynamics of Groundwater Storage Changes in the Yellow River Basin. J. Environ. Manage. 2019, 235, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; JIA, S.; Lv, A.; Zhu, W. A Preliminary Assessment of Environmental Flow in the Three Rivers’ Source Region, Qinghai Tibetan Plateau, China and Suggestions. Ecol. Eng. 2020, 144, 105709. [Google Scholar] [CrossRef]
- Young, W.J.; Arif, A.; Bhatti, T.; Borgomeo, E.; Davies, S.; Garthwaite, W.R., III; Gilmont, E.M.; Leb, C.; Lytton, L.; Makin, I.; et al. Pakistan: Getting More from Water; World Bank: Washington, DC, USA, 2019; p. 163. [Google Scholar]
- Yin, W.; Han, S.C.; Zheng, W.; Yeo, I.Y.; Hu, L.; Tangdamrongsub, N.; Ghobadi-Far, K. Improved Water Storage Estimates within the North China Plain by Assimilating GRACE Data into the CABLE Model. J. Hydrol. 2020, 590, 125348. [Google Scholar] [CrossRef]
- Liu, F.; Kang, P.; Zhu, H.; Han, J.; Huang, Y. Analysis of Spatiotemporal Groundwater-Storage Variations in China from Grace. Water 2021, 13, 2378. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-Term Groundwater Storage Variations Estimated in the Songhua River Basin by Using GRACE Products, Land Surface Models, and in-Situ Observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Integrated Groundwater Resource Management in Indus Basin Using Satellite Gravimetry and Physical Modeling Tools. Environ. Monit. Assess. 2017, 189, 128. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Satellite Gravimetric Estimation of Groundwater Storage Variations over Indus Basin in Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3524–3534. [Google Scholar] [CrossRef]
- Tang, Y.; Hooshyar, M.; Zhu, T.; Ringler, C.; Sun, A.Y.; Long, D.; Wang, D. Reconstructing Annual Groundwater Storage Changes in a Large-Scale Irrigation Region Using GRACE Data and Budyko Model. J. Hydrol. 2017, 551, 397–406. [Google Scholar] [CrossRef]
- Fallatah, O.A.; Ahmed, M.; Save, H.; Akanda, A.S. Quantifying Temporal Variations in Water Resources of a Vulnerable Middle Eastern Transboundary Aquifer System. Hydrol. Process. 2017, 31, 4081–4091. [Google Scholar] [CrossRef]
- Ghebreyesus, D.; Temimi, M.; Fares, A.; Bayabil, H. A Multi-Satellite Approach for Water Storage Monitoring in an Arid Watershed. Geosciences 2016, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Gao, L.; Crosbie, R.S.; Zhang, N.; Fu, G.; Doble, R. Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning. Water 2019, 11, 1879. [Google Scholar] [CrossRef]
- Verma, K.; Katpatal, Y.B. Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System. Ground Water 2019, 58, 143–151. [Google Scholar] [CrossRef]
- Srivastava, S.; Dikshit, O. Seasonal and Trend Analysis of TWS for the Indo-Gangetic Plain Using GRACE Data. Geocarto Int. 2020, 35, 1343–1359. [Google Scholar] [CrossRef]
- Papa, F.; Frappart, F.; Malbeteau, Y.; Shamsudduha, M.; Vuruputur, V.; Sekhar, M.; Ramillien, G.; Prigent, C.; Aires, F.; Pandey, R.K.; et al. Satellite-Derived Surface and Sub-Surface Water Storage in the Ganges-Brahmaputra River Basin. J. Hydrol. Reg. Stud. 2015, 4, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Moghim, S. Assessment of Water Storage Changes Using GRACE and GLDAS. Water Resour. Manag. 2020, 34, 685–697. [Google Scholar] [CrossRef]
- Li, H.; Lu, Y.; Zheng, C.; Zhang, X.; Zhou, B.; Wu, J. Seasonal and Inter-Annual Variability of Groundwater and Their Responses to Climate Change and Human Activities in Arid and Desert Areas: A Case Study in Yaoba Oasis, Northwest China. Water 2020, 12, 303. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, S.; Yi, Y.; Qi, M.; Li, W.; Saifullah, M.; Zhang, S.; Wu, K. Spatio-Temporal Variations in Terrestrial Water Storage and Its Controlling Factors in the Eastern Qinghai-Tibet Plateau. Hydrol. Res. 2021, 52, 323–338. [Google Scholar] [CrossRef]
- Huang, Y.; Salama, M.S.; Krol, M.S.; Su, Z.; Hoekstra, A.Y.; Zeng, Y.; Zhou, Y. Estimation of Human-Induced Changes in Terrestrial Water Storage through Integration of GRACE Satellite Detection and Hydrological Modeling: A Case Study of the Yangtze River Basin. Water Resour. Res. 2015, 51, 8494–8516. [Google Scholar] [CrossRef]
- World Bank The Indus Waters Treaty 1960 (with Annexes). Signed at Karachi, on 19 September 1960. United Nations—Treaty Ser. 1962, 6032, 1–85. [Google Scholar]
- IRSA Apportionment of Waters of Indus River System between the Provinces of Pakistan. Indus River Syst. Auth. Gov. Pak. 1992, 1–47.
