Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology
Abstract
:1. Introduction
2. The Fe0/H2O System
2.1. General Aspects
2.2. Fe0 Corrosion under Anoxic Conditions
2.3. Fe0 Corrosion under Oxic Conditions
2.4. Dynamics of the Fe0/H2O System
3. Arguments against the Reductive Transformation Concept
4. Arguments against the Adsorption/Co-Precipitation Concept
5. Development of a New Research Tool for Fe0/H2O Systems: The MB Method
6. Concluding Remarks
- operational reference Fe0 materials are needed to enable at least a semi-quantitative comparison of results achieved under independent conditions.
- experiments regarding the operating mode of filtration Fe0/H2O systems should be performed under diffusion-controlled conditions.
- pure Fe0 filters (100% Fe0) are not sustainable. Thus, Fe0 should always be mixed with non-expansive aggregates like pumice or sand.
- results based on the reductive transformation concept have been the cornerstone for the development of the adsorption/co-precipitation concept. Accordingly, observations and recommendations/suggestions anchored on the adsorption/co-precipitation concept should be acknowledged as valuable contributions in transferring scientific knowledge.
- the entire environmental research community should question the validity of the view that Fe0 is a (strong) reducing agent under environmental conditions.
- the MB method is a powerful tool for characterizing the dynamics of Fe0/H2O systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, M.N. The Quest for Pure Water: The History of Water Purification from the Earliest Records to the Twentieth Century; American Water Works Assn: New York, NY, USA, 1948; p. 527. [Google Scholar]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p. 674. [Google Scholar]
- Henderson, A.D.; Demond, A.H. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci. 2007, 24, 401–423. [Google Scholar] [CrossRef][Green Version]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Bischof, G. The Purification of Water: Embracing the Action of Spongy Iron on Impure Water; Bell and Bain: Glasgow, Scotland, 1873; p. 19. [Google Scholar]
- Devonshire, E. The purification of water by means of metallic iron. J. Frankl. Inst. 1890, 129, 449–461. [Google Scholar] [CrossRef]
- Baker, M.N. Sketch of the history of water treatment. J. Am. Water Works Assoc. 1934, 26, 902–938. [Google Scholar] [CrossRef]
- Crane, R.A.; Noubactep, C. Elemental metals for environmental remediation: Learning from hydrometallurgy. Fresenius Environ. Bull. 2012, 21, 1192–1196. [Google Scholar]
- Mwakabona, H.T.; Ndé-Tchoupé, A.I.; Njau, K.N.; Noubactep, C.; Wydra, K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 2017, 117, 127–142. [Google Scholar] [CrossRef]
- Gheju, M. Progress in understanding the mechanism of CrVI Removal in Fe0-based filtration systems. Water 2018, 10, 651. [Google Scholar] [CrossRef][Green Version]
- Antia, D.D.J. Water treatment and desalination using the eco-materials n-Fe0 (ZVI), n-Fe3O4, n-FexOyHz[mH2O], and n-Fex[Cation]nOyHz[Anion]m [rH2O]. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Ed.; Springer Nature: Basel, Switzerland, 2020; pp. 1–85. [Google Scholar] [CrossRef]
- Gillham, R.W.; O’Hannesin, S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 1994, 32, 958–967. [Google Scholar] [CrossRef]
- Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, 2045–2053. [Google Scholar] [CrossRef]
- O’Hannesin, S.F.; Gillham, R.W. Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water 1998, 36, 164–170. [Google Scholar] [CrossRef]
- Reynolds, G.W.; Hoff, J.T.; Gillham, R.W. Sampling bias caused by materials used to monitor halocarbons in groundwater. Environ. Sci. Technol. 1990, 24, 135–142. [Google Scholar] [CrossRef]
- Lee, G.; Rho, S.; Jahng, D. Design considerations for groundwater remediation using reduced metals. Korean J. Chem. Eng. 2004, 21, 621–628. [Google Scholar] [CrossRef]
- Gillham, R.W. Development of the granular iron permeable reactive barrier technology (good science or good fortune). In Advances in Environmental Geotechnics, Proceedings of the International Symposium on Geoenvironmental Engineering, Hangzhou, China, 8–10 September 2007; Chen, Y., Tang, X., Zhan, L., Eds.; Springer: Berlin, Germany; London, UK, 2008; pp. 5–15. [Google Scholar]
- Totten, L.A.; Assaf-Anid, N.M. Abiotic Dehalogenation by Metals. In Dehalogenation; Häggblom, M.M., Bossert, I.D., Eds.; Springer: Boston, MA, USA, 2004. [Google Scholar] [CrossRef]
- McMurty, D.C.; Elton, R.O. New approach to in-situ treatment of contaminated groundwaters. Environ. Progr. 1985, 4/3, 168–170. [Google Scholar] [CrossRef]
- Burris, D.R.; Campbell, T.J.; Manoranjan, V.S. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol. 1995, 29, 2850–2855. [Google Scholar] [CrossRef]
- Warren, K.D.; Arnold, R.G.; Bishop, T.L.; Lindholm, L.C.; Betterton, E.A. Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zero-valence metals. J. Hazard. Mater. 1995, 41, 217–227. [Google Scholar] [CrossRef]
- Roberts, A.L.; Totten, L.A.; Arnold, W.A.; Burris, D.R.; Campbell, T.J. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol. 1996, 30, 2654–2659. [Google Scholar] [CrossRef]
- Weber, E.J. Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 1996, 30, 716–719. [Google Scholar] [CrossRef]
- Burris, D.R.; Allen-King, R.M.; Manoranjan, V.S.; Campbell, T.J.; Loraine, G.A.; Baolin, D. Chlorinated ethene reduction by cast iron: Sorption and mass transfer. J. Environ. Eng. 1998, 124, 1012–1019. [Google Scholar] [CrossRef]
- Fiedor, J.N.; Bostick, W.D.; Jarabek, R.J.; Farrel, J. Understanding the mechanism, of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ. Sci. Technol. 1998, 32, 1466–1473. [Google Scholar] [CrossRef]
- Gu, B.; Liang, L.; Dickey, M.J.; Yin, X.; Dai, S. Reductive precipitation of uranium (VI) by zero-valent iron. Environ. Sci. Technol. 1998, 32, 3366–3373. [Google Scholar] [CrossRef]
