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Abstract: Climate change and agriculture land use changes in the form of cropping patterns are
closely linked with crop water use. In this study the SDSM (statistical downscaling model) was used
to downscale and simulate changes in meteorological parameters from 1961 to 2099 using HadCM3
General Circulation Model (GCM) data under two selected scenarios i.e., H3A2 and H3B2. Results
indicated that Tmax, Tmin, and wind speed may increase while relative humidity and precipitation may
decrease in the future under both H3A2 and H3B2 scenarios. Downscaled meteorological parameters
were used as input in the CROPWAT model to simulate crop irrigation requirement (CIR) in the
baseline (1961–1990) and the future (2020s, 2050s and 2080s). Data related to agriculture crop sown
area of five major crops were collected from Punjab statistical reports for the period of 1981–2015
and forecasted using linear exponential smoothing based on the historical rate. Results indicated
that the cropping patterns in the study area will vary with time and proportion of area of which
sugarcane, wheat, and rice, may exhibit increasing trend, while decreasing trend with respect to the
baseline scenario was found in maize and cotton. Crop sown area is then multiplied with CIR of
individual crops derived from CROPWAT to simulate Net-CIR (m3) in three sub-scenarios S1, S2,
and S3. Under the H3A2 scenario, total CIR in S1, S2, and S3 may increase by 3.26 BCM, 12.13 BCM,
and 17.20 BCM in the 2080s compared to the baseline, while under the H3B2 scenario, Net-CIR in
S1, S2, and S3 may increase by 2.98 BCM, 12.04 BCM, and 16.62 BCM in the 2080s with respect to
the baseline. It was observed that under the S2 sub-scenario (with changing agriculture land-use),
total CIR may increase by 12.13 BCM (H3A2) and 12.04 BCM (H3B2) in the 2080s with respect to the
baseline (1961–1990) which is greater as compared to S1 (with changing climate). This study might be
valuable in describing the negative effects of climate and agriculture land use changes on annual crop
water supply in Rechna Doab.

Keywords: climate change; GCM; SDSM; crop irrigation requirement; effective precipitation; reference
ET; CROPWAT

1. Introduction

Availability of water resources has great significance for agricultural production, human
settlements, industry, and natural vegetation. Nowadays available water resources are being spoiled

Water 2019, 11, 1567; doi:10.3390/w11081567 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-0726-1807
https://orcid.org/0000-0002-2607-4628
https://orcid.org/0000-0001-8352-9695
http://www.mdpi.com/2073-4441/11/8/1567?type=check_update&version=1
http://dx.doi.org/10.3390/w11081567
http://www.mdpi.com/journal/water


Water 2019, 11, 1567 2 of 25

as a result of climate as well as land use changes [1]. The continuous change in climatic variables
and agricultural expansion has retained new demands on available water resources every day due
to changes in crop irrigation requirement [2]. Irrigated agriculture is always ranked 1st in the
world according to water consumers as it consumes approximately 64% of fresh water [3–5]. Water
withdrawals for agricultural production systems is much focused in space and with respect to crop
types. Asian countries especially Pakistan, China, and India, and the United States account for 68% of
fresh water withdrawals for irrigated agriculture, out of which ~34% is consumed by India for growing
rice and wheat crops covering 70% of the irrigated command area [6].

Many past studies have been conducted for understanding the implications of climate change on
crop irrigation requirement (CIR) in various climatic and geographical zones of the world [7–15]. Crop
irrigation requirement (CIR) has been largely affected due to changes in the trend of climatic parameters
i.e., precipitation, solar radiations, relative humidity, temperature, and wind speed, as a result of
climate change [5,16–19]. Studies by different researchers concluded that crop water requirement may
increase in most regions of the globe due to increases in Evapotranspiration (ET) and decreases in soil
moisture which have happened with warming of the climate [20–22]. Agriculture expansion inversely
relates to water consumption of the irrigated command area. In recent years, continuous increment of
the irrigated command area has resulted in reduction of the water supply, which will further affect the
over abstraction of water resources [23]. Projected results indicated that the future irrigated agriculture
area may continuously increase to fulfill food requirements of a rapidly growing population, which
will ultimately consume more water regimes to satisfy growing water needs globally [24,25].

Both these issues, expanding agriculture land and changing climate, are more evident in Rechna
Doab, Pakistan as it has experienced more variable weather and cropping patterns than other regions
in Pakistan. Catchment areas in Indus Basin, Pakistan are accounted as the world’s most vulnerable
regions to climate change. The food requirement in Pakistan has largely increased as a result of rapid
population growth, from 37.5 million in 1950 to 207 million in 2017, and is expected to reach 333 million
in 2050 [26]. Land and water resources in Pakistan are tremendously under pressure to fulfill the
growing needs of the population [27]. In Rechna Doab, the total irrigated area has increased from 1.94
Mha in 1961 to 2.12 Mha in 1990 and cropping intensity has increased from 91% in 1961 to 131% in
1980 [28]. Indus Basin of Pakistan is allocating irrigated water among four provinces, according to
the Indus Water Accord in 1991, and is considered a supply-based system rather than demand-based
system. Irrigation water supply is directly affected due to changes in the trend of climatic parameters
and the irrigated command area. With the expansion of the irrigated command area in Rechna Doab,
irrigation water supply is reducing and end users are not satisfied with available water in the irrigated
network [29,30]. Farmers always complain to water authorities (Water and Power Development
Authority (WAPDA), Punjab Irrigation and Drainage Authority (PIDA) etc.) about the development of
an unequal water distribution system. Therefore, it’s important to analyze the impacts of climate and
agriculture land use changes on crop irrigation requirement to understand the current and projected
changes in crop irrigation requirement (CIR) in Rechna Doab, Pakistan.

Numerous modeling approaches have been used to study the impacts of climate on crop
evapotranspiration (ET). Examples: Reference [31] generated future climate using the LARS-WG (Long
Ashton Research Station-Weather Generator) in Suwon, South Korea, reference [32] used the generalized
linear model (GLM) to simulate future changes in ET, reference [33] applied the Statistical Downscale
Model (SDSM) to downscale ET between 2011–2099 from HadCM3 (Hadley Centre Coupled Model,
version 3) climate data, reference [34] analyzed the climate change impacts on ET from 1956–2016 using
the Penman–Monteith method. The above studies mainly focused on analyzing the spatio-temporal
changes in ET caused by the impacts of climate but these studies pay less attention to “how the change
of climate would affect the crop water use”. Anyhow, some studies analyze perspective changes in
crop water requirement due to the changing climate [18,35] and agriculture expansion [36,37]. In these
studies, authors analyzed the changes in crop water requirement due to agriculture expansion but
they only considered agriculture expansion as one common land-use class i.e., crop land or vegetation.
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They did not aggregate agriculture class into various crop-type classes (wheat, sugarcane, rice etc.)
and their individual impacts on water requirement based on their proportion of crop sown area in
current and future periods. For example, reference [36] analyzed the perspective changes in irrigation
requirement caused by agriculture expansion but they did not examine the individual impacts of
different agriculture crops on net crop irrigation requirement. Assessing the long-term changes in
agriculture land use changes in the form of crop patterns (crop sown area), therefore, became an urgent
need to improve decision making processes in water resources management. So, this study analyzed
the long-term impacts of climate and agriculture land use (considering the changes in agriculture
cropping patter) on crop irrigation requirement in current and future periods.

