Romanian Danube River Hydrocarbon Pollution in 2011–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negm, A.M.; Zelenakova, M.; Kubiak-Wójcicka, K. Water Resources Quality and Management in Baltic Sea Countries; Springer Water: Cham, Switzerland, 2020; ISBN 978-3-030-39700-5. [Google Scholar]
- Backhaus, T.; Brack, W.; Brink, P.V.D.; Deutschmann, B.; Hollert, H.; Posthuma, L.; Segner, H.; Seiler, T.-B.; Teodorovic, I.; Focks, A. Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environ. Sci. Eur. 2019, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Kubiak-Wojcicka, K.; Weiss, R.; Weiss, E.; Elhamid, H.F.A. Environmental risk assessment focused on water quality in the Laborec River watershed. Ecohydrol. Hydrobiol. 2021, 21, 641–654. [Google Scholar] [CrossRef]
- Bernauer, T. Explaining success and failure in international river management. Aquat. Sci. 2002, 64, 1–19. [Google Scholar] [CrossRef]
- Rajosoa, A.S.; Abdelbaki, C.; Mourad, K.A. Water assessment in transboundary river basins: The case of the Medjerda River Basin. Sustain. Water Resour. Manag. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Breaban, I.G.; Breaban, A.I. Causes and Effects of Water Pollution in Romania. In Water Resources Management in Romania; Springer Water: Cham, Switzerland, 2019; pp. 57–131. [Google Scholar]
- Hein, T.; Funk, A.; Pletterbauer, F.; Graf, W.; Zsuffa, I.; Haidvogl, G.; Schinegger, R.; Weigelhofer, G. Management challenges related to long-term ecological impacts, complex stressor interactions, and different assessment approaches in the Danube River Basin. River Res. Appl. 2018, 35, 500–509. [Google Scholar] [CrossRef]
- Kovalenko, S.; Bykovets, N.; Kolmykova, O. The “Lower Danube” Euroregion: Development Emergence of the Environmental Management Cluster Forms. Balt. J. Econ. Stud. 2021, 7, 140–149. [Google Scholar] [CrossRef]
- Simionov, I.-A.; Cristea, D.S.; Petrea, S.-M.; Mogodan, A.; Jijie, R.; Ciornea, E.; Nicoară, M.; Rahoveanu, M.M.T.; Cristea, V. Predictive Innovative Methods for Aquatic Heavy Metals Pollution Based on Bioindicators in Support of Blue Economy in the Danube River Basin. Sustainability 2021, 13, 8936. [Google Scholar] [CrossRef]
- Halder, J.; Vystavna, Y.; Wassenaar, L.I. Nitrate sources and mixing in the Danube watershed: Implications for transboundary river basin monitoring and management. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 18 September 2022).
- The Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: The physical science basis. In Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Kubiak-Wójcicka, K. Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland). Resources 2020, 9, 103. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Zeleňáková, M.; Blištan, P.; Simonová, D.; Pilarska, A. Influence of climate change on low flow conditions. case study: Laborec river, eastern Slovakia. Ecohydrol. Hydrobiol. 2021, 21, 570–583. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Joy, M.; Olosutean, H.; Afanasyev, S.; Curtean-Bănăduc, A. Natural and anthropogenic driving forces as key elements in the Lower Danube Basin–South-Eastern Carpathians–North-Western Black Sea coast area lakes: A broken stepping stones for fish in a climatic change scenario? Environ. Sci. Eur. 2020, 32, 1–14. [Google Scholar] [CrossRef]
- Siddha, S.; Sahu, P. Traditional and existing methods of urban water supply and their loopholes. In Current Directions in Water Scarcity Research 2022; Srivastav, A.L., Madhav, S., Bhardwaj, A.K., Eugenia Valsami-Jones, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 6, pp. 245–271. [Google Scholar]
- McCracken, M.; Wolf, A.T. Updating the Register of International River Basins of the world. Int. J. Water Resour. Dev. 2018, 35, 732–782. [Google Scholar] [CrossRef]