- Lipczynska-Kochany, E.; Harms, S.; Milburn, R.; Sprah, G.; Nadarajah, N. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds. Chemosphere 1994, 29, 1477–1489. [Google Scholar] [CrossRef]
- Schreier, C.G.; Reinhard, M. Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate. Chemosphere 1994, 29, 1743–1753. [Google Scholar] [CrossRef]
- Cantrell, K.J.; Kaplan, D.I.; Wietsma, T.W. Zero-valent iron for the in situ remediation of selected metals in groundwater. J. Hazard. Mater. 1995, 42, 201–212. [Google Scholar] [CrossRef]
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and inactivation of waterborne viruses using zerovalent iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef]
- Konadu-Amoah, B.; Hu, R.; Yang, H.; Cao, V.; Ndé-Tchoupé, A.I.; Gwenzi, W.; Ruppert, H.; Noubactep, C. Realizing the potential of metallic iron for environmental remediation: Flee or adapt? Appl. Water Sci. 2022, 12, 27. [Google Scholar] [CrossRef]
- Warner, S.D. Two Decades of Application of Permeable Reactive Barriers to Groundwater Remediation. In Permeable Reactive Barrier Sustainable Groundwater Remediation; Naidu, R., Birke, V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 25–39. ISBN 978-1-4822-2447-4. [Google Scholar]
- Thakur, A.K.; Vithanage, M.; Das, D.B.; Kumar, M. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Huang, J.; Jones, A.; Waite, T.D.; Chen, Y.; Huang, X.; Rosso, K.M.; Kappler, A.; Mansor, M.; Tratnyek, P.G.; Zhang, H. Fe(II) redox chemistry in the environment. Chem. Rev. 2021, 121, 8161–8233. [Google Scholar] [CrossRef]
- Lanet, P.; Deluchat, V.; Baudu, M. Relevant design parameters for a reactor used in P removal with ZVI-based materials. J. Ind. Eng. Chem. 2021, 104, 8–21. [Google Scholar] [CrossRef]
- Tao, R.; Yang, H.; Cui, X.; Xiao, M.; Gatcha-Bandjun, N.; Kenmogne-Tchidjo, J.F.; Lufingo, M.; Konadu-Amoah, B.; Tepong-Tsindé, R.; Ndé-Tchoupé, A.I.; et al. The suitability of hybrid Fe0/aggregate filtration systems for water treatment. Water 2022, 14, 260. [Google Scholar] [CrossRef]
- Xiao, M.; Hu, R.; Ndé-Tchoupé, A.I.; Gwenzi, W.; Noubactep, C. Metallic iron for water remediation: Plenty of room for collaboration and convergence to advance the science. Water 2022, 14, 1492. [Google Scholar] [CrossRef]
- Huang, Y.H.; Tang, C.; Zeng, H. Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system. Chem. Eng. J. 2012, 200–202, 257–263. [Google Scholar] [CrossRef]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; Sharma, M. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Eckart, K.; Sabet, S.; Chiu, P.C.; Sapkota, A.R.; Handy, E.T.; East, C.L.; Kniel, K.E.; Sharma, M. Escherichia coli reduction in water by zero-valent iron–sand filtration is based on water quality parameters. Water 2021, 13, 2702. [Google Scholar] [CrossRef]
- Kumar, A.; Ahammed, M.M.; Shaikh, I.N. Zero-valent iron-modified sand filters for greywater treatment. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health A 2007, 42, 1869–1878. [Google Scholar] [CrossRef]
- Banerji, T.; Chaudhari, S. A cost-effective technology for arsenic removal: Case study of zerovalent iron-based IIT Bombay arsenic filter in West Bengal. In Water and Sanitation in the New Millennium; Nath, K., Sharma, V., Eds.; Springer: New Delhi, India, 2017; pp. 127–137. [Google Scholar]
- George, D.; Ahammed, A.M. Effect of zero-valent iron amendment on the performance of biosand filters. Water Supply 2019, 19, 1612–1618. [Google Scholar] [CrossRef]
- Tepong-Tsindé, R. Designing and piloting a household filter for the peri-urban population of Douala (Cameroon). Freib. Online Geosci. 2021, 61, 1–90. [Google Scholar]
- Chen, Q.; Fan, G.; Na, W.; Liu, J.; Cui, J.; Li, H. Past, present, and future of groundwater remediation research: A scientometric analysis. Int. J. Environ. Res. Public Health 2019, 16, 3975. [Google Scholar] [CrossRef][Green Version]
- Li, X.; Li, Z.; Du, C.; Tian, Z.; Zhu, Q.; Li, G.; Shen, Q.; Li, C.; Li, J.; Li, W.; et al. Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019. Environ. Sci. Pollut. Res. 2021, 28, 4200–34210. [Google Scholar] [CrossRef]
- Ghauch, A. Iron-based metallic systems: An excellent choice for sustainable water treatment. Freib. Online Geosci. 2015, 32, 1–80. [Google Scholar]
- Gheju, M.; Balcu, I. Sustaining the efficiency of the Fe(0)/H2O system for Cr(VI) removal by MnO2 amendment. Chemosphere 2019, 214, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Ndé-Tchoupé, A.I.; Cao, V.; Gwenzi, W.; Noubactep, C. Metallic iron for environmental remediation: The fallacy of the electron efficiency concept. Front. Environ. Chem. 2021, 2, 677813. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.; Birke, V. Permeable Reactive Barrier: Sustainable Groundwater Remediation; Taylor & Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2015; p. 333. ISBN 978-1-4822-2447-4. [Google Scholar]
- Lewandowsky, S.; Cook, J.; Lloyd, E. The ‘Alice in Wonderland’ mechanics of the rejection of (climate) science: Simulating coherence by conspiracism. Synthese 2018, 195, 175–196. [Google Scholar] [CrossRef][Green Version]
- Schmid, P.; Betsch, C. Effective strategies for rebutting science denialism in public discussions. Nat. Hum. Behav. 2019, 3, 931–939. [Google Scholar] [CrossRef]
- Lewandowsky, S. Climate change disinformation and how to combat it. Annu. Rev. Public Health 2021, 42, 1–21. [Google Scholar] [CrossRef]
- Houran, J. An introduction and mission of building bridges to reach the unknown. J. Sci. Explor. 2022, 36, 3–7. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Ballard, T.; Oberauer, K.; Benestad, R. A blind expert test of contrarian claims about climate data. Glob. Environ. Chang. 2016, 39, 91–97. [Google Scholar] [CrossRef][Green Version]
- Von Goethe, J.W. Conversations with Johann Peter Eckermann, 30 December 1823. Available online: www.aphorismen.de (accessed on 26 September 2022).