General circulation models (GCMs) can simulate future changes in the climate on large scale
climate studies but they have limitations to their application on small scale studies due to their low
spatial resolution. GCM data can be used on the regional scale and small scale studies after downscaling
it. CROPWAT developed by FAO (Food and Agriculture Organization) is a better tool to simulate crop
irrigation demand in the changing climate [25]. CROPWAT has generally been applied in numerous
research studies to compute crop irrigation requirement (CIR) and irrigation scheduling in different
countries i.e., Taiwan, Greece, United State, Zimbabwe, Africa, Morocco, Turkey, and Pakistan [38–48].
Aims and objectives of this study were to: (1) To detect long-term trends and changes in climatic
parameters (maximum temperature (Tmax), minimum temperature (Tmin), precipitation, humidity, and
wind speed); (2) to analyze the long-term changes in agriculture cropping patterns based on crop sown
area; and (3) to investigate the implications of climate and agriculture land use variability on total
crop irrigation requirement. CROPWAT and the statistical downscale simulation model (SDSM) were
coupled with each other to simulate CIR (mm) associated with climate change. Data related to the
crop sown area (CSA) of five major crops (wheat, rice, sugarcane, maize, and cotton) was collected
from Punjab Statistics Development (PSD) reports for the period of 1981–2015 and forecasted in future
periods. Future predicted data of agriculture cropping patterns were integrated with CIR (mm) of
individual crops derived from CROPWAT to simulate total CIR (m3) in three different sub scenarios:
S1 (climate change), S2 (agriculture land use changes), and S3 (both climate and agriculture land
use changes).

2. Material and Methods

2.1. Study Area

The land exists between two rivers is defined as Doab. Rechna Doab is the part of land situated
between two rivers i.e., the rivers Ravi and Chenab in Punjab. It is the most fertile region of the irrigated
Indus plain of Punjab and lies in the agro-ecological zone IVa. It starts from Mirpur and Jammu and
converges with the total command area (TCA) of 3.0 Mha in which 2.43 Mha area is counted in the
irrigated land. It covers eight districts of Punjab, namely Hafizabad, Jhang, Faisalabad, T.T Singh,
Faisalabad, Sheikhpura, Gujranwala, Sialkot, and Narowal (Figure 1). It is designated as subtropical
semi-arid land and climate of this area shows seasonal fluctuations in precipitation and temperature.
The summer season is considered as long and hot which starts from April and ends in September with
Tmax 33–48 ◦C. The winter season starts from December and ends in February, with Tmax 19–27 ◦C.
Annual precipitation in the study area is about 655 mm in the upper side of Rechna, and 360 mm in
lower part of Rechna Doab. Surface canal irrigation system of this doab is gravity flow and perennial
canals flow at a normal period, about 340 days per year.
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Figure 1. Map of Rechna Doab, Pakistan, configuration of irrigation network, irrigation districts,
head-works, and metrological observatories located in the study area.

2.2. Data Used in Study

Data used in this study comprises of meteorological data (temperature, humidity, wind speed,
precipitation, sunshine hours, and sun radiations), GCMs data (National Center of Environmental
Prediction–National Center for Atmospheric Research (NCEP) (Table 1), and Hadley Centre coupled
model (HadCM3)) and crop information data.

Table 1. List of 26 NCEP (National Centers for Environmental Prediction) predictors used in this study.

No Predictors Code No Predictors Code

1 Mean sea level pressure Mslpas 14 850 hPa air flow strength P5zhas
2 Surface flow strength P_fas 15 850 hPa zonal velocity P8_fas
3 Surface zonal velocity P_uas 16 850 hPa meridian velocity P8_uas
4 Surface meridional velocity P_vas 17 850 hPa vorticity P8_vas
5 Surface vorticity P_zas 18 850 hPa wing direction P8_zas
6 Surface wind direction P_thas 19 850 hPa divergence P850as
7 Surface divergence P_zhas 20 500 hPa geopotential height P8thas
8 500 hPa Air flow strength P5_fas 21 850 hPa geopotential height P8zhas
9 500 hPa zonal velocity P5_uas 22 Near surface relative humidity R500as

10 500 hPa meridional velocity P5_vas 23 Near surface specific humidity R850as
11 500 hPa vorticity P5_zas 24 500 hPa specific/relative humidity Rhumas
12 500 hPa wind direction P500as 25 850 hPa specific/relative humidity Shumas
13 500 hPa divergence P5thas 26 Mean temperature at 2 m Tempas

2.2.1. Meteorological Data

The Punjab Meteorological Department provided daily meteorological data including maximum
temperature, minimum temperature (Tmax, Tmin, ◦C), relative humidity (RH, %), wind speed
(WS, m s−1), sunshine hours (SH, h), and precipitation. Observed climate data was collected for five
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meteorological stations i.e., Faisalabad, Lahore, Sargodha, Jhelum, and Sialkot meteorological from
1980–2014 at daily scale. These datasets were used to calibrate and validate the statistical downscale
simulation model (SDSM).

2.2.2. GCM Data

The GCM used in this study was derived from HadCM3, the latest version model with improved
ocean and atmosphere components [49]. It comprises of daily predictor variables of NCEP 1961–2000,
H3A2a 1961–2099, and H3B2a 1961–2099. H3A2 and H3B2 data was used to simulate changes in
future scenarios. NCEP data was utilized for calibration and validation of the SDSM model against the
observed data. HadCM3 is a coupled climate model with spatial resolution of 2.50 latitude and 3.750
longitude, and freely downloadable from http://www.cics.uvic.ca/scenarios/sdsm/select.cgi. HadCM3
data under two IPPC emission scenarios i.e., H3A2 and H3B2 was collected for the period of 1961 to
2099. These emission scenarios have already developed by the IPCC (Inter-Governmental Panel on
Climate Change) [50].

2.2.3. Crop Information Data

For computation of CIR, CROPWAT requires multi crop parameters i.e., planting and harvesting
dates of crops, crop coefficient (Kc), rooting depth, allowable depletion, and yield response. Information
of these parameters was collected from relevant studies, i.e., cropping pattern information collected
from paper of reference [51], planting and harvesting data was collected from past research [52,53] and
Kc values, crop rooting depth, allowable depletion, and yield response factor were taken from FAO
(Table 2). Table 2 illustrates the main information of five major crops i.e., sugarcane, maize, wheat,
rice, and cotton, growing in the study area. Statistics data of the crop sown area of five major crops
grown in eight districts (Faisalabad, Hafizabad, Jhang, T.T Singh, Sheikhu-Pura, Gujranwala, Sialkot,
and Narowal) were collected for the period of 1981–2008 from the Government of Pakistan statistics
reports [54] and 2009–2015 from Punjab Development statistics (PDS) reports (Figure 2).

