Assessment of Surface Water Quality in the Baia Mare Area, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analysis
2.3. Water Pollution Assessment
2.4. Water Quality Index (WQI)
- (a)
- the assignment of the weights (wi) for each physico-chemical parameter based on its importance for the quality of the surface water;
- (b)
- the calculation of the relative weight (Wi) using Equation (4);
- (c)
- establishing the quality rating (qi) according to Equation (5);
- (d)
3. Results and Discussions
3.1. General Characteristics of the Surface Water
3.2. Cations and Anions Characteristics
3.3. Surface Water Pollution Indices
3.4. Water Quality Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crișan, O.A.; Bîrleanu, C.; Crișan, H.G.; Pustan, M.; Merie, V.; Șerdean, F. Eco-Innovation Analyses in the Management of Drinking Water Provided by the Main Suppliers in Romania. Int. J. Environ. Res. Public Health 2021, 18, 6232. [Google Scholar] [CrossRef] [PubMed]
- Romanian National Environmental Protection Agency. Annual Report on the State of the Environment in Romania for 2017. Environment Ministry: Bucuresti, Romania, 2018. Available online: http://www-old.anpm.ro/files2/Capitolul%203%20-%20Ap%C4%83_20071121453746.pdf (accessed on 15 February 2022). (In Romanian).
- Filip, S. Depresiunea și Munceii Băii Mari. Studiu de Geomorfologie Environmentală; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2008. (In Romanian) [Google Scholar]
- Levei, E.A.; Şenilă, M.; Miclean, M.; Roman, C.; Abraham, B.; Cordoş, E. Surface water pollution with heavy metals in Baia Mare mining basin. In Proceedings of the 15th International Congress of the International Soil Conservation Organization, Soil and Water Conservation, Climate Change and Environmental Sensitivity, Budapest, Hungary, 18–23 May 2008. [Google Scholar]
- Big, C.L.; Lăcătuşu, R.; Damian, F. Heavy Metals In Soil-Plant System Around Baia Mare City, Romania. Carpth J. Earth Environ. Sci. 2012, 7, 219–230. [Google Scholar]
- Cordos, E.A.; Roman, C.; Ponta, M.; Frentiu, T.; Rautiu, R. Evaluation of soil pollution with copper, lead, zinc and cadmium in the mining area Baia Mare. Rev. Chim. 2007, 58, 470–474. [Google Scholar]
- Damian, F.; Damian, G.; Lacatusu, R.; Macovei, G.; Iepure, G. Soils from the Baia Mare zone and the heavy metals pollution. Carpth J. Earth Environ. Sci. 2008, 3, 85–98. [Google Scholar]
- Damian, F.; Damian, G.; Macovei, G.; Iepure, G.; Nasui, D.; Napradean, I.; Chira, R.; Kollar, L. Spatial distribution and mobility of the heavy metals in soils from Baia Mare area. Studia UBB Ambient. 2008, LIII, 65–72. [Google Scholar]
- Bird, G.; Macklin, M.G.; Brewer, P.A.; Zaharia, S.; Bălteanu, D.; Driga, B.; Serban, M. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania. Environ. Geochem. Health 2009, 31, 741–758. [Google Scholar] [CrossRef]
- Frentiu, T.; Ponta, M.; Levei, E.; Cordos, E.A. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure. Chem. Paper 2009, 63, 239–248. [Google Scholar] [CrossRef]
- Gurzău, E.S.; Baciu, C.; Gurzău, A.E.; Surdu, S.; Damian, G. Impact of the tailing’s impoundments on groundwater quality in Bozânta area (Baia Mare–NW Romania) and human exposure. Carpth. J. Earth Environ. Sci. 2012, 7, 231–240. [Google Scholar]
- Lăcătuşu, R.; Kovacsovics, B.; Bretan, A.; Lungu, M. Heavy metals in the soil after the ecological accident in the Baia Mare area. In Proceedings of the 5th Inter. Symp. On Metal Elements in Environment, Medicine and Biology, Timișoara, Romania, 4–6 November 2002. [Google Scholar]