- Noubactep, C. Should the term ‘metallic iron’ appear in the title of a research paper? Chemosphere 2022, 287, 132314. [Google Scholar] [CrossRef]
- Cao, V.; Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Noubactep, C. The mechanism of contaminant removal in Fe(0)/H2O systems: The burden of a poor literature review. Chemosphere 2021, 280, 130614. [Google Scholar] [CrossRef]
- Cao, V.; Yang, H.; Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Noubactep, C. Tracing the Scientific History of Fe0-Based Environmental Remediation Prior to the Advent of Permeable Reactive Barriers. Processes 2020, 8, 977. [Google Scholar] [CrossRef]
- Hu, R.; Yang, H.; Tao, R.; Cui, X.; Xiao, M.; Amoah, B.K.; Cao, V.; Lufingo, M.; Soppa-Sangue, N.P.; Ndé-Tchoupé, A.I.; et al. Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. Water 2020, 12, 641. [Google Scholar] [CrossRef][Green Version]
- Hu, R.; Noubactep, C. Redirecting research on Fe0 for environmental remediation: The search for synergy. Int. J. Environ. Res. Public Health 2019, 16, 4465. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Noubactep, C. The operating mode of Fe0/H2O systems: Hidden truth or repeated nonsense? Fresenius Environ. Bull. 2019, 28, 8328–8330. [Google Scholar]
- Ebelle, T.C.; Makota, S.; Tepong-Tsindé, R.; Nassi, A.; Noubactep, C. Metallic iron and the dialogue of the deaf. Fresenius Environ. Bull. 2019, 28, 8331–8340. [Google Scholar]
- Hu, R.; Cui, X.; Gwenzi, W.; Wu, S.; Noubactep, C. Fe0/H2O systems for environmental remediation: The scientific history and future research directions. Water 2018, 10, 1739. [Google Scholar] [CrossRef][Green Version]
- Hu, R.; Noubactep, C. Iron corrosion: Scientific heritage in jeopardy. Sustainability 2018, 10, 4138. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. Metallic iron for environmental remediation: How experts maintain a comfortable status quo. Fresenius Environ. Bull. 2018, 27, 1379–1393. [Google Scholar]
- Makota, S.; Nde-Tchoupe, A.I.; Mwakabona, H.T.; Tepong-Tsindé, R.; Noubactep, C.; Nassi, A.; Njau, K.N. Metallic iron for water treatment: Leaving the valley of confusion. Appl. Water Sci. 2017, 7, 4177–4196. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C.; Makota, S.; Bandyopadhyay, A. Rescuing Fe0 remediation research from its systemic flaws. Res. Rev. Insights 2017, 1, 1–8. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. Predicting the hydraulic conductivity of metallic iron filters: Modeling gone astray. Water 2016, 8, 162. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. Research on metallic iron for environmental remediation: Stopping growing sloppy science. Chemosphere 2016, 153, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C. No scientific debate in the zero-valent iron literature. CLEAN Soil Air Water 2016, 44, 330–332. [Google Scholar] [CrossRef]
- Noubactep, C. Metallic iron for environmental remediation: A review of reviews. Water Res. 2015, 85, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C. Water remediation by metallic iron: Much ado about nothing—As profitless as water in a sieve? CLEAN Soil Air Water 2014, 42, 1177–1178. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. Flaws in the design of Fe0-based filtration systems? Chemosphere 2014, 117, 104–107. [Google Scholar] [CrossRef]
- Kobbe-Dama, N.; Noubactep, C.; Tchatchueng, J.B. Metallic iron for water treatment: Prevailing paradigm hinders progress. Fresenius Environ. Bull. 2013, 22, 2953–2957. [Google Scholar]
- Gatcha-Bandjun, N.; Noubactep, C. Metallic iron for environmental remediation: Missing the ‘valley of death’. Fresenius Environ. Bull. 2013, 22, 2632–2639. [Google Scholar]
- Noubactep, C. Metallic iron for environmental remediation: The long walk to evidence. Corros. Rev. 2013, 31, 51–59. [Google Scholar] [CrossRef][Green Version]
- Togue-Kamga, F.; Btatkeu, K.B.D.; Noubactep, C.; Woafo, P. Metallic iron for environmental remediation: Back to textbooks. Fresenius Environ. Bull. 2012, 21, 1992–1997. [Google Scholar]
- Noubactep, C. Metallic iron for water treatment: A knowledge system challenges mainstream science. Fresenius Environ. Bull. 2011, 20, 2632–2637. [Google Scholar]
- Noubactep, C. Aqueous contaminant removal by metallic iron: Is the paradigm shifting? Water SA 2011, 37, 419–426. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C.; Caré, S. On nanoscale metallic iron for groundwater remediation. J. Hazard. Mater. 2010, 182, 923–927. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Noubactep, C. The suitability of metallic iron for environmental remediation. Environ. Prog. 2010, 29, 286–291. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. An Analysis of the Evolution of Reactive Species in Fe0/H2O Systems. J. Hazard. Mater. 2009, 168, 1626. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C.; Schöner, A. Fe0-based alloys for environmental remediation: Thinking outside the box. J. Hazard. Mater. 2009, 165, 1210–1214. [Google Scholar] [CrossRef]
- Noubactep, C. On the validity of specific rate constants (kSA) in Fe0/H2O systems. J. Hazard. Mater. 2009, 164, 835–837. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. On the operating mode of bimetallic systems for environmental remediation. J. Hazard. Mater. 2009, 164, 394–395. [Google Scholar] [CrossRef]
- Noubactep, C. A critical review on the mechanism of contaminant removal in Fe0–H2O systems. Environ. Technol. 2008, 29, 909–920. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C. Processes of contaminant removal in “Fe0–H2O” systems revisited. The importance of co-precipitation. Open Environ. Sci. 2007, 1, 9–13. [Google Scholar] [CrossRef][Green Version]
- Flury, B.; Eggenberger, U.; Mäder, U. First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater. Appl. Geochem. 2009, 24, 687–696. [Google Scholar] [CrossRef]
- Burghardt, D. Ermittlung Geochemischer, Geomikrobiologischer und Geotechnischer Grundlagen zur In-Situ-Immobilisierung von Arsen, Uran und Radium durch eine ‘Reaktive-Zonen’-Technologie. Ph.D. Dissertation, BTU Cottbus, Cottbus, Germany, 2006. [Google Scholar]
- Cundy, A.B.; Hopkinson, L.; Whitby, R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Tot. Environ. 2008, 400, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008, 14, 145–156. [Google Scholar] [CrossRef]
- Noubactep, C. Neue Konzepte zur Entwicklung einer Versuchsanordnung zur Prozessuntersuchung in Fe0/H2O-Systemen. Afrika & Wissenschaft, NS2-August. 2015. Available online: https://africa-and-science.com/?p=7323 (accessed on 3 September 2022).