Table 2. Multi crop information parameters used in the CROPWAT model to compute Crop Irrigation
Requirement (CIR) of five major crops grown in Rechna Doab.

Crop
Types

Date
(Sowing-Harvesting) Stages Period Kc

Rooting
Depth

Crop
Height

Yield Response
Factor

Depletion
Factor

days m m

Sugarcane Annual Jan-Dec

Initial 30 0.40 1.5

3

0.50 0.65
Development 60 0.75
Mid-season 180 1.25

1.5
1.20 0.65

Late season 95 0.75 0.10 0.65

Wheat Nov-Mar

Initial 20 0.4 0.30

0.8

0.20 0.55
Development 30 0.69
Mid-season 50 1.15

1.50
0.50 0.55

Late season 30 0.41 0.40 0.90

Rice June-Nov

Initial 20 1.05 0.10

1

1.00 0.20
Development 30 1.09
Mid-season 40 1.20

0.60
1.31 0.20

Late season 30 0.99 0.50 0.20

Cotton May-Nov

Initial 30 0.35 0.30

1.30

0.20 0.65
Development 50 0.59
Mid-season 60 1.15

1.40
0.50 0.65

Late season 55 0.5 0.25 0.90

Maize May-Sep

Initial 20 0.30 0.30

1.5

0.40 0.55
Development 35 0.40
Mid-season 40 1.2

1
1.30 0.55

Late season 30 0.35 0.50 0.80

http://www.cics.uvic.ca/scenarios/sdsm/select.cgi


Water 2019, 11, 1567 6 of 25

Water 2019, 11, x FOR PEER REVIEW 5 of 26 

 

The GCM used in this study was derived from HadCM3, the latest version model with improved 
ocean and atmosphere components [49]. It comprises of daily predictor variables of NCEP 1961–2000, 
H3A2a 1961–2099, and H3B2a 1961–2099. H3A2 and H3B2 data was used to simulate changes in 
future scenarios. NCEP data was utilized for calibration and validation of the SDSM model against 
the observed data. HadCM3 is a coupled climate model with spatial resolution of 2.50 latitude and 
3.750 longitude, and freely downloadable from http://www.cics.uvic.ca/scenarios/sdsm/select.cgi. 
HadCM3 data under two IPPC emission scenarios i.e., H3A2 and H3B2 was collected for the period 
of 1961 to 2099. These emission scenarios have already developed by the IPCC (Inter-Governmental 
Panel on Climate Change) [50].  

2.2.3. Crop Information Data  

For computation of CIR, CROPWAT requires multi crop parameters i.e., planting and harvesting 
dates of crops, crop coefficient (Kc), rooting depth, allowable depletion, and yield response. 
Information of these parameters was collected from relevant studies, i.e., cropping pattern 
information collected from paper of reference [51], planting and harvesting data was collected from 
past research [52,53] and Kc values, crop rooting depth, allowable depletion, and yield response 
factor were taken from FAO (Table 2). Table 2 illustrates the main information of five major crops i.e., 
sugarcane, maize, wheat, rice, and cotton, growing in the study area. Statistics data of the crop sown 
area of five major crops grown in eight districts (Faisalabad, Hafizabad, Jhang, T.T Singh, Sheikhu-
Pura, Gujranwala, Sialkot, and Narowal) were collected for the period of 1981–2008 from the 
Government of Pakistan statistics reports [54] and 2009–2015 from Punjab Development statistics 
(PDS) reports (Figure 2). 

  
  

Figure 2. Long-term changes in crop sown area (CSA) (1000 hectare) of five major agricultural crops 
grown in Rechna Doab from 1981–2015. 

Table 2. Multi crop information parameters used in the CROPWAT model to compute Crop Irrigation 
Requirement (CIR) of five major crops grown in Rechna Doab. 

Crop 
Types 

Date (Sowing-
Harvesting) 

Stages Period Kc 
Rooting 
Depth 

Crop 
Height 

Yield 
Response 

Factor 

Depletion 
Factor 

   days  m m   

Sugarcane Annual Jan-Dec 
Initial 30 0.40 1.5 

3 
0.50 0.65 

Development 60   0.75  

100

150

200

250

300

350  Sugarcane
Ar

ea
 

80

90

100

110

120

130

140

150  Maiz

1980 1985 1990 1995 2000 2005 2010 2015 2020

100

120

140

160

180

200

220

240  Cotton

Ar
ea

 

Year
1980 1985 1990 1995 2000 2005 2010 2015 2020

600

700

800

900

1000

1100
 Rice

Year
1980 1985 1990 1995 2000 2005 2010 2015 2020

1400

1500

1600

1700

1800

1900  Wheat

Ar
ea

 

Year

Figure 2. Long-term changes in crop sown area (CSA) (1000 hectare) of five major agricultural crops
grown in Rechna Doab from 1981–2015.

2.3. Downscaling of GCM Data Using SDSM Model

Downscaling is a technique of improving resolution of GCMs data for its use at the local scale.
Downscaling approach can be adapted on spatio-temporal features of the climate system [55–57].
Dynamical and statistical are two downscaling approaches which are widely used for downscaling of
GCM data [55,58–60]. The dynamical downscaling technique uses complex algorithms to generate
fine spatial resolution climatic information supplied by GCMs at coarse resolution approximately
20–50 km. Dynamical downscaling is a process of nesting fine spatial resolution data of the regional
climate model (RCMs) within low resolution data of GCMs [61]. The statistical downscaling approach
generates future climate scenarios by developing statistical relationships between global scale features
and local variables [62–64]. The statistical downscaling approach is preferred rather than the dynamical
downscaling approach because of its simple computation and is easily adapted to new spaces [55,65–67].
Therefore, the statistical downscaling approach was used in this study to downscale GCMs data under
two scenarios, A2 and B2.

SDSM was developed by Wilby, Dawson and Barrow [67], and it uses multi linear regression (MLR)
to establish statistical relationships between large scale NCEP predictors and local-scale predictands [68].
SDSM provides two types of sub-models, (1) unconditional model for local variables distributed
normally such as temperature, and (2) conditional sub model is applied when local variables are
not distributed normally such as precipitation and evaporation [69]. SDSM can normalize such
variables by transforming parameters using different functions i.e., natural log, fourth root, and
inverse normal [64,70,71]. In this study, the unconditional sub-model with no transformation function
was applied to downscale T_max, T_min, wind speed, and relative humidity while in the case of
precipitation conditional sub-model, was applied with transformation function (fourth root). In order
to downscale GCMs data, the following steps were adapted: (1) Quality control analysis for verification
of missing data values, (2) screening of variables using NCEP predictor, (3) calibration of the model, (4)
weather generation, (5) validation of SDSM, and (6) generation of future climate scenarios using GCMs.