- Trábert, Z.; Duleba, M.; Bíró, T.; Dobosy, P.; Földi, A.; Hidas, A.; Kiss, K.T.; Óvári, M.; Takács, A.; Várbíró, G.; et al. Effect of Land Use on the Benthic Diatom Community of the Danube River in the Region of Budapest. Water 2020, 12, 479. [Google Scholar] [CrossRef] [Green Version]
- Salvai, A.; Grabic, J.; Josimov-Dundjerski, J.; Zemunac, R.; Antonic, N.; Savic, R.; Blagojevic, B. Trend Analysis of Water Quality Parameters in the Middle Part of the Danube Flow in Serbia. Ecol. Chem. Eng. S 2022, 29, 51–63. [Google Scholar] [CrossRef]
- Calmuc, M.; Calmuc, V.; Arseni, M.; Topa, C.; Timofti, M.; Georgescu, L.; Iticescu, C. A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube. Water 2020, 12, 3239. [Google Scholar] [CrossRef]
- Crnković, D.; Sekulić, Z.; Antonović, D.; Marinković, A.; Popović, S.; Nikolić, J.; Drmanić, S. Origins of Polycyclic Aromatic Hydrocarbons in Sediments from the Danube and Sava Rivers and Their Tributaries in Serbia. Pol. J. Environ. Stud. 2020, 29, 2101–2110. [Google Scholar] [CrossRef]
- Calmuc, V.A.; Calmuc, M.; Arseni, M.; Topa, C.M.; Timofti, M.; Burada, A.; Iticescu, C.; Georgescu, L.P. Assessment of Heavy Metal Pollution Levels in Sediments and of Ecological Risk by Quality Indices, Applying a Case Study: The Lower Danube River, Romania. Water 2021, 13, 1801. [Google Scholar] [CrossRef]
- Chiţescu, C.L.; Ene, A.; Geana, E.-I.; Vasile, A.M.; Ciucure, C.T. Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. Appl. Sci. 2021, 11, 9721. [Google Scholar] [CrossRef]
- Daus, M.E.; Daus, Y.V. Estimating environmental risk assessment for drinking and fisheries use (on the example of the Danube river—the city Vilkovo). J. Geol. Geogr. Geoecol. 2021, 30, 25–33. [Google Scholar] [CrossRef]
- Frîncu, R.-M. Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017). Int. J. Environ. Res. Public Health 2021, 18, 1665. [Google Scholar] [CrossRef]
- Vosniakos, F.; Petre, J.; Pascu, L.; Vasile, G.; Iancu, V.; Staniloae, D.; Nicolau, M.; Cruceru, L.; Golumbeanu, M. Aquatic eco-system quality assessment of the Danube Delta in the periods April-October 2007 and 2008. Fresenius Environ. Bull. 2010, 19, 20–29. [Google Scholar]
- Atanacković, A.; Šporka, F.; Marković, V.; Slobodnik, J.; Zorić, K.; Csányi, B.; Paunović, M. Aquatic Worm Assemblages along the Danube: A Homogenization Warning. Water 2020, 12, 2612. [Google Scholar] [CrossRef]
- Literathy, P. PAH and Petroleum Hydrocarbon Contamination in Water, Suspended Particulate Matter, Sediments, and Biota in the Danube. Handb. Environ. Chem. 2015, 39, 217–233. [Google Scholar] [CrossRef]
- Belháčová-Minaříková, M.; Smedes, F.; Rusina, T.P.; Vrana, B. Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments. Environ. Pollut. 2020, 267, 115470. [Google Scholar] [CrossRef]
- Kolarević, S.; Kračun-Kolarević, M.; Kostić, J.; Slobodnik, J.; Liška, I.; Gačić, Z.; Paunović, M.; Knežević-Vukčević, J.; Vuković-Gačić, B. Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: The Joint Danube Survey 3. Sci. Total Environ. 2016, 540, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Keller, V.; Williams, R.; Lofthouse, C.; Johnson, A. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 2013, 33, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novák, J.; Vrana, B.; Rusina, T.; Okonski, K.; Grabic, R.; Neale, P.A.; Escher, B.I.; Macová, M.; Ait-Aissa, S.; Creusot, N.; et al. Effect-based monitoring of the Danube River using mobile passive sampling. Sci. Total Environ. 2018, 636, 1608–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brboric, M.; Vrana, B.; Radonic, J.; Vojinovic-Miloradov, M.; Turk-Sekulic, M. Spatial distribution of PAHs in riverbed sediments of the Danube River in Serbia: Anthropogenic and natural sources. J. Serb. Chem. Soc. 2019, 84, 1439–1453. [Google Scholar] [CrossRef]