- Noubactep, C. Stellungnahme zum kommentar der kollegen Ebert und koautoren in TerraTech 7-8/07 zu meinen Beiträgen “das ende eines mythos” und “zur funktion reaktiver wände”. TerraTech 2007, 9, TT3-4. [Google Scholar]
- Noubactep, C. Zur Funktion reaktiver Wände: Die Entstehung der Ansicht der Schadstoffreduktion an der Oberfläche des elementaren Eisens (Fe0). wlb Wasser, Luft und Boden, 50 (3/4). TerraTech 2007, 3–4, TT10-14. [Google Scholar]
- Noubactep, C. Das Ende eines Mythos: Direkte Schadstoffreduktion durch elementares Eisen (Fe0) widerspricht drei Jahrhunderten Korrosionsforschung. TerraTech 2006, 11–12, TT11-14. [Google Scholar]
- Noubactep, C. Untersuchungen zur Passiven In-Situ-Immobilisierung von U(VI) aus Wasser. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2002. Available online: https://katalog.ub.tu-freiberg.de/Record/0-233517979/HierarchyTree?recordID=0-233517979 (accessed on 3 September 2022).
- Puls, R.W.; Paul, C.J.; Powell, R.M. The application of in situ permeable reactive (zero valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Appl. Geochem. 1999, 14, 989–1000. [Google Scholar] [CrossRef]
- Whitney, W.R. The corrosion of iron. J. Am. Chem. Soc. 1903, 25, 4, 394–406. [Google Scholar] [CrossRef]
- Mantha, R.; Taylor, K.E.; Biswas, N.; Bewtra, J.K. A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater. Environ. Sci. Technol. 2001, 35, 3231–3236. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kim, J.-W.; Watkins, J.; Wilkin, R.T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 2002, 36, 5469–5475. [Google Scholar] [CrossRef]
- Mielczarski, J.A.; Atenas, G.M.; Mielczarski, E. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Appl. Catal. B 2005, 56, 289–303. [Google Scholar] [CrossRef]
- Roden, E.; Sobolev, D.; Glazer, B.; Luther, G.W., III. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol. J. 2004, 21, 379–391. [Google Scholar] [CrossRef][Green Version]
- Gheju, M. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 2011, 222, 103–148. [Google Scholar] [CrossRef]
- Btatkeu-K., B.D.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Manag. 2016, 166, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Konadu-Amoah, B.; Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Noubactep, C. Investigating the Fe0/H2O systems using the methylene blue method: Validity, applications and future directions. Chemosphere 2022, 291, 132913. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, K. Optimizing the design of metallic iron filters for water treatment. Freib. Online Geosci. 2012, 32, 1–60. [Google Scholar]
- Wilkin, R.T.; Acree, S.D.; Ross, R.R.; Puls, R.W.; Lee, T.R.; Woods, L.L. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Sci. Tot. Environ. 2014, 468–469, 186–194. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Lee, T.R.; Sexton, M.R.; Acree, S.D.; Puls, R.W.; Blowes, D.W.; Kalinowski, C.; Tilton, J.M.; Woods, L.L. Geochemical and isotope study of trichloroethene degradation in a zero-valent iron permeable reactive barrier: A twenty-two-year performance evaluation. Environ. Sci. Technol. 2019, 53, 296–306. [Google Scholar] [CrossRef]
- Caré, S.; Crane, R.; Calabrò, P.S.; Ghauch, A.; Temgoua, E.; Noubactep, C. Modeling the permeability loss of metallic iron water filtration systems. CLEAN Soil Air Water 2013, 41, 275–282. [Google Scholar] [CrossRef][Green Version]
- Domga, R.; Togue-Kamga, F.; Noubactep, C.; Tchatchueng, J.B. Discussing porosity loss of Fe0 packed water filters at ground level. Chem. Eng. J. 2015, 263, 127–134. [Google Scholar] [CrossRef]
- Yang, H.; Hu, R.; Ruppert, H.; Noubactep, C. Modeling porosity loss in Fe0-based permeable reactive barriers with Faraday’s law. Sci. Rep. 2021, 11, 16998. [Google Scholar] [CrossRef]
- Birke, V.; Schuett, C.; Burmeier, H.; Friedrich, H.-J. Impact of trace elements and impurities in technical zero-valent iron brands on reductive dechlorination of chlorinated ethenes in groundwater. In Permeable Reactive Barrier Sustainable Groundwater Remediation; Naidu, R., Birke, V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 87–98. ISBN 978-1-4822-2447-4. [Google Scholar]
- Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X. Characterization methods of zerovalent iron for water treatment and remediation. Water Res. 2019, 148, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Lufingo, M.; Ndé-Tchoupé, A.I.; Hu, R.; Njau, K.N.; Noubactep, C. A novel and facile method to characterize the suitability of metallic iron for water treatment. Water 2019, 11, 2465. [Google Scholar] [CrossRef][Green Version]
- McGuire, M.M.; Carlson, D.L.; Vikesland, P.J.; Kohn, T.; Grenier, A.C.; Langley, L.A.; Roberts, A.L.; Fairbrother, D.H. Applications of surface analysis in the environmental sciences: Dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces. Anal. Chim. Acta 2003, 496, 301–313. [Google Scholar] [CrossRef][Green Version]
- Sadik, O.A.; Wanekaya, A.K.; Andreescu, S. Advances in analytical technologies for environmental protection and public safety. J. Environ. Monit. 2004, 6, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Halada, G.P. Complementary spectroscopic techniques to model the association of contaminant uranium with structural surfaces. J. Electron Spectrosc. Relat. Phenom. 2006, 150, 185–194. [Google Scholar] [CrossRef]