(1) Screening of NCEP Predictors: Screening of NCEP predictor variables is a crucial step for all
statistical downscaling techniques because these parameters greatly influences the output of the
model [71,72]. In this study, during screening process correlation between 26 NCEP predictors
(Table 1) and local scale predictands (observed precipitation, temperatures, wind speed, and
relative humidity) was developed in SDSM model, and then the predictors of highest correlation



Water 2019, 11, 1567 7 of 25

coefficient among 26 predictors were finally selected. (Table 3). Predictors with low R2 and
highest P value (greater than α (0.05)) were neglected to minimize uncertainty in future prediction.
The highest value of R2 as 0.7 is satisfactory in calibration and validation of the SDSM model [73].

(2) Calibration and Validation of model: NCEP predictor variables having highest value of R2 were
used in the weather generation process. Observed data of climatic parameters was divided into
two halves, the first part (1980–1989) was used to calibrate the SDSM model and the second
part (1990–1999) was used to validate the model. During the calibration period (1980–1989) and
validation period (1990–1999), simulated results of SDSM were compared with the observed data
of Tmax, Tmin, humidity, wind speed, and precipitation.

(3) Scenario Generation: After successful calibration and validation of SDSM, future scenarios were
generated using HadCM3 data under A2 and B2 scenarios within the time span of 1961 to 2099.
Three time windows, 2020 (2010–2039), 2050 (2040–2069), and 2080 (2070–2099) were constructed
to assess the patterns of climate variables in different spans.

Table 3. Screening of most appropriate NCEP predictor variables depicted good correlation with
observed climate parameters.

No. Predictors Code Tmax Tmin Precp R.H WDS

1 Mean sea level pressure Mslpas
√ √ √ √ √

3 Surface zonal velocity P_uas
√ √ √ √

5 Surface vorticity P_zas
√ √ √

8 500 hPa Air flow strength P5_fas
√ √

11 500 hPa vorticity P5_zas
√ √

12 500 hPa wind direction P500as
√ √ √

14 850 hPa air flow strength P5zhas
√ √ √ √

16 850 hPa meridian velocity P8_uas
√ √ √ √

17 850 hPa vorticity P8_vas
√ √

18 850 hPa wing direction P8_zas
√ √ √ √

19 850 hPa divergence P850as
√ √ √

20 500 hPa geopotential height P8thas
√ √

21 850 hPa geopotential height P8zhas
√ √ √

23 Near surface specific humidity R850as
√ √

25 850 hPa specific/ relative humidity Shumas
√ √ √ √

26 Mean temperature at 2 m Tempas
√ √ √ √ √

2.4. Prediction of Agriculture Cropping Patterns

Data related to crop sown area were collected from Punjab Statistical Report (PSR) and forecasted
in the future using linear and exponential forecasting methods, considering highest values of R2 based
on historical rate. These methods can be used to predict future changes [74]. Agriculture land use
changes in the form of cropping patterns (sown area) of different agriculture crops were observed in
the baseline (1980–2015) and future time windows (2020s, 2050s, and 2080s). This data was linked with
CROPWAT to check their impacts on total irrigation requirement for each crop.

2.5. Modeling Crop Irrigation Requirement (CIR)

CIR (crop irrigation requirement) is the quantity of water required to fulfil the evapotranspiration
loss and leaching of salts from a cropped field. In this study CIRs of five major agricultural crops
(wheat, sugarcane, rice, cotton, and maize) were computed using the CROPWAT model developed by
FAO (Food Agriculture Organization). Meteorological variables (Tmax, Tmin, precipitation, humidity,
sunshine hours, and sun radiations) downscaled from SDSM were used as input in the CROPWAT
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model to compute CIR in the baseline (1961–1990) and future scenarios (202s, 2050s, and 2080s). In this
study the following relations were used to compute CIR (mm).

ETc = Kc × ETo (1)

CIR = ETc – PE (2)

where CIR is crop irrigation requirement in mm, ETc represents the crop evapotranspiration (mm
day−1), PE the amount of effective precipitation (mm), ETo is the reference ET (mm day−1) and Kc is
the crop coefficient. Reference ET was computed using CROPWAT which applies Penman–Monteith
equation recommended by FAO [75]. ETo can be defined as amount of water transpired by well grown
grass with height 0.12 m and albedo of 0.23. The following relation was used to estimate reference ET

ETo =
0.408∆(Rn −G) + u 900

T+273 u2(es − ea)

∆ + u(1 + 0.34u2)
(3)

where Rn is the net amount of radiations (MJ m−2 day−1), G is density of heat flux in soil (MJ m−2

day−1), u2 is the mean wind speed in 24 h (m s−1), es is the saturation vapor pressure (kPa), ea is actual
vapor pressure (kPa), ∆ is gradient of vapor pressure vs. temperature curve (kPa ◦C−1), and u is the
psychrometric constant (kPa ◦C−1) [76]. The effective rainfall in agricultural region is defined as the
amount of precipitation infiltrated into the soil, stored in root zone, and later it transpired by crops.
CROPWAT computed effective precipitation (Peff) using the soil conservation service method proposed
by the United States Department of Agriculture (USDA).

Pe f f =
(P× (125− 0.2× 3P))

125
For P ≤ 250/3 mm (4)

Pe f f =
125

3
+ 0.1P For P > 250/3 mm (5)

where P is amount of precipitation (mm).

2.6. CIR under Changing Climate and Agriculture Cropping Patterns

CIR of individual crops derived from CROPWAT model and agriculture crop sown area were
integrated in Equation (6) to compute total CIR in the baseline (1961–1990) and future scenarios (2020s,
2050s, and 2080s).

Total CIR =
n∑

i=1

Ai ×CIRi (6)

where CIRi stands for crop irrigation requirement of crop i, Ai is the crop sown area (CSA) of crop
i. In order to assess individual and integrated impacts of climate and agriculture cropping patterns,
future changes in CIR were assessed in three different sub-scenarios (1) S1: Changed climate with no
change in agriculture land use, (2) S2: Changed agriculture land use with no change in climate, (3) S3:
Changed climate and agriculture land use. Figure 3 depicts the stepwise procedure of data analysis.
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3. Results

3.1. Screening of NCEP Predictor Variables

Table 3 indicates the most appropriate NCEP predictors screened out having super correlation
with the observed local climate predictands (Tmax, Tmin, precipitation, relative humidity, and wind
speed). It was observed that NCEP temperature (temperature at 2 m height) has super correlation
with Tmax and Tmin. Therefore, this is the super predictor for downscaling Tmax and Tmin. Similar
results were predicted in the study conducted by Mahmood and Babel [64], in which they used
NCEP temperature (temperature at 2 m height) for downscaling Tmax and Tmin due to its significant
correlation with observed metrological parameters. For precipitation, two predictors were found
with super correlation i.e., 850 hPa meridian velocity and 500 hPa vorticity. In the case of relative
humidity, different predictors were selected, however the most correlated super predictor was found as
500 hPa wind direction. Mean sea level pressure (pmlspas) was found as the super predictor for wind
speed. The predictors selected for local climate parameters are mostly the same as used in previous
studies [69,71,77].