- Bloesch, J. The International Association for Danube Research (IAD)—portrait of a transboundary scientific NGO. Environ. Sci. Pollut. Res. 2009, 16, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Baumert, R.; Folli, B.; Lipp, M.; Liebmann, A.; Kirschner, A.; Farnleitner, A.H.; Grisold, A.J.; Zarfel, G.E. Preliminary Toxicological Evaluation of the River Danube Using in Vitro Bioassays. Water 2015, 7, 1959–1968. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.V.; Bradley, C.; Gettel, G.M.; Hatvani, I.G.; Hein, T.; Kovács, J.; Liska, I.; Oliver, D.M.; Tanos, P.; Trásy, B.; et al. Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy 2016, 64, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; et al. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Res. 2017, 124, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef]
- Apetrei, C.; Iticescu, C.; Georgescu, L.P. Multisensory System Used for the Analysis of the Water in the Lower Area of River Danube. Nanomaterials 2019, 9, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Clarvis, M.H.; Fatichi, S.; Allan, A.; Fuhrer, J.; Stoffel, M.; Romerio, F.; Gaudard, L.; Burlando, P.; Beniston, M.; Xoplaki, E.; et al. Governing and managing water resources under changing hydro-climatic contexts: The case of the upper Rhone basin. Environ. Sci. Policy 2014, 43, 56–67. [Google Scholar] [CrossRef]
- Mănoiu, V.-M.; Crăciun, A.-I. Danube river water quality trends: A qualitative review based on the open access web of science database. Ecohydrol. Hydrobiol. 2021, 21, 613–628. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Danube River (ICPDR). 2018; ICPDR Climate Change Adaptation Strategy, Vienna; 84p, Available online: https://www.icpdr.org/main/activities-projects/climate-change-adaptation (accessed on 25 March 2022).
- Atlas, R.M.; Bartha, R. Fate and effects of polluting petroleum in the marine environment. In Residue Reviews; Springer: New York, NY, USA, 1973; pp. 49–85. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Albers, P.H. Petroleum and Individual Polycyclic Aromatic Hydrocarbons. In Handbook of Ecotoxicology; Hoffman, D.J., Rattner, B.A., Burton, G.A., Cairns, J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 341–371. [Google Scholar] [CrossRef]
- Wernicke, T.; Abel, S.; Escher, B.I.; Koschorreck, J.; Rüdel, H.; Jahnke, A. Equilibrium sampling of suspended particulate matter as a universal proxy for fish and mussel monitoring. Ecotoxicol. Environ. Saf. 2022, 232, 113285. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, O.O.; Yakubu, A.F.; Adams, T. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. J. Appl. Sci. Environ. Manag. 2011, 15, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Visca, A.; Caracciolo, A.B.; Grenni, P.; Rolando, L.; Mariani, L.; Rauseo, J.; Spataro, F.; Monostory, K.; Sperlagh, B.; Patrolecco, L. Legacy and Emerging Pollutants in an Urban River Stretch and Effects on the Bacterioplankton Community. Water 2021, 13, 3402. [Google Scholar] [CrossRef]
- Liška, I.; Wagner, F.; Sengl, M.; Deutsch, K.; Slobodnik, J. Joint Danube Survey 3—A Comprehensive Analysis of Danube Water Quality. Final Report; ICPDR—International Commission for the Protection of the Danube River: Vienna, Austria, 2015; 369p, Available online: http://www.danubesurvey.org/jds3/results (accessed on 5 August 2022).
- International Commission for the Protection of the Danube River (ICPDR). JDS3 Results. JDS3 Overview Map (Sampling Sites of the JDS3). 2015. Available online: http://www.danubesurvey.org/jds3/jds3-files/nodes/documents/jds3_overview_map.pdf (accessed on 18 September 2022).