- Roba, C.; Roşu, C.; Ozunu, A.; Baciu, C. The intake of nickel, cadmium and manganese through the ingestion of groundwater from several private wells from Baia Mare (Romania) metropolitan area. Studia Ubb Ambient. 2015, LX, 109–116. [Google Scholar]
- Coman, M.; Oros, V.; Fălăuş, B.; Pop, R. Soil pollution with heavy metals-specific issues for Baia Mare area. ProEnvironment 2010, 3, 29–32. [Google Scholar]
- Coman, M.; Oros, V.; Miloiu, E.; Taro, G.; Pop, R. Phytoremediation possibilities for contaminated mining areas from Romania. ProEnvironment Promediu 2009, 2, 203–207. [Google Scholar]
- Smical, I.; Muntean, A.; Nour, E. Research on the Surface Water Quality in Mining Influenced Area in North-Western part of Romania. Geogr. Pannonica 2015, 20, 13–43. [Google Scholar] [CrossRef] [Green Version]
- Banabic, D. History of Romanian Technique and Industry, Vol. I. Mechanics, Processing Techniques and Constructions; Banabic, D., Ed.; Romanian Academy Publishing House: Bucharest, Romania, 2019. (In Romanian) [Google Scholar]
- Pencea, R.; Brădățan, T.; Simion, Ș. Baia Mare-Preview of the Disaster Caused by the Mining Industry, Mining Watch Romania. 2013. Available online: www.miningwatch.ro (accessed on 10 August 2022). (In Romanian).
- Bilgin, A. Evaluation of surface water quality by using Canadian Council of Ministers of the EnvironmentWater Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554. [Google Scholar] [CrossRef] [PubMed]
- Rakotondrabe, F.; Remy, J.; Ngoupayou, N.; Mfonka, Z.; Harilala Rasolomanana, E.; Nyangono Abolo, A.J.; Asone, B.L.; Ako, A.A.; Rakotondrabe, M.H. Assessment of Surface Water Quality of Bétaré-Oya Gold Mining Area (East-Cameroon). J. Water Resour. Prot. 2017, 9, 960–984. Available online: http://www.scirp.org/journal/jwarp (accessed on 10 August 2022). [CrossRef] [Green Version]
- Molekoa, M.D.; Avtar, R.; Kumar, P.; Thu Minh, H.V.; Dasgupta, R.; Johnson, B.A.; Sahu, N.; Verma, R.L.; Yunus, A.P. Spatio-TemporalAnalysis of SurfaceWater Quality in Mokopane Area, Limpopo, South Africa. Water 2021, 13, 220. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugov, E.; Dagad, V.S.; Charvet, P.; Vituleless, J. Effects of Mining on Surface Water-Case Studies. Encycl. Inland Waters 2022, 4, 170–188. [Google Scholar] [CrossRef]
- Pistea, I.C.; Rosu, C.; Roba, C.; Ozunu, A. Evaluation of groundwater quality for drinking and irrigation by calculating specific quality indexes. case study: Baia Mare mining area, Romania. Studia UBB Ambient. 2020, LXV, 43–57. [Google Scholar] [CrossRef]
- Modoi, O.C.; Roba, C.; Török, Z.; Ozunu, A. Environmental risks due to heavy metal pollution of water resulted from mining wastes in NW Romania. Environ. Eng. Manag. J. 2014, 13, 2325–2336. [Google Scholar]
- Prasad, B.; Bose, J. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ. Geol. 2001, 41, 183–188. [Google Scholar] [CrossRef]
- Milivojevic, J.; Krstic, D.; Šmit, B.; Djekic, V. Assessment of Heavy Metal Contamination and Calculation of Its Pollution Index for Uglješnica River, Serbia. Bull. Environ. Contam. Toxicol. 2016, 97, 737–742. [Google Scholar] [CrossRef]
- Tiwari, A.K.; De Maio, M.; Singh, P.K.; Mahato, M.K. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India. Bull. Environ. Contam. Toxicol. 2015, 95, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An index-number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotox. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Sener, S.; Sener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Hoaghia, M.A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar] [CrossRef]
- Moldovan, A.; Hoaghia, M.-A.; Török, A.I.; Roman, M.; Mirea, I.C.; Barabas, R.; Micle, V.; Cadar, O. Spatial Variation ofWater Chemistry in Aries River Catchment, Western Romania. Appl. Sci. 2021, 11, 6592. [Google Scholar] [CrossRef]