- Kelly, D.G.; Bennett, L.G.I.; Fill, M.M.; Mattson, K.M.; Nielsen, K.S.; White, S.D.; Allen, J.F. Analytical methods for the environmental quantification of uranium isotopes: Method of validation and environmental application. J. Radioanal. Nucl. Chem. 2008, 278, 807–811. [Google Scholar] [CrossRef]
- Celiz, M.D.; Tso, J.; Aga, D.S. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009, 28, 2473–2484. [Google Scholar] [CrossRef]
- Nödler, K.; Licha, T.; Bester, K.; Sauter, M. Development of a multi-residue analytical method, based on liquid chromatography–tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J. Chromat. A 2010, 1217, 6511–6521. [Google Scholar] [CrossRef]
- Khudenko, B.M. Feasibility evaluation of a novel method for destruction of organics. Water Sci. Technol. 1991, 23, 1873–1881. [Google Scholar] [CrossRef]
- Farrell, J.; Bostick, W.D.; Jarabeck, R.J.; Fiedor, J.N. Uranium removal froum ground water using zero valent iron media. Ground Water 1999, 34, 618–624. [Google Scholar] [CrossRef]
- Noubactep, C.; Meinrath, G.; Dietrich, P.; Merkel, B. Mitigating uranium in groundwater: Prospects and limitations. Environ. Sci. Technol. 2003, 37, 4304–4308. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Meinrath, G.; Merkel, J.B. Investigating the mechanism of uranium removal by zerovalent iron materials. Environ. Chem. 2005, 2, 235–242. [Google Scholar] [CrossRef][Green Version]
- Noubactep, C.; Schöner, A.; Meinrath, G. Mechanism of uranium (VI) fixation by elemental iron. J. Hazard Mater. 2006, 132, 202–212. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Savvin, S.B. Analytical use of arsenazo III: Determination of thorium, zirconium, uranium and rare earth elements. Talanta 1961, 8, 673–685. [Google Scholar] [CrossRef]
- Savvin, S.B. Analytical applications of arsenazo III—III: The mechanism of complex formation between arsenazo III and certain elements. Talanta 1964, 11, 7–19. [Google Scholar] [CrossRef]
- Kalin, M.; Wheeler, W.N.; Meinrath, G. The removal of uranium from mining waste water using algal/microbial biomass. J. Environ. Radioact. 2005, 78, 151–177. [Google Scholar] [CrossRef]
- Jang, J.-H.; Dempsey, B.A.; Burgos, W.D. Solubility of Schoepite: Comparison and selection of complexation constants for U(VI). Water Res. 2006, 40, 2738–2746. [Google Scholar] [CrossRef]
- Liao, C.-H.; Chen, I.-M.; Chang, Y.-F.; Lu, M.-C. Removal of dichloromethane and trichloroethylene by suspended zero valent iron and ultraviolet irradiation. J. Environ. Sci. Health Part A 2003, 38, 1717–1729. [Google Scholar] [CrossRef]
- Choe, S.; Liljestrand, H.M.; Khim, J. Nitrate reduction by zero-valent iron under different pH regimes. Appl. Geochem. 2004, 19, 335–342. [Google Scholar] [CrossRef]
- Yang, G.C.; Lee, H.-L. Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 2005, 39, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Allin, K. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environ. Sci. Technol. 2005, 39, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Amrhein, C.; Zhang, Y.; Matsumoto, M.R. Factors influencing arsenite removal by zero-valent iron. J. Environ. Eng. 2006, 132, 1459–1469. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.A. Pharmaceutical wastewater degradation: Effective and economical treatment using waste-metallic iron shavings. Int. J. Environ. Stud. 2014, 71, 200–208. [Google Scholar] [CrossRef]
- Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Phosphate removal from aqueous solutions using zero valent iron (ZVI): Influence of solution composition and ZVI aging. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 1–10. [Google Scholar] [CrossRef]
- Sarr, D. Zero-valent-iron permeable reactive barriers—How long will they last? Remediation 2001, 11, 1–18. [Google Scholar]
- Liu, H.; Wang, Q.; Wang, C.; Li, X.-z. Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chem. Eng. J. 2013, 215–216, 90–95. [Google Scholar] [CrossRef]
- Mackenzie, P.D.; Horney, D.P.; Sivavec, T.M. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 1999, 68, 1–17. [Google Scholar] [CrossRef]
- Kenneke, J.F.; McCutcheon, S.C. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Environ. Sci. Technol. 2003, 37, 2829–2835. [Google Scholar] [CrossRef]
- Westerhoff, P.; James, J. Nitrate removal in zero-valent iron packed columns. Water Res. 2003, 37, 1818–1830. [Google Scholar] [CrossRef]
- Hussam, A. Contending with a development disaster: Sono filters remove arsenic from well water in Bangladesh. Innovations 2009, 4, 89–102. [Google Scholar] [CrossRef]
- Miyajima, K.; Noubactep, C. Effects of mixing granular iron with sand on the efficiency of methylene blue discoloration. Chem. Eng. J. 2012, 200–202, 433–438. [Google Scholar] [CrossRef][Green Version]
- Tepong-Tsindé, R.; Ndé-Tchoupé, A.I.; Noubactep, C.; Nassi, A.; Ruppert, H. Characterizing a newly designed steel-wool-based household filter for safe drinking water provision: Hydraulic conductivity and efficiency for pathogen removal. Processes 2019, 7, 966. [Google Scholar] [CrossRef]