3.2. Calibration and Validation of SDSM Model

NCEP predictors having super correlation with local climate parameters were finally selected
and used in weather and scenario generation. Simulated results obtained from SDSM during the
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calibration (1980–1989) and validation (1990–1999) period were compared with observed data. During
the calibration and validation period, simulated Tmax, Tmin, wind speed, relative humidity, and
precipitation were found highly correlated with the observed data. During the calibration period,
values of R2 for Tmax, Tmin, wind speed, relative humidity, and precipitation were 0.99, 0.99, 0.87,
0.98, and 0.98, respectively, while in the case of the validation period these were 0.99, 0.99, 0.76, 0.99,
and 0.97, respectively (Figure 4). Higher value of R2 indicated that the SDSM model is reliable and
very applicable in Rechna Doab, Pakistan for climate change prediction.Water 2019, 11, x FOR PEER REVIEW 10 of 26 
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3.3. Predicted Changes in Local Climate of Rechna Doab

This paper investigated the long-term variations in climate change parameters (temperature,
precipitation, relative humidity, and wind speed) within the study area in the baseline (1961–1990) and
future (2020s, 2050s, and 2080s) under two selected scenarios i.e., H3A2 and H3B2. Figure 5 presented
downscaled monthly values of climate change parameters under (a) H3A2 and (b) H3B2 scenarios.
Table 4 illustrated the mean values of climatic parameters in the different time period. Long-term
changes indicated that in the H3A2 scenario, the average annual Tmax, Tmin, and wind speed may
increase from 33.54 to 37.05 ◦C, 17.13 to 19.74 ◦C, 97.38 to 115.3 km h−1 respectively, while relative
humidity and precipitation may decrease from 31.18% to 34.28%, and 262.60 to 170.59 mm in the 2080s
with respect to the baseline scenario (1961–1990). In case of the H3B2 scenario, the average annual
Tmax, Tmin, and wind speed may increase from 33.39 to 36.28 ◦C, 16.98 to 19.39 ◦C, 93.2 to 111.4 km
h−1 respectively, while relative humidity and precipitation may decrease from 37.24% to 35.51% and
261.95 to 163.97 mm in 2080s with respect to the baseline scenario (1961–1990). It was observed that
temperature and wind speed may exhibit an upward trend while precipitation and humidity may
exhibit a downward trend in the study area with respect to the baseline period. Analysis indicated
that the future local climate of Rechna Doab, Pakistan would be warmer and dryer. The A2 scenario
exhibits more of an increase in temperature compared to the B2 scenario. SDSM results indicated
that all seasons may exhibit a rise in temperatures (Tmax, Tmin) but the maximum rise is found in
the autumn season (September–November) under both scenarios H3A2 and H3B2. Precipitation is
expected to decrease in all seasons (except winter) relative to the baseline, but the maximum decrease
in precipitation may occur to appear in the spring season with 63 mm in H3A2 and 53 mm in H3B2.
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The gradual rise in temperature and reverse trend in precipitation may have significant implications
on crop water demand in this area.
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Figure 5. Downscaled mean monthly values of climatic parameters (mean monthly Tmax (maximum
temperature, Tmin (minimum temperature), Precp (precipitation), WDS (wind speed), and R.H (relative
humidity)) in the baseline (1961–1990) and future (2020s, 2050s, and 2080s) under (a) H3A2 and (b)
H3B2, scenarios.

Table 4. Relative changes in average values of climatic parameters in future periods with respect to the
baseline period (1961–1990).

Scenarios Tome Period Tmax ◦C Tmin ◦C RH % Precp mm Wind Speed km h−1

H3A2

Baseline (1961–1990) 35.54 17.13 31.18 262.60 97.38
2020 34.65 18.03 36.33 242.22 99.18
2050 35.54 18.89 35.65 214.85 107.2
2080 37.05 19.74 34.28 170.59 115.3

H3B2

Baseline (1961–1990) 33.39 16.98 37.24 261.50 93.2
2020 34.32 17.75 36.87 236.95 94.59
2050 35.08 18.60 36.14 223.27 102
2080 36.28 19.39 35.51 163.97 111.4

3.4. Predicted Changes in Reference ET

Future changes in meteorological parameters may have greater implications for reference ET
(ETo). Figure 6 describes variations in monthly ETo in baseline (1961–1990) and future (2020s, 2050s,
and 2080s) under two selected scenarios (a) H3A2 and (b) H3B2. Under both selected scenarios, ETo is
increasing in all months from 2020 to 2080, however, maximum increment was found from May to
September. Monthly variations of ETo indicated that, in the H3A2 scenario, it may increase gradually
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from January as 1.67 (baseline), 1.78 (2020s), 1.85 (2050s), and 1.95 (2080s) mm day−1 to peak value of
about 7.29 (baseline), 7.42 (2020s), 7.82 (2050s), 8.01 (2080s) mm day−1 in July and then it decreases
gradually to 1.64 (baseline), 1.73 (2020s), 1.9 (2050s), and 2.09 (2080s) mm day−1 in December. The
same variation trend was found in the H3B2 scenario. Under both scenarios, monthly ETo increased
gradually from January to the peak value in June, July and then decreased gradually up to December.
Under the H3A2 scenario, average annual ETo in the baseline period (1961–1990) was 4.55 mm day−1

and in the future it may reach up to 4.70 mm day−1 in the 2020s, 4.90 mm day−1 in the 2050s, and 5.17
mm day−1 in the 2080s, while under the H3B2 scenario the average annual ETo in the baseline was
4.43 mm day−1 and in the future it may reach up to 4.57 mm day−1 in the 2020s, 4.76 mm day−1 in the
2050s, and 5.03 mm day−1 in the 2080s. ETO would gradually increase by 3.1% in the 2020s, 7.14% in
the 2050s, and 12% in the 2080s in the H3A2 scenario while in the H3B2 it would increase by 3.12% in
the 2020s, 6.96% in the 2050s, and 11.92% in the 2080s with respect to the baseline period. The H3A2
scenario may exhibit greater rise in reference ET compared to the H3B2 scenario due to a greater rise
in temperature in the H3A2 scenario. Seasonal changes indicate that under both scenarios, autumn
may exhibit maximum increase in ET0 in the future periods relative to the baseline, which is due to a
greater rise in temperature and low rainfall in this season. Overall, with the changes of climatic factors,
ETo in Rechna Doab may continue to increase in the future, which would cause a gradual rise in CIR.
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Figure 6. Predicted changes in mean monthly evapotranspiration (mm day−1) in the baseline (1961–1990)
and the future (2020s, 2050s, and 2080s) under (a) H3A2 and (b) H3B2 scenarios.