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.M.; Dang, T.D.; Anh, D.T. Improving the Resolution of Grace Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Shekhar, S.; Mao, R.S.K.; Imchen, E.B. Groundwater Management Options in North District of Delhi, India: A Groundwater Surplus Region in over-Exploited Aquifers. J. Hydrol. Reg. Stud. 2015, 4, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Mafuzur Rahaman, M.; Abrar Faiz, M.; Jehanzeb Masud Cheema, M. Estimation of Spatio-Temporal Groundwater Storage Variations in the Lower Transboundary Indus Basin Using GRACE Satellite. J. Hydrol. 2022, 605, 127315. [Google Scholar] [CrossRef]
- Akhtar, F.; Nawaz, R.A.; Hafeez, M.; Awan, U.K.; Borgemeister, C.; Tischbein, B. Evaluation of GRACE Derived Groundwater Storage Changes in Different Agro-Ecological Zones of the Indus Basin. J. Hydrol. 2022, 605, 127369. [Google Scholar] [CrossRef]
- Arshad, A.; Mirchi, A.; Samimi, M.; Ahmad, B. Combining Downscaled-GRACE Data with SWAT to Improve the Estimation of Groundwater Storage and Depletion Variations in the Irrigated Indus Basin (IIB). Sci. Total Environ. 2022, 838, 156044. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of Water Resources Management in the Indus Basin under Changing Climatic and Socio Economic Conditions. Hydrol. Earth Syst. Sci. 2010, 14, 1669–1680. [Google Scholar] [CrossRef] [Green Version]
- Iqbal Abdul Rauf Environmental Issues of Indus River Basin: An Analysis. ISSRA Pap. Inst. Strateg. Stud. Res. Anal. (ISSRA) Natl. Def. Univ. Islam. Pak. 2013, 5, 91–112.
- Landerer, F.W.; Swenson, S.C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates. Water Resour. Res. 2012, 48, 1–11. [Google Scholar] [CrossRef]
- Landerer, F. GFZ TELLUS GRACE Level-3 Monthly LAND Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in NetCDF/ASCII/GeoTIFF Formats. Ver. 6.0. PO.DAAC, CA, USA. Available online: Https://Doi.Org/10.5067/TELND-3AG06 (accessed on 17 December 2019).
- Landerer, F. CSR TELLUS GRACE Level-3 Monthly LAND Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in NetCDF/ASCII/GeoTIFF Formats. Ver. 6.0. PO.DAAC, CA, USA. Available online: Https://Doi.Org/10.5067/TELND-3AC06 (accessed on 17 December 2019).
- Landerer, F. JPL TELLUS GRACE Level-3 Monthly LAND Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in NetCDF/ASCII/GeoTIFF Formats. Ver. 6.0. PO.DAAC, CA, USA. Available online: Https://Doi.Org/10.5067/TELND-3AJ06 (accessed on 4 December 2019).
- Rodell, M.; Beaudoing, H. GLDAS CLM Land Surface Model L4 Monthly 1.0 × 1.0 Degree V001; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2007. [Google Scholar]
- Müller Schmied, H.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Peiris, T.A.; Popat, E.; Portmann, F.T.; Reinecke, R.; et al. The Global Water Resources and Use Model WaterGAP v2.2d: Model Description and Evaluation. Geosci. Model Dev. Discuss. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Remote Sensing Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote Sens. 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-SatellitE Retrievals for GPM (IMERG), Version 4.4. NASA’s Precipitation Processing Center. Available online: https://gpm.nasa.gov/data/policy (accessed on 6 February 2021).
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Hu, L.; Jiao, J.J. Evaluation of Groundwater Storage Variations in Northern China Using GRACE Data. Geofluids 2017, 2017, 8254824. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, R.B.; William, S.; Cleveland, J.E.; McRAe, I.T. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Shamsudduha, M.; Chandler, R.E.; Taylor, R.G.; Ahmed, K.M. Recent Trends in Groundwater Levels in a Highly Seasonal Hydrological System: The Ganges-Brahmaputra-Meghna Delta. Hydrol. Earth Syst. Sci. 2009, 13, 2373–2385. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.I.; Seo, J.Y. Hydrological Evaluation of Lake Chad Basin Using Space Borne and Hydrological Model Observations. Water 2016, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Taher, M.R.; Chornack, M.P.; Mack, T.J. Groundwater Levels in the Kabul Basin, Afghanistan, 2004–2013; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2014.
- Yu, W.; Yang, Y.-C.; Savitsky, A.; Alford, D.; Brown, C.; Wescoat, J.; Debowicz, D.; Robinson, S. The Indus Basin of Pakistan; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Federal Flood Commission, Ministry of Water Resources. Annual Flood Report 2017. 2017. Available online: https://mowr.gov.pk/SiteImage/Misc/files/2017%20Annual%20Flood%20Report%20of%20FFC.pdf (accessed on 20 February 2020).