- Pascu, L.F.; Cruceru, L.; Vasile, G.; Iancu, V.; Dinu, C.; Niculescu, M.; Nicolau, M. Investigation of physical and chemical quality of surface water and sediment in seven locations from Danube Delta, in the period 2009–2011. In International Symposium “The Environment and the Industry” SIMI; National Research and Development Institute for Industrial Ecology, INCD-ECOIND: Bucharest, Romania, 2011; Volume II, pp. 254–262. ISSN 2457-8371. [Google Scholar]
- Stănescu, E.; Vosniakos, F.; Scradeanu, D.; Paun, I.; Lucaciu, I.; Stanescu, B.; Cruceru, L.; Vasile, G.; Iancu, V.; Niculescu, M. Assessment of the abiotic components of the Danube River and main tributaries from Southern part of Romania. J. Environ. Prot. Ecol. 2015, 16, 1371–3179. [Google Scholar]
- Deutschmann, B.; Kolarevic, S.; Brack, W.; Kaisarevic, S.; Kostic, J.; Kracun-Kolarevic, M.; Liska, I.; Paunovic, M.; Seiler, T.-B.; Shao, Y.; et al. Longitudinal profile of the genotoxic potential of the River Danube on erythrocytes of wild common bleak (Alburnus alburnus) assessed using the comet and micronucleus assay. Sci. Total Environ. 2016, 573, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Albaladejo, E.; Rizzi, J.; Fernandes, D.; Lille-Langøy, R.; Karlsen, O.A.; Goksøyr, A.; Oros, A.; Spagnoli, F.; Porte, C. Assessment of the environmental quality of coastal sediments by using a combination of in vitro bioassays. Mar. Pollut. Bull. 2016, 108, 53–61. [Google Scholar] [CrossRef]
- Nicolae, F.; Ristea, M.; Cotorcea, A.; Perkovic, M. Modelling the naval transport associated hydrocarbon pollution risks in the Danube Delta biosphere reservation. J. Environ. Prot. Ecol. 2017, 18, 30–39. [Google Scholar]
- Radu, M.; Ionescu, P.; Ivanov, A.A.; Deak, G.; Marcu, E.; Ciobotaru, I.-E.; Diacu, E.; Pipirigeanu, M. Assessment of Contamination with Hazardous Substances in Surface Sediments in the Lower Danube River. Technium 2019, 1, 37–44. [Google Scholar] [CrossRef]
- Iordache, A.; Iordache, M.; Sandru, C.; Voica, C.; Stegarus, D.; Zgavarogea, R.; Ionete, R.E.; (Ticu), S.C.; Miricioiu, M.G. A Fugacity Based Model for the Assessment of Pollutant Dynamic Evolution of VOCS and BTEX in the Olt River Basin (Romania). Rev. Chim. 2019, 70, 3456–3463. [Google Scholar] [CrossRef]
- Canning, A.; Wehrli, B.; Körtzinger, A. Methane in the Danube Delta: The importance of spatial patterns and diel cycles for atmospheric emission estimates. Biogeosciences 2021, 18, 3961–3979. [Google Scholar] [CrossRef]
- Order 161/2006 of the Romanian Ministry of the Environment and Water Management (Ordinul nr. 161/16.02.2006, Privind Clasificarea Calităţii apelor de Suprafaţa), Transposed from Water Frame Directive 2000/60/EC. Monitorul Oficial al României 2006, I/511. Available online: https://legislatie.just.ro/Public/FormaPrintabila/00000G3B3OTFI5P2O4U34BVCBDTBBRTT (accessed on 30 March 2022).