- Moldovan, A.; Hoaghia, M.-A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and Health Risk Assessment Associated with Water Consumption—A Case Study on Karstic Springs. Water 2020, 12, 3510. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Nandan, M.J. Groundwater chemistry integrating the pollution index of groundwater and evaluationof potential human health risk: A case study from hard rock terrain of south India. Ecotoxicol. Environ. Saf. 2020, 206, 111217. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.; Siddiqua, M.T.; Zahid, A.; Tasnim, S.S.; Rahman, M. Drinking appraisal of coastal groundwater in Bangladesh: An approach of multi-hazards towards water security and health safety. Chemosphere 2020, 255, 126933. [Google Scholar] [CrossRef]
- Plan de Mediu in Orasul Baia Mare. 2020. Available online: http://www.baiamare.ro/Baiamare/Proiecte/plam%20mediu/Partea%20II_PROFIL%20DE%20MEDIU.pdf (accessed on 10 August 2022). (In Romanian).
- Annual Report on the State of the Environment in Maramures County. 2020. Available online: http://apmmm.anpm.ro/rapoarte-anuale1 (accessed on 10 August 2022). (In Romanian).
- SR EN ISO 5667/2017. Water Quality. Sampling. Guide to Sampling Rivers and Streams. Available online: https://www.iso.org/standard/59903.html (accessed on 10 August 2022). (In Romanian).
- Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS User Community. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0017/670220/Eastern-Freshwater-Cod.pdf (accessed on 28 September 2022).
- Google Maps. Available online: https://www.google.ro/maps/place/Baia+Mare/@47.6234878,23.464441,9.66z/data=!4m5!3m4!1s0x4737dc70b4206f37:0x30914e534fa9d1dd!8m2!3d47.6567387!4d23.5849881 (accessed on 10 August 2022).
- Rosca, O.M.; Dippong, T.; Marian, M.; Mihali, C.; Mihalescu, L.; Hoaghia, M.A.; Jelea, M. Impact of anthropogenic activities on water quality parameters of glacial lakes from Rodnei mountains, Romania. Environ. Res. 2020, 182, 109136. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appiah-Opong, R.; Ofori, A.; Ofosuhene, M.; Ofori-Attah, E.; Nunoo, F.K.E.; Tuffour, I.; Gordon, C.; Arhinful, D.K.; Nyarko, A.K.; Fosu-Mensah, B.Y. Heavy metals concentration and pollution index (HPI) in drinking water along the southwest coast of Ghana. Appl. Water Sci. 2021, 11, 57. [Google Scholar] [CrossRef]
- ORDER no. 161 for the Approval of the Norm Regarding the Classification of Surface Water Quality in Order to Establish the Ecological Status of Water Bodies. Available online: http://www.monitoruljuridic.ro/monitorul-oficial/161/2006-02-21 (accessed on 10 August 2022). (In Romanian).
- Directive 2008/32/EC of the European Parliament and of the Council of 11 March 2008 Amending Directive 2000/60/EC Establishing a Framework for Community action in the field of water policy, as regards the implementing powers conferred on the Commission. 2008, pp. 60–61. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32008L0032 (accessed on 10 August 2022).
- Bhuiyan, M.A.; Islam, M.A.; Dampare, S.B.; Parvez, L.; Suzuki, S. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. J. Hazard. Mater. 2010, 179, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Edet, A.E.; Offiong, O.E. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Directive 98/83/EC of the European Parliament and of the Council of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN (accessed on 10 August 2022).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating first addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 10 August 2022).