- Muhammad, S.; Tian, L.; Khan, A. Early Twenty-First Century Glacier Mass Losses in the Indus Basin Constrained by Density Assumptions. J. Hydrol. 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Basharat, M.; Ali, S.U.; Azhar, A.H. Spatial Variation in Irrigation Demand and Supply across Canal Commands in Punjab: A Real Integrated Water Resources Management Challenge. Water Policy 2014, 16, 397–421. [Google Scholar] [CrossRef]
- Ali, S.; Cheema, M.J.M.; Waqas, M.M.; Waseem, M.; Awan, U.K.; Khaliq, T. Changes in Snow Cover Dynamics over the Indus Basin: Evidences from 2008 to 2018 MODIS NDSI Trends Analysis. Remote Sens. 2020, 12, 2782. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; IWMI: Colombo, Sri Lanka, 2003; p. 31. [Google Scholar]
- Qureshi, A.S. Groundwater Governance in Pakistan: From Colossal Development to Neglected Management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Mishra, V.; Asoka, A.; Vatta, K.; Lall, U. Groundwater Depletion and Associated CO2 Emissions in India. Earth’s Futur. 2018, 6, 1672–1681. [Google Scholar] [CrossRef]
- NASA NASA Satellites Unlock Secret to Northern India’s Vanishing Water. Available online: https://www.nasa.gov/topics/earth/features/india_water.html (accessed on 3 February 2021).
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater Storage Changes: Present Status from GRACE Observations. Surv. Geophys. 2016, 37, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Baweja, S.; Aggarwal, R.; Brar, M. Groundwater Depletion in Punjab, India. Encycl. Soil Sci. Third Ed. 2017, 1–5. [Google Scholar] [CrossRef]
- Shah, T.; Roy, A.D.; Qureshi, A.S.; Wang, J. Sustaining Asia’s Groundwater Boom: An Overview of Issues and Evidence. Nat. Resour. Forum 2003, 27, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef]
- Singh, A.P.; Bhakar, P. Development of Groundwater Sustainability Index: A Case Study of Western Arid Region of Rajasthan, India. Environ. Dev. Sustain. 2020, 23, 1844–1868. [Google Scholar] [CrossRef]
- van Steenbergen, F.; Kaisarani, A.B.; Khan, N.U.; Gohar, M.S. A Case of Groundwater Depletion in Balochistan, Pakistan: Enter into the Void. J. Hydrol. Reg. Stud. 2015, 4, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Li, T.; Zheng, W.; Hu, L.; Han, S.C.; Tangdamrongsub, N.; Šprlák, M.; Huang, Z. Improving Regional Groundwater Storage Estimates from GRACE and Global Hydrological Models over Tasmania, Australia. Hydrogeol. J. 2020, 28, 1809–1825. [Google Scholar] [CrossRef]
- Feng, T.; Shen, Y.; Chen, Q.; Wang, F.; Zhang, X. Groundwater Storage Change and Driving Factor Analysis in North China Using Independent Component Decomposition. J. Hydrol. 2022, 609, 127708. [Google Scholar] [CrossRef]
- Alley, W.M.; Konikow, L.F. Bringing GRACE Down to Earth. Groundwater 2015, 53, 826–829. [Google Scholar] [CrossRef]
Sr. No | Groundwater Changes (mm) | Indication of Groundwater Change |
---|---|---|
1 | <−100 | Severe decline |
2 | −100 to −50 | Minor decline |
3 | −50 to 0 | Normal variation |
4 | 0 to 50 | Minor rise |
5 | >50 | Abnormal rise |
Correlations | |||||
---|---|---|---|---|---|
Spearmen’s Rho | TRMM | TWS | GWC | SM | |
TRMM | 1.000 | 0.214 * | 0.188 * | 0.743 * | |
TWS | 0.214 * | 1.000 | 0.907 * | 0.299 * | |
GWC | 0.188 * | 0.907 * | 1.000 | 0.241 * | |
SM | 0.743 * | 0.299 * | 0.241 * | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, K.; Tischbein, B.; Flörke, M.; Usman, M. Spatiotemporal Analysis of Groundwater Storage Changes, Controlling Factors, and Management Options over the Transboundary Indus Basin. Water 2022, 14, 3254. https://doi.org/10.3390/w14203254
Mehmood K, Tischbein B, Flörke M, Usman M. Spatiotemporal Analysis of Groundwater Storage Changes, Controlling Factors, and Management Options over the Transboundary Indus Basin. Water. 2022; 14(20):3254. https://doi.org/10.3390/w14203254
Chicago/Turabian StyleMehmood, Kashif, Bernhard Tischbein, Martina Flörke, and Muhammad Usman. 2022. "Spatiotemporal Analysis of Groundwater Storage Changes, Controlling Factors, and Management Options over the Transboundary Indus Basin" Water 14, no. 20: 3254. https://doi.org/10.3390/w14203254
APA StyleMehmood, K., Tischbein, B., Flörke, M., & Usman, M. (2022). Spatiotemporal Analysis of Groundwater Storage Changes, Controlling Factors, and Management Options over the Transboundary Indus Basin. Water, 14(20), 3254. https://doi.org/10.3390/w14203254