- Phukan, M. Characterizing the Fe0/sand system by the extent of dye discoloration. Freib. Online Geosci. 2015, 40, 1–70. [Google Scholar]
- Phukan, M.; Noubactep, C.; Licha, T. Characterizing the ion-selective nature of Fe0-based filters using azo dyes. Chem. Eng. J. 2015, 259, 481–491. [Google Scholar] [CrossRef]
- Kang, S.-H.; Choi, W. Response to Comment on “Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an Electron Shuttle”. Environ. Sci. Technol. 2009, 43, 3966–3967. [Google Scholar] [CrossRef]
- Brenner, S. Sequences and consequences. Phil. Trans. R. Soc. B 2010, 365, 207–212. [Google Scholar] [CrossRef]
- Padervand, M.; Ghasemi, S.; Hajiahmadi, S.; Rhimi, B.; Nejad, Z.G.; Karima, S.; Shahsavari, Z.; Wang, S. Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation. Appl. Catal. A 2022, 643, 118794. [Google Scholar] [CrossRef]
- Heidarpour, H.; Padervand, M.; Soltanieh, M.; Vossoughi., M. Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst. Chem. Eng. Res Design 2020, 153, 709–720. [Google Scholar] [CrossRef]
- Singh, R.; Chakma, S.; Birke, V. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications. Sci. Tot. Environ. 2022. [Google Scholar] [CrossRef]
- Plessl, K.; Russ, A.; Vollprecht, D. Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. Int. J. Environ. Sci. Technol. 2022. [CrossRef]
- Noubactep, C. Investigating the processes of contaminant removal in Fe0/H2O systems. Korean J. Chem. Eng. 2012, 29, 1050–1056. [Google Scholar] [CrossRef][Green Version]
- Raunio, M.; Pugh, R.; Sheikh, F.A.; Egbetokun, A. Importance of methodological diversity for innovation system studies. Afr. J. Sci. Technol. Innov. Dev. 2019, 11, 465–467. [Google Scholar] [CrossRef][Green Version]
- Johnson, T.L.; Scherer, M.M.; Tratnyek, P.G. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996, 30, 2634–2640. [Google Scholar] [CrossRef]
- Scherer, M.M.; Richter, S.; Valentine, R.L.; Alvarez, P.J.J. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Rev. Environ. Sci. Technol. 2000, 30, 363–411. [Google Scholar] [CrossRef]
- Song, D.-I.; Kim, Y.H.; Shin, W.S. A simple mathematical analysis on the effect of sand in Cr(VI) reduction using zero valent iron. Korean J. Chem. Eng. 2005, 22, 67–69. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. J. Hazard. Mater. 2010, 182, 484–493. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater. 2011, 196, 131–138. [Google Scholar] [CrossRef]
- Bi, E.; Devlin, J.F.; Huang, B. Effects of mixing granular iron with sand on the kinetics of trichloroethylene reduction. Ground Water Monit. Remed. 2009, 29, 56–62. [Google Scholar] [CrossRef]
- Kosmulski, M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef]
- Neff, D.; Reguer, S.; Bellot-Gurlet, L.; Dillmann, P.; Bertholon, R. Structural characterization of corrosion products on archaeological iron: An integrated analytical approach to establish corrosion forms. J. Ram. Spectr. 2004, 35, 739–745. [Google Scholar] [CrossRef][Green Version]
- Tsukahara, S. Recent analytical methodologies on equilibrium, kinetics, and dynamics at liquid/liquid interface (Review). Anal. Chim. Acta 2006, 556, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.; Poole, P.; Segrove, H.D. Adsorption of methylene blue by high-silica sands. Nature 1955, 176, 1025–1026. [Google Scholar] [CrossRef]
- Moraci, N.; Lelo, D.; Bilardi, S.; Calabrò, P.S. Modelling long-term hydraulic conductivity behaviour of zero valent iron column tests for permeable reactive barrier design. Can. Geotech. J. 2016, 53, 946–961. [Google Scholar] [CrossRef]
- Naseri, E.; Ndé-Tchoupé, A.I.; Mwakabona, H.T.; Nanseu-Njiki, C.P.; Noubactep, C.; Njau, K.N.; Wydra, K.D. Making Fe0-Based Filters a Universal Solution for Safe Drinking Water Provision. Sustainability 2017, 9, 1224. [Google Scholar] [CrossRef][Green Version]
- Yang, H.; Liu, Q.; Hu, R.; Ptak, T.; Taherdangkoo, R.; Liu, Y.; Noubactep, C. Numerical case studies on long-term effectiveness of metallic iron based permeable reactive barriers: Importance of porosity heterogeneity of the barrier. J. Hydrol. Part B 2022, 612, 128148. [Google Scholar] [CrossRef]
Article | Objectives | Contaminants of Concern | Conclusion | Important Remarks |
---|---|---|---|---|
Gillham and O’Hannesin [12] | Assess the suitability of Fe0 for the dehalogenation of 14 chlorinated methanes, ethanes, and ethenes (RCl). | CT; TCM; DCM; TBM; HCA; PCE; TCE; trans-DCE; cis-DCE; DCE; VC; 1,1,2,2-TECA; 1,1,1,2-TECA; and 1,1,1-TCA | Dehalogenation of RCl by Fe0 occurs probably via direct reduction. | Study focused on contaminant removal. Little attention was paid to the actual mechanisms. |
Lipczynska-Kochany et al. [27] | Investigate of the effect of acidification on the dehalogenation kinetics of carbon tetrachloride (RCl) by Fe0, and contribute to understanding the mechanisms of these processes. | CCl4 | Acidification enhances RCl dehalogenation by Fe0. | Study questioned the sustainability of direct reduction by increasing pH values. |
Matheson and Tratnyek [13] | Contribute to understanding the mechanism (and kinetics) of chlorinated methanes (RCl) transformations in the presence of granular Fe0. | CCl4; CH3Cl; and TCE | Dehalogenation of RCl by Fe0 occurs mostly via direct reduction. | Reductive transformation of RCl by Fe0 was favored. |