- Wątor, K.; Zdechlik, R. Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality-Case study from the Podhale region (Southern Poland). Ecol. Indic. 2021, 121, 107098. [Google Scholar] [CrossRef]
- Singh, A.P.; Dhadse, K.; Ahalawat, J. Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision-making model, Environ. Monit. Assess. 2019, 191, 378. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Qian, H.; Jia, H.; Zhang, Q. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin. J. Clean. Prod. 2021, 316, 128329. [Google Scholar] [CrossRef]
- Rao, Q.; Sun, Z.; Tian, L.; Li, J.; Sun, W.; Sun, W. Assessment of arsenic and heavy metal pollution and ecological risk in inshore sediments of the Yellow River estuary, China. Stoch. Environ. Res. Risk Assess. 2018, 32, 2889–2902. [Google Scholar] [CrossRef]
- Cordos, E.; Rautiu, R.; Roman, R.; Ponta, M.; Frentiu, T.; Sarkany, A.; Fodorpataki, L.; Macalik, K.; McCormick, C.; Weiss, D. Characterization of the rivers system in the mining and industrial area of Baia Mare, Romania. Eur. J. Min. Process. 2003, 3, 1303–1868. [Google Scholar]
- Levei, E.; Frentiu, T.; Ponta, M. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries River basin, Western Romania. Chem. Cent. J. 2013, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Venkatesh, A.S.; Syed, T.H.; Reddy, A.G.S.; Kumar, M.; Kurakalva, R.M. Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba coalfield, Central India. Environ. Earth Sci. 2017, 76, 566. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nithila, P.; Reddy, S.J. Estimation of heavy metal in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health A 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, C.I.; Chira, R.; Bunea, A. Assessment of the Quality of Polluted Areas in Northwest Romania Based on the Content of Elements in Different Organs of Grapevine (Vitis vinifera L.). Molecules 2020, 25, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokarram, M.; Saber, A.; Sheykhi, V. Effects of heavy metal contamination on river water quality due to release of industrial effluents. J. Clean. Prod. 2020, 277, 123380. [Google Scholar] [CrossRef]
Parameter | LOD | Parameter | LOD | Parameter | LOD |
---|---|---|---|---|---|
Cd (µgL−1) | 0.110 | Mn (µgL−1) | 0.090 | NO2−(mgL−1) | 0.050 |
Cr (µgL−1) | 0.020 | As (µgL−1) | 0.026 | Cl− (mgL−1) | 0.020 |
Cu (µgL−1) | 0.200 | Ca (mgL−1) | 0.004 | SO42− (mgL−1) | 0.030 |
Ni (µgL−1) | 0.026 | Mg (mgL−1) | 0.009 | F− (mgL−1) | 0.010 |
Zn (µgL−1) | 0.330 | Na (mgL−1) | 0.010 | PO43− (mgL−1) | 0.080 |
Pb (µgL−1) | 0.270 | K (mgL−1) | 0.012 | HCO3− (mgL−1) | 20 |
Fe (µgL−1) | 0.190 | NO3− (mgL−1) | 0.010 |
Indices | Water Quality | |||
---|---|---|---|---|
HPI [25,51] | HPI < 100 | low pollution | ||
HPI ≥ 100 | critical pollution | |||
HEI [48] | HEI < 10 | low pollution | ||
10 ≤ HEI < 20 | moderate pollution | |||
HEI ≥ 20 | high pollution | |||
WQI [28] | WQI < 25 | excellent quality | ||
25 ≤ WQI < 50 | good quality | |||