3.5. Predicted Changes in Effective Precipitation (Pe)

It can be seen from Figure 7 that the monthly effective precipitation (Pe) under both scenarios
(a) H3A2 and (b) H3B2 show downward trends in future periods. The effective precipitation showed
considerable monthly variation. The maximum effective precipitation was in July, whereas it was close
to zero in October–December. Results indicated that average annual Pe may decrease from 210 mm
in the baseline (1961–1990) to 193 mm in the 2020s, 172 mm in the 2050s, and 136 mm in the 2080s
under H3A2 scenario. While under the H3B2 scenario it may decreased from 209 mm in the baseline
(1961–1990) to 189 mm in the 2020s, 181 mm in the 2050s, and 131 mm in the 2080s. Annual Pe may
decrease by 7.76% in the 2020s, 18.18% in the 2050s, and 35.03% in the 2080s in the H3A2 scenario
while in H3B2 it would decrease by 9.38% in the 2020s, 13.07% in the 2050s, and 37.29% in the 2080s
with respect to the baseline period. Seasonal variations indicated that Pe may exhibit a downward
trend in the future except winter which may exhibit an increment in Pe which is due to the rise in
precipitation in this season. Due to combined impact, an increase in ET and decrease in PE may have
greater implications for irrigation requirement and it could rise in the future.
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Figure 7. Mean monthly changes in effective precipitation (mm) in the baseline (1961–1990) and the
future (2020s, 2050s, and 2080s) under (a) H3A2 and (b) H3B2 scenarios.

3.6. Predicted Changes in Agriculture Cropping Patterns

Table 5 depicted changes in agriculture land use changes in the form of cropping patterns (crop
sown area) of five major crops, wheat, sugarcane, rice, cotton, and maize grown on a large area of
Rechna Doab. Results indicated that in future scenarios, crop sown area of sugarcane, wheat and
rice may exhibit an increasing trend while cotton and maize exhibit a reducing trend. In the baseline
scenario (1981–2015), total crop sown area of five major agriculture crops was 3011.23 × 103 ha and in
the future it may reach to 3274.5 × 103 ha (2020s), 3693.5 × 103 ha (2050s), and 4220 × 103 ha (2080s).
Wheat crop may exhibit a rapid expansion in the cultivated area as it was grown on 1648.68 × 103 ha in
the baseline period (1981–2015) and in the future it may reach up to 1900 × 103 ha (2020), 2250 × 103 ha
(2050), and 2448 × 103 ha (2080s). Wheat grown on a large area of Rechna Doab is followed by rice
and sugarcane.

Table 5. Future changes in agriculture crop sown area of five major crops (unit: 1000 ha).

Crop Type Baseline (1981–2015) 2020 2050 2080

Sugarcane 241.55 270 308.5 351
Wheat 1648.68 1900 2250 2448

Rice 852 890 1400 1710
Cotton 156 120 80 60
Maize 113 64 66 47
Total 3011.23 3274.5 3693.5 4220

3.7. Predicted Changes in CIR

ETc is greatly correlated with ETo, and represents the amount of water to irrigate the crops (i.e.,
CIR in this case). Summer and spring seasons exhibit maximum rate of ETO which indicates that
crops grown in these seasons may consume more water than other seasons. Moreover, some crops
may have their development stage during these seasons which may have high value of Kc and result
in consumption of more water. Figure 8 depicts changes in the monthly CIR (mm) of five major
agricultural crops under two selected scenarios (a) H3A2 and (b) H3B2. CIR of each crop may exhibit
an increasing trend in each month from the baseline period (1961–1990) to the future (2020s, 2050s, and
2080) under both selected scenarios i.e., A2 and B2, but with different magnitudes. These changes are
cross-ponding to rise in temperature and decrease in precipitation. Figure 9 explains the variations of
monthly total CIR of five crops under both scenarios. Under the H3A2 scenario, the monthly total CIR
of five agricultural crops was highest in August with 911 mm in the baseline (1961–1990), 939 mm in
the 2020s, 990 mm in the 2050s, and 1064 mm in the 2080s, while the lowest are in January as 70.3 mm
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in the baseline (1961–1990), 74.4 mm in the 2020s, 76.5 mm in the 2050s, and 79.1 mm in the 2080s.
Under the H3B2 scenario, monthly total CIR of five agricultural crops was highest in August as 905 mm
in the baseline (1961–1990), 962 mm in the 2020s, 967 mm in the 2050, and 1061 mm in the 2080s, while
the lowest water demands were in January as 68.6 mm in the baseline (1961–1990), 68.3 mm in the
2020s, 74.2 mm in the 2050s, and 79.4 mm in the 2080s. Figure 10 depicted the seasonal crop irrigation
requirement of each individual crop in both selected scenarios. Under the H3A2 scenario, total CIR to
produce sugarcane is likely the highest as 1879.8 mm year−1 in the baseline (1961–1990), 1934.6 mm
year−1 in the 2020s, 2061.1 mm year−1 in the 2050s, and 2219.3 mm year−1 in the 2080s. While under
the H3B2 scenario the highest rate of it might be 1842.6 mm year−1 in the baseline (1961–1990), 1896.5
mm year−1 in the 2020s, 1879.8 mm year−1 in the 2050s, and 2162.4 mm year−1 in the 2080s. The rank
of water consumption rate of rice was 2nd as it consumed 1118.7 mm year−1in the baseline and in the
future it may reach to 1143.5 mm year−1 (2020), 1189.5 mm year−1 (2050), and 1268.9 mm year−1 (2080)
under the H3A2 scenario. In case of the H3B2 scenario, water consumption rate of rice was 1111.5 mm
year−1 in the baseline (1961–1190) and in the future it may reach up to 1140 mm year−1 (2020), 1177
mm year−1 (2050), 1251.1 mm year−1 (2080). All crops show significant rise in the water consumption
rate due to rise in temperatures and decrease in rainfall. Under the H3A2 scenario, the average annual
CIR of sugarcane, maize, cotton, rice, and wheat could be increased by 339 mm, 123 mm, 181 mm, 150
mm, and 45 mm, respectively in 2080 with respected to the baseline.
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Figure 8. Monthly changes in crop irrigation requirement (CIR) of five agricultural crops, sugarcane,
maize, cotton, rice, and wheat under (a) H3A2 and (b) H3B2 scenarios in Rechna Doab.
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3.8. CIR under Changing Climate and Agriculture Cropping Patterns