- Adewuyi, Y.G. Sonochemistry: Environmental Science and Engineering Applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Mahr, R., Jr.; Chase, C.R. Oil Spill Detection Technology for Early Warning Spill Prevention. IEEE OCEANS 2009, 1–8. [Google Scholar] [CrossRef]
- Olivella, M.À.; Jové, P.; Şen, A.; Pereira, H.; Villaescusa, I.; Fiol, N. Sorption performance of Quercus cerris cork with polycyclic aromatic hydrocarbons and toxicity testing. BioResources 2011, 6, 3363–3375. [Google Scholar]
- Hao, L.; Huiping, D.; Jun, S. Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons. J. Mol. Catal. A Chem. 2012, 363–364, 101–107. [Google Scholar] [CrossRef]
- Tričković, J.; Isakovski, M.K.; Watson, M.; Maletić, S.; Rončević, S.; Dalmacija, B.; Kónya, Z.; Kukovecz, A. Sorption Behaviour of Trichlorobenzenes and Polycyclic Aromatic Hydrocarbons in the Absence or Presence of Carbon Nanotubes in the Aquatic Environment. Water Air Soil Pollut. 2016, 227, 374. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Hang, X.; Zhao, S.; Wan, Y. Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes: Rejection and fouling mechanisms. J. Membr. Sci. 2019, 582, 264–273. [Google Scholar] [CrossRef]
- Maletić, S.P.; Beljin, J.M.; Rončević, S.D.; Grgić, M.G.; Dalmacija, B.D. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: Sources, fate, bioavailability and remediation techniques. J. Hazard. Mater. 2018, 365, 467–482. [Google Scholar] [CrossRef]
- Abdibattayeva, M.; Bissenov, K.; Zhubandykova, Z.; Orynbassar, R.; Tastanova, L.; Almatova, B. Purification of Oil-Containing Waste Using Solar Energy. Environ. Clim. Technol. 2021, 25, 161–175. [Google Scholar] [CrossRef]
- Ghouas, H.; Haddou, B.; Canselier, J.P.; Gourdon, C. Wastewater Pollution Prevention for volatile organic compounds (Benzene, Toluene, Ethylbenzene, and Xylene) using cloud point extraction and regeneration of surfactant by evaporation. Euro-Mediterr. J. Environ. Integr. 2022, 7, 1–12. [Google Scholar] [CrossRef]
- Ansar, B.S.K.; Kavusi, E.; Dehghanian, Z.; Pandey, J.; Lajayer, B.A.; Price, G.W.; Astatkie, T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environ. Sci. Pollut. Res. 2022, 1–29. [Google Scholar] [CrossRef]
- Kothiyal, N.C.; Abhay; Khan, L.; Kumar, V.; Saruchi; Singh, S. Recent advances in emission, analysis and remediation tech-nique of carcinogenic polycyclic aromatic hydrocarbons: A review. Glob. NEST J. 2022, 24, 177–194. [Google Scholar]
Database | Number of Results | Selected Papers |
---|---|---|
Google Academic | 1000/1853 | 11 |
Science Direct | 87 | 4 |
Web of Science | 4 | 2 |
Total | 1091 | 17 |
Recurrent papers | 3 | |
Final number of papers | 14 |
Publication Year | Number of Papers |
---|---|
2011 | 1 [56] |
2015 | 2 [30,57] |
2016 | 3 [32,58,59] |
2017 | 1 [60] |
2018 | 1 [34] |
2019 | 2 [61,62] |
2020 | 2 [29,31] |
2021 | 2 [25,63] |
Station Code | Location Name | Country Code |
---|---|---|
JDS43 | BanatskaPalanka/Baziaș | RS/RO |
JDS44 | Iron Gate reservoir (Golubac/Koronin) | RS/RO |
JDS45 | Iron Gate reservoir (Tekija/Orşova) | RS/RO |
JDS46 | Vrbica/Simijan | RS/RO |
JDS47 | Upstream Timok (Rudujevac/Gruia) | RS/RO |
JDS48 | Timok (rkm 0.2) | RS/RO |
JDS49 | Pristal/NowoSelo Harbor | RO/BG |
JDS50 | Downstream Kozlodouy | BG/RO |
JDS51a | Upstream Olt | RO/BG |
JDS51b | /Oltrkm 0.4 | RO |
JDS52 | Downstream Olt | RO/BG |
JDS53 | Downstream Zimnicea/Svishtov | RO/BG |
JDS55 | Downstream Jantra | RO/BG |
JDS57 | Downstream Ruse/Giurgiu | BG/RO |
JDS58 | Argeș | RO |