50 ≤ WQI < 75 | medium quality | |||
75 ≤ WQI < 100 | poor quality | |||
WQI ≥ 100 | extremely poor quality |
Sample/ References | Years | Ni | Cr | Cu | Zn | Pb | Cd | Fe | Mn | As | |
---|---|---|---|---|---|---|---|---|---|---|---|
mgL−1 | |||||||||||
P1 | 2021 | Average | -* | 1.57 | 0.056 | -* | -* | -* | - | - | - |
SD | - | 0.010 | 0.001 | - | - | - | - | - | - | ||
2022 | Average | 0.496 | 0.707 | 0.059 | -* | -* | -* | -* | -* | -* | |
SD | 0.018 | 0.014 | 0.004 | - | - | - | - | - | - | ||
P2 | 2021 | Average | -* | 1.380 | 0.036 | 3.10 | -* | -* | - | - | - |
SD | - | 0.121 | 0.010 | 0.435 | - | - | - | - | - | ||
2022 | Average | 0.718 | 0.165 | 0.133 | 3.398 | -* | -* | 0.070 | -* | -* | |
SD | 0.007 | 0.007 | 0.004 | 0.028 | - | - | 0.005 | - | - | ||
P3 | 2021 | Average | -* | 1.243 | 0.051 | -* | -* | -* | - | - | - |
SD | - | 0.078 | 0.010 | - | - | - | - | - | - | ||
2022 | Average | 0.518 | 0.845 | 0.195 | -* | -* | -* | -* | 3.903 | -* | |
SD | 0.010 | 0.019 | 0.005 | - | - | - | - | 0.012 | - | ||
Smical et al. [16] | 1999 | Average | 0.022 | - | 0.050 | 0.680 | 0.020 | 0.045 | 0.50 | 2.520 | - |
2007 | Average | 0.040 | - | 0.110 | 0.990 | 0.140 | 0.048 | 1.80 | 2.310 | - | |
2009 | Average | 0.043 | - | 0.175 | 1.300 | 0.090 | 0.054 | 1.20 | 2.320 | - | |
2011 | Average | 0.031 | - | 0.022 | 0.580 | 0.020 | 0.020 | 0.55 | 1.180 | - | |
Cordos et al. [6] | 2001 | Average | - | - | 0.060 | 1.010 | 0.045 | 0.005 | - | - | - |
Sample | Ca | Mg | Na | K | NO3− | NO2− | Cl− | SO42− | F− | PO43− | HCO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mgL−1 | ||||||||||||
P1 | Average | 94.6 | 22.2 | 16.2 | 6.38 | 46.7 | -* | 39.6 | 102 | 0.09 | -* | 85.4 |
SD | 1.277 | 2.536 | 1.308 | 0.244 | 1.929 | - | 1.136 | 1.732 | 0.006 | - | 0.794 | |
P2 | Average | 17.9 | 3.94 | 5.49 | 2.35 | 1.25 | -* | 3.00 | 15.1 | 0.11 | -* | 39.6 |
SD | 1.300 | 0.440 | 0.503 | 0.157 | 0.207 | - | 0.197 | 0.700 | 0.003 | - | 0.985 | |
P3 | Average | 80.9 | 12.5 | 7.03 | 2.95 | 24.8 | -* | 35.8 | 229 | 0.06 | -* | 30.5 |
SD | 0.700 | 1.229 | 0.313 | 0.238 | 0.265 | - | 0.954 | 16.523 | 0.002 | - | 1.473 |
Sample | HPI | HEI | WQI | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
P1 | 16.6 | 96.1 | 7.89 | 11.1 | 167 | 195 |
P2 | 18.4 | 142 | 10.0 | 12.2 | 183 | 211 |
P3 | 15.7 | 118 | 6.62 | 12.5 | 141 | 230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. https://doi.org/10.3390/w14193118
Sur IM, Moldovan A, Micle V, Polyak ET. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water. 2022; 14(19):3118. https://doi.org/10.3390/w14193118
Chicago/Turabian StyleSur, Ioana Monica, Ana Moldovan, Valer Micle, and Evelyn Terez Polyak. 2022. "Assessment of Surface Water Quality in the Baia Mare Area, Romania" Water 14, no. 19: 3118. https://doi.org/10.3390/w14193118
APA StyleSur, I. M., Moldovan, A., Micle, V., & Polyak, E. T. (2022). Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water, 14(19), 3118. https://doi.org/10.3390/w14193118