In order to assess the impacts of both climate and agriculture planting area changes on CIR, future
changes in total CIR were projected in three different sub-scenarios (1) S1: Changed climate with no
change in agriculture land uses, (2) S2: Changed agriculture land use with no change in climate, (3)
S3: Changed climate and agriculture land uses. Tables 6 and 7 indicate the changes in total CIR in
H2A2 and under the H3B2 scenario under three sub-scenarios. Assuming the changing climate in the
future (S1), it was observed that all crops may exhibit an increasing trend in CIR under all scenarios
but with different magnitudes. Under the H3A2 scenario with sub-scenario (S1), CIR of sugarcane,
cotton, wheat, rice, and maize may increase by 0.82, 0.28, 0.74, 1.27, and 0.13 BCM respectively in the
2080s relative to the baseline (1961–1990), and in the H3B2 scenario it may increase by 0.77, 0.26, 0.61,
1.18, and 0.13 BCM, respectively in the 2080s. Total CIR required to irrigate the five major crops may
increase by 3.26 (A2) and 2.98 BCM (B2) in the 2080s with respect to the baseline scenario (1961–1990).
Gradual rise in CIR may due to the rise in temperature and ET rate in the future. Assuming the
changing planting area of crops in the future (S2), it was seen that sugarcane, wheat, and rice may
consume more water due to the gradual rise in the planting area in the future while water application
for cotton and maize may reduce because in the future their planting area may reduce. Under the
H3A2 scenario with sub-scenario (S2), CIR of sugarcane, wheat, and rice may increase by 2.05, 1.73,
and 9.59 BCM, respectively in the 2080s, and in the H3B2 scenario it may increase by 2.01, 1.73, and
9.53 BCM, respectively in the 2080s with respect to the baseline period. Total CIR required to irrigate
the five major crops may increase by 12.12 BCM (A2) and 12.04 BCM (B2) in the 2080s with respect
to the baseline scenario (1961–1990). Assuming with both changing climate and agriculture land use
(S3), it was observed that the net volume of water to irrigate the crops may increase in future periods
relative to the baseline. In the S3 scenario, total CIR required to irrigate the five major crops may



Water 2019, 11, 1567 19 of 25

increase by 17.15 BCM (A2) and 16.62 BCM (B2) in the 2080s with respect to the baseline scenario
(1961–1990). The S1, S2, and S3 scenarios clearly explain the individual impacts of both parameters
(climate and agriculture land use) on net volumetric application of water for agriculture crops in the
future. It can be seen that the S2 scenario may affect the CIR with greater magnitude compared to the
S2 scenario. However, combined affects (S3) of both parameters have great implications for future CIR
in Rechna Doab.

Table 6. Total CIR for different crops under the H3A2 scenario with three different sub-scenarios S1, S2,
and S3. * Note: CSA indicated crop sown area.

S1 S2 S3

CIR CSA Total CIR =
CIR*CSA CIR CSA Total CIR =

CIR*CSA CIR CSA Total CIR =
CIR*CSA

Crops mm
year−1

1000
ha BCM mm

year−1
1000
ha BCM mm

year−1
1000
ha BCM

2020s

Sugarcane 1934.6 241.55 4.6730263 1879.8 271 5.094258 1934.6 271 5.242766
cotton 904.7 156 1.411332 867.7 120 1.04124 904.7 120 1.08564
Wheat 232.4 1648.68 3.8315323 216.9 1900 4.1211 232.4 1900 4.4156
Rice 1143.5 852 9.74262 1118.7 890 9.95643 1143.5 890 10.17715

Maize 665.7 113 0.752241 646.4 87 0.562368 665.7 87 0.579159
Total 4880.9 3011.23 20.410752 4729.5 3268 20.775396 4880.9 3268 21.500315

2050s

Sugarcane 2061.1 241.55 4.9785871 1879.8 308.5 5.799183 2061.1 308.5 6.3584935
cotton 960.1 156 1.497756 867.7 180 1.56186 960.1 180 1.72818
Wheat 246.9 1648.68 4.0705909 216.9 2250 4.88025 246.9 2250 5.55525
Rice 1189.5 852 10.13454 1118.7 1400 15.6618 1189.5 1400 16.653

Maize 704.5 113 0.796085 646.4 66 0.426624 704.5 66 0.46497
Total 5162.1 3011.23 21.477559 4729.5 4204.5 28.329717 5162.1 4204.5 30.7598935

2080s

Sugarcane 2219.3 241.55 5.3607192 1879.8 351 6.598098 2219.3 351 7.789743
cotton 1048.9 156 1.636284 867.7 60 0.52062 1048.9 60 0.62934
Wheat 261.9 1648.68 4.3178929 216.9 2448 5.309712 261.9 2448 6.411312
Rice 1268.9 852 10.811028 1118.7 1710 19.12977 1268.9 1710 21.69819

Maize 769.4 113 0.869422 646.4 47 0.303808 769.4 47 0.361618
Total 5568.4 3011.23 22.995346 4729.5 4616 31.862008 5568.4 4616 36.890203

Table 7. Total CIR for different crops under H3B2 scenario with three different sub-scenarios S1, S2,
and S3. * Note: CSA indicated crop sown area.

S1 S2 S3

CIR CSA Total CIR =
CIR*CSA CIR CSA Total CIR =

CIR*CSA CIR CSA Total CIR =
CIR*CSA

Crops mm
year−1

1000
ha BCM mm

year−1
1000
ha BCM mm

year−1
1000
ha BCM

2020s

Sugarcane 1896.5 241.55 4.580996 1842.6 271 4.993446 1896.5 271 5.139515
cotton 897.3 156 1.399788 854.1 120 1.02492 897.3 120 1.07676
Wheat 227.5 1648.68 3.750747 216.7 1900 4.1173 227.5 1900 4.3225
Rice 1140 852 9.7128 1111.5 890 9.89235 1140 890 10.146

Maize 667.8 113 0.754614 641.5 87 0.558105 667.8 87 0.580986
Total 4829.1 3011.23 20.19894 4666.4 3268 20.58612 4829.1 3268 21.26576

2050s

Sugarcane 1962.1 241.55 4.739453 1842.6 308.5 5.684421 1962.1 308.5 6.053079
cotton 935.6 156 1.459536 854.1 180 1.53738 935.6 180 1.68408
Wheat 237.9 1648.68 3.92221 216.7 2250 4.87575 237.9 2250 5.35275
Rice 1177 852 10.02804 1111.5 1400 15.561 1177 1400 16.478

Maize 688.8 113 0.778344 641.5 66 0.42339 688.8 66 0.454608
Total 5001.4 3011.23 20.96287 4666.4 4204.5 28.08194 5001.4 4204.5 30.02252

2080s

Sugarcane 2162.4 241.55 5.223277 1842.6 351 6.467526 2162.4 351 7.590024
cotton 1027 156 1.60212 854.1 60 0.51246 1027 60 0.6162
Wheat 254.2 1648.68 4.190945 216.7 2448 5.304816 254.2 2448 6.222816
Rice 1251.1 852 10.65937 1111.5 1710 19.00665 1251.1 1710 21.39381

Maize 757.2 113 0.855636 641.5 47 0.301505 757.2 47 0.355884
Total 5451.9 3011.23 22.53135 4666.4 4616 31.59296 5451.9 4616 36.17873