Schreier and Reinhard [28] | Investigate the ability of Fe and Mn powders to transform some chlorinated organic compounds (RCl) under anaerobic conditions. | PCE; 1,1,1-TCA; 1,1-DCE; DCM; 1,1-DCA; and 1,4-DCB | Dehalogenation of RCl by Fe0 occurs via direct reduction. | Study reported on a time lag prior to quantitative contaminant reduction. |
Burris et al. [20] | Determine the sorption and reduction kinetics of trichloroethylene and tetrachloroethylene (RCl) with Fe0 under anaerobic conditions. | TCE and PCE | Reduction rates are first-order, thereby indicating that the bulk of sorption occurs on non-reactive sites. | Study seeking to confirm the reductive transformation paradigm. |
Cantrell et al. [29] | Assess the suitability of Fe0 to remove some selected metals from groundwater, while characterizing the reaction kinetics and relating the findings to the thermodynamics of involved redox couples. | UO22+; MoO42−; TcO4−; and CrO42− | Metals removal by Fe0 occurs partly via direct reductive precipitation. | Study conducted in analogy to Matheson and Tratnyek [13]. |
Warren et al. [21] | Contribute to understanding the mechanism (and kinetics) of carbon tetrachloride (RCl) dehalogenation using Fe0. | CCl4 | Reductive dehalogenation of RCl by Fe0 is mediated by hydrogen at the metal surface. | The reductive transformation paradigm was questioned. |
Roberts et al. [22] | Assess whether β-elimination reactions of chlorinated ethylenes (RCl) occur in the presence of Fe0 and Zn0. | DCE; trans-DCE; Cis-DCE; 1,1-DCE and VC | Dehalogenation of RCl by Fe0 occurs via direct reduction. | Study conducted in analogy to Matheson and Tratnyek [13]. |
Weber [23] | Study the reduction of 4-aminoazobenzene by Fe0 to determine whether the process is surface-mediated. | 4-aminoazobenzene (4-AAB) | Reductive transformation by Fe0 is a surface-mediated process with direct electron transfer from Fe0 to the substrate. | Study seeking to confirm the reductive transformation paradigm. |
Burris et al. [24] | Examine the sorption of chlorinated ethenes (RCl) to cast iron (Fe0) surfaces to: (i) assess the generality of non-reactive sorption behavior for cast irons; (ii) determine the predominant non-reactive sorbent on the cast iron surface; (iii) determine whether sorption to cast iron adheres to Traube’s rule (sorption proportional to hydrophobicity); and (iv) evaluate rate-limited sorption/desorption for the non-reactive sites. | TCE and PCE | Significant mass transfer limitations to non-reactive sorption sites exist for PCE but not for TCE. | Study seeking to confirm the reductive transformation paradigm. |
Fiedor et al. [25] | Investigate the removal mechanism of soluble uranium from groundwater by Fe0. | UO22+ (i.e., U6+) | Reduction of U6+ to U4+ by Fe0 is mediated by Fe2+ or H2, but the reaction is kinetically slow. | The reductive transformation paradigm was questioned. |
Gu et al. [26] | Determine the effectiveness of Fe0 and several adsorbent materials in removing uranium (U) from contaminated groundwater, and to investigate the rates and mechanisms that are involved in the reactions. | UO22+ | Uranium removal by Fe0 occurs via direct reductive precipitation. | Study conducted in analogy to Matheson and Tratnyek [13]. |
O’Hannesin and Gillham [14] | Long-term field investigation of the suitability of granular Fe0 for the in-situ degradation of dissolved chlorinated organic compounds (RCl). | TCE and PCE | Dehalogenation of RCl by Fe0 is quantitative and occurs via direct reduction. | Reductive transformation of RCl by Fe0 was favored and explicitly recognized as a “broad consensus”. |
Year | Title | Journal | Citations | Reference |
---|---|---|---|---|
2022 | Metallic iron for water remediation: Plenty of room for collaboration and convergence to advance the science | Water/MDPI | 2 | [37] |
2022 | Should the term ‘metallic iron’ appear in the title of a research paper? | Chemosphere | 9 | [59] |
2021 | Metallic iron for environmental remediation: The fallacy of the electron efficiency concept | Front. Environ. Chem. | 10 | [50] |
2021 | The mechanism of contaminant removal in Fe0/H2O systems: The burden of a poor literature review | Chemosphere | 9 | [60] |
2020 | Tracing the scientific history of Fe0-based environmental remediation prior to the advent of permeable reactive barriers | Processes/MDPI | 17 | [61] |
2020 | Metallic iron for environmental remediation: Starting an overdue progress in knowledge | Water/MDPI | 23 | [62] |
2019 | Redirecting research on Fe0 for environmental remediation: The search for synergy | Int. J. Environ. Res. Public Health | 13 | [63] |
2019 | The operating mode of Fe0/H2O systems: Hidden truth or repeated nonsense? | Fresenius Environ. Bull. | 12 | [64] |
2019 | Metallic iron and the dialogue of the deaf | Fresenius Environ. Bull. | 19 | [65] |
2018 | Fe0/H2O systems for environmental remediation: The scientific history and future research directions | Water/MDPI | 16 | [66] |
2018 | Iron corrosion: Scientific heritage in jeopardy | Sustainability/MDPI | 6 | [67] |