JDS59 | Downstream Argeș/Oltenita | RO/BG |
JDS60 | Chiciu/Silistra | RO/BG |
JDS61 | Giurgeni | RO |
JDS62 | Braila | RO |
JDS63 | Siret (rkm 1.0) | RO |
JDS63a | Upstream Prut | RO |
JDS64 | /Prut 1.0 | RO/MD |
JDS65 | Reni | RO/UA |
JDS66/JDS2–93a | Vilkova—Chilia arm | RO/UA |
JDS67 | Sulina-Sulina arm | RO |
JDS68 | St. Gheorghe-St. Gheorghe arm | RO |
Hydrocarbon Concentration Level | Study/Analysis Year | Sample Type Analyzed for Hydrocarbons | Romanian Danube Sector/Site | Main Hydrocarbon Pollution Sources | Effects on Bioindicators (if Highlighted) |
---|---|---|---|---|---|
PAHs over limits | 2011 | Water and sediments | Section 6-Murighiol (St. Gheorghe branch of the Danube Delta) (Figure 9) | Wastewater discharge without adequate treatment | - |
Highest level | 2013 | SPM and sediments | Iron Gates-Călărași Sector–km 450 (approximately between JDS45 and JDS60) (Figure 7) | Industry, navigation and wastewater discharges | - |
High level | 2013 | SPM and sediments | Downstream of Zimnicea/Svistov ports (JDS53) (Figure 7) | Port and industrial activities | High DNA damage in mussel species Unio sp. and Sinanodonta woodiana |
Highest anthracene concentration | 2013 | SPM | Upstream Timok-JDS47 (Rudujevac/Gruia) and downstream of Drobeta-Turnu Severin and Kladovo cities (Figure 6 and Figure 7) | Industrial activities and effluent discharges | Highest hydrocarbon genotoxicity potential on the wild common bleak |
High level | 2013 | Water, SPM and sediments | JDS60-Chiciu/Silistra (50 km downstream of Argeș River), JDS57-downstream of Ruse/Giurgiu and upstream of Timok–JDS47 (Rudujevac/Gruia) (Figure 6 and Figure 7) | Untreated effluents | Highest hydrocarbon genotoxicity potential on the wild common bleak |
High level | 2011–2013 | Water and sediments | Lower Danube and Danube Delta | Untreated or insufficient treated wastewater discharge | - |
Good to very good ecological status | 2014 | Water and sediments | Baziaș to Călărași (approximately between JDS43 and JDS60) (Figure 7 and Figure 8) | - (low human pressure) | - |
High level | 2015 | Sediments | The Black Sea coast, around the mouth of the Danube River (Figure 9) | Harbor activities (Constanța and Mangalia) and urban, agricultural and industrial discharges | Significant cytotoxicity on fish cell lines |
Normal limits according to the law (but higher than those of upper and middle Danube) | 2011–2017 | Sediments | Călărași-Brăila stretch (km 375–km 175, approximately between JDS60 and JDS62) (Figure 7 and Figure 8) | Industry, navigation and wastewater discharges | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, C.; Manoiu, V.-M.; Kubiak-Wójcicka, K.; Avram, E.; Beteringhe, A.; Craciun, A.-I. Romanian Danube River Hydrocarbon Pollution in 2011–2021. Water 2022, 14, 3156. https://doi.org/10.3390/w14193156
Radu C, Manoiu V-M, Kubiak-Wójcicka K, Avram E, Beteringhe A, Craciun A-I. Romanian Danube River Hydrocarbon Pollution in 2011–2021. Water. 2022; 14(19):3156. https://doi.org/10.3390/w14193156
Chicago/Turabian StyleRadu, Crina, Valentina-Mariana Manoiu, Katarzyna Kubiak-Wójcicka, Emilia Avram, Andreea Beteringhe, and Alexandru-Ioan Craciun. 2022. "Romanian Danube River Hydrocarbon Pollution in 2011–2021" Water 14, no. 19: 3156. https://doi.org/10.3390/w14193156
APA StyleRadu, C., Manoiu, V.-M., Kubiak-Wójcicka, K., Avram, E., Beteringhe, A., & Craciun, A.-I. (2022). Romanian Danube River Hydrocarbon Pollution in 2011–2021. Water, 14(19), 3156. https://doi.org/10.3390/w14193156