4. Discussion

Changing climate and agriculture expansion in the form of growing plantation area have greater
implications for irrigated water supply [36]. This study analyzed the long-term changes in CIR (crop
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irrigation requirement) caused by climate and agriculture land use changes. Past research has analyzed
that minimum and maximum temperatures have increased in both seasons (winter and summer)
throughout Pakistan, specifically central regions of Pakistan (Punjab) are becoming more warmer and
dryer [78–80]. GCMs (general circulation models) can simulate future changes in climate. HadCM3
under two scenarios (A2 and B2) was used to capture climate change characteristics in the study region.
Results of this paper indicate that under both scenarios (A2 and B2), temperatures (Tmax, Tmin) would
increase in future periods (2020s, 2050s, and 2080s) while precipitation will decrease with respect the
baseline scenario (1961–1990). These results indicate that climate in this region may likely be warmer
and dryer in the future which may have greater implications for crop evapotranspiration and irrigation
requirement. Reference ET is highly dependence on change in weather conditions, especially air
temperatures. Various studies conducted in different regions have also indicated that reference ET has
continuously increased due to gradual rise in temperatures [81–83]. Results of this study have shown
that, in both climate change scenarios, monthly ETo is increasing gradually from January to the peak in
July and then decreasing gradually up to December. The highest increase in reference ET is from April
to September which is due to a hot and dry summer and low rainfall in these months as well as growth
period of crops [84]. Long-term future changes in ETo have indicated that it would increase in future
periods due to an increase in temperature, which would cause a gradual rise in irrigation requirement.
This study predicted that the crop irrigation requirement of fiver major crops (rice, sugarcane, maize,
wheat, and cotton) would increase in the future due to a gradual rise in ET in different months with
different magnitudes. Monthly sum of CIR of five crops is found to be the maximum in August
and minimum in January, which is related to ET and the growing stage. The reason why maximum
water demand takes place in August is mainly due to the fact that three crops (sugarcane, cotton,
and rice) out of five total crops have mid-season stage in August, resulting in more consumption of
water. Sugarcane and rice consume more water as compared to other crops [85]. References [84,86]
have analyzed impacts of climate change on crop water requirement of rice, sugarcane, maize, wheat,
and cotton and their analysis also indicated that crop water demand will increase due to the rise in
temperature in future scenarios.

Results of agriculture cropping patterns indicated that in future scenarios crop sown area of
sugarcane, wheat, and rice may exhibit an increasing trend while cotton and maize may exhibit a
reducing trend. This is because of the growing population demanding more food requirement to meet
their needs. Past studies indicated that food and fiber requirement in Pakistan has largely increased as
a result of rapid population growth, from 37.5 million in 1950 to 207 million in 2017 and is expected to
reach 333 million in 2050 [26]. Wheat, sugarcane, maize, rice, and cotton are major food and fiber crops
in Pakistan. In past years, the crops sown area of wheat, rice, and sugarcane has increased at a greater
rate because these are staple food crops and extensively used in daily life, also the product of these
crops are exported in other countries. Farmers are growing more crops on more land area to meet the
demand of the population, therefore, land and water resources of Pakistan are tremendously under
pressure to fulfill the growing needs of the population [27]. The study conducted by [87] indicated
that the area under major crops (fooder, wheat, rice, sugarcane, cotton) has been increased in the past
few years and will also increase more in the future to meet the food demand of a rapidly growing
population in Pakistan. In Rechna Doab, the total irrigated area from 1.94 Mha in 1961 to 2.12 Mha in
1990 and cropping intensity has increased from 91% in 1961 to 131% in 1980 [28]. In order to analyze
the net volume of water (Total CIR (m3) = CIR×A) consumed by individual crops, the sown area of
each crop was multiplied with the crop irrigation requirement of that crop. Assessment of individual
impacts of both climate and agriculture cropping patterns on CIR is crucial, that is why future CIR
is subjected to three further sub-scenarios S1 (changed climate), S2 (changed agriculture land uses),
and S3 (changed climate and agriculture land uses). The climate change scenarios indicate that future
CIR is likely to increase in the study area but at a less rate when compared with agricultural land use
change scenario. However combined affects (S3) of both parameters have much severe implications
for future CIR in Rechna Doab. This study serves as a first exploration on how the potential impacts
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on environmental sustainability of agricultural expansion and intensification can be expressed over
time, using a combination of approaches (land use and climate change scenarios). In order to gain a
deeper insight into the impacts at a regional scale, future studies need to include spatial analysis and
analyze additional climate change scenarios. Anyhow, this study has some limitations which may be
the subject of future investigations. Firstly, Kc values of different agricultures crops were taken from
FAO tables and relevant studies and these values were kept constant in the future periods to allow for
a less complicated process and more comprehensive analysis. Secondly, agriculture land use changes
in the form of crop sown area in future periods was just simulated using trend analysis based on the
historical rate. In practice, agriculture expansion may fluctuate because of many factors ranging from
population growth to socio-economic factors. Further attempts are required to simulate the crop sown
area in the future based on socio-economic factors, foods demands, as well as their value addition in
the market.

5. Conclusions

Irrigated agriculture is the largest water consuming sector in Rechna Doab. Growth of irrigated
surfaces and the changing climate has placed new demands on the irrigated water supply. This
study attempted to investigate current and projected changes in CIR under changing climate and
agriculture expansion. This study predicted that in the future, the climate of Rechna Doab, Pakistan,
will become warmer and dryer due to increasing temperatures and a decrease in rainfall and humidity.
During calibration and validation of the SDSM model, high consistency of results with observed
data indicated that the arid region of Rechna Doab is reliable for climate change prediction. The
SDSM-HadCM3 A2 scenario had the greatest changes, namely an increase of 1.10 to 3.51 ◦C and 0.9
to 3.02 ◦C in the monthly means of Tmax and Tmin, respectively while in the B2 scenario it could be
increased by 0.85–2.89 ◦C and 0.85–2.94 ◦C respectively in 2080 relative to the baseline (1961–1990).
The gradual rise in temperature may have significant implications on crop water demand. When these
increasing trends of temperatures were used to estimate future potential evapotranspiration using
CROPWAT, increases in ET of the crops were found leading to elevated CIR. Among all agriculture
crops, sugarcane was accounted as the major consumer of water, followed by rice which is at the 2nd
rank. Similarly, projected changes in agriculture land use changes in the form of cropping patterns
(crop sown area) depicted an increasing trend in the plantation area of sugarcane, wheat, and rice, while
maize and cotton predicted a decreasing trend with respect to the baseline scenario. Overall, analysis
presented that CIR is likely to increase under changing climate but at a less rate when predicted with
the agricultural land use change scenario. However, combined impacts of both parameters (climate
and agriculture land use changes) were found to be more severe for elevating CIR in the future period.
In this study, simulated future irrigation requirement is an important asset to identify the emerging
trends and support water management strategies.
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