2018 | Metallic iron for environmental remediation: How experts maintain a comfortable status quo | Fresenius Environ. Bull. | 5 | [68] |
2017 | Metallic iron for water treatment: Leaving the valley of confusion | Appl. Water Sci. | 44 | [69] |
2017 | Rescuing Fe0 remediation research from its systemic flaws | Res. Rev. Insights | 23 | [70] |
2016 | Predicting the hydraulic conductivity of metallic iron filters: Modeling gone astray | Water/MDPI | 36 | [71] |
2016 | Research on metallic iron for environmental remediation: Stopping growing sloppy science | Chemosphere | 38 | [72] |
2016 | No scientific debate in the zero-valent iron literature | Fresenius Environ. Bull. | 17 | [73] |
2015 | Metallic iron for environmental remediation: A review of reviews | Water Res. | 140 | [74] |
2014 | Water remediation by metallic iron: Much ado about nothing—As profitless as water in a sieve? | CLEAN-Soil, Air, Water | 8 | [75] |
2014 | Flaws in the design of Fe0-based filtration systems? | Chemosphere | 46 | [76] |
2013 | Metallic iron for water treatment: Prevailing paradigm hinders progress | Fresenius Environ. Bull. | 12 | [77] |
2013 | Metallic iron for environmental remediation: Missing the ‘valley of death’ | Fresenius Environ. Bull. | 10 | [78] |
2013 | Metallic iron for environmental remediation: the long walk to evidence | Corros. Rev. | 19 | [79] |
2012 | Metallic iron for environmental remediation: Back to textbooks | Fresenius Environ. Bull. | 19 | [80] |
2011 | Metallic iron for water treatment: A knowledge system challenges mainstream science | Fresenius Environ. Bull. | 30 | [81] |
2011 | Aqueous contaminant removal by metallic iron: Is the paradigm shifting? | Water SA | 76 | [82] |
2010 | On nanoscale metallic iron for groundwater remediation | J. Hazard. Mater. | 70 | [83] |
2010 | The suitability of metallic iron for environmental remediation | Environ. Progr. | 78 | [84] |
2009 | An analysis of the evolution of reactive species in Fe0/H2O systems | J. Hazard. Mater. | 144 | [85] |
2009 | Fe0-based alloys for environmental remediation: Thinking outside the box | J. Hazard. Mater. | 34 | [86] |
2009 | On the validity of specific rate constants (kSA) in Fe0/H2O systems | J. Hazard. Mater. | 18 | [87] |
2009 | On the operating mode of bimetallic systems for environmental remediation | J. Hazard. Mater. | 36 | [88] |
2008 | A critical review on the mechanism of contaminant removal in Fe0–H2O systems | Environ. Technol. | 396 | [89] |
2007 | Processes of contaminant removal in “Fe0–H2O” systems revisited. The importance of co-precipitation | Open Environ. Sci. | 170 | [90] |
Year | Title | Journal | Citations | Reference |
---|---|---|---|---|
2015 | New concepts for designing experiments regarding the process of water treatment in Fe0/H2O systems | Afrika and Wissenschaft | 0 | [95] |
2007 | Response to the comments by colleagues Ebert and co-authors on my articles “The end of a myth” (TerraTech 11–12/2006) and “On the operating mode of reactive walls” (TerraTech 3–4/2007) | TerraTech | 1 | [96] |
2007 | On the operating mode of reactive walls: The emergence of the view that contaminant reduction occurs at the surface of elemental iron | TerraTech | 1 | [97] |
2006 | The end of a myth: Contaminant reduction by electrons from elemental iron contradicts three centuries of corrosion research | TerraTech | 4 | [98] |
2003 | Investigations for the passive in-situ immobilization of U(VI) from water | Wissenschaftliche Mitteilungen | 16 | [99] |
Fe0 Material | Contaminant | Volume (mL) | Homogenization | Reference | ||
---|---|---|---|---|---|---|
Size (mm) | Loading (g/L) | type | speed | |||
0.15 | 1.7 | Chlorinated methanes | 60 | shaking | 15 | [13] |
0.15 | 250 | Halogenated alphatics | 40 | Shaking | 2 | [12] |
0.4 | 330 | Trichloroethylene and tetrachloroethylene | 15 | stirring | 8 | [19] |
<0.15 | 10 | 4-aminoazobenzene | 50 | shaking | - | [23] |
0.01 | 2 | Trichloromethane and trichloroethylene | 2000 | stirring | 450 and 660 | [133] |
1.6–2.5 | 20 | Uranium | 20 | quiescent | 0 | [126] |
0.15 | 33 | Nitrate | 60 | shaking | 60 | [134] |
(5–8) × 10−5 | 2 | Nitrate | 500 | stirring | 200 | [135] |
0.315 | 13 | Sulfate, chloride, nitrate, and bicarbonate | 186 | stirring | vigorous | [136] |
0.6–0.425 | 25 | Arsenite | 2000 | stirring | 55 | [137] |
0.2–5 | 2.4 | Total organic carbon | 500 | stirring | 500 and 1000 | [138] |
0.25 | 2.5 | Phosphorus | 100 | stirring | 165 | [139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, V.; Bakari, O.; Kenmogne-Tchidjo, J.F.; Gatcha-Bandjun, N.; Ndé-Tchoupé, A.I.; Gwenzi, W.; Njau, K.N.; Noubactep, C. Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology. Water 2022, 14, 3120. https://doi.org/10.3390/w14193120
Cao V, Bakari O, Kenmogne-Tchidjo JF, Gatcha-Bandjun N, Ndé-Tchoupé AI, Gwenzi W, Njau KN, Noubactep C. Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology. Water. 2022; 14(19):3120. https://doi.org/10.3390/w14193120
Chicago/Turabian StyleCao, Viet, Omari Bakari, Joseline Flore Kenmogne-Tchidjo, Nadège Gatcha-Bandjun, Arnaud Igor Ndé-Tchoupé, Willis Gwenzi, Karoli N. Njau, and Chicgoua Noubactep. 2022. "Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology" Water 14, no. 19: 3120. https://doi.org/10.3390/w14193120