Implications of Watershed Management Practices on Water Availability Using Hydrus-1D Model in the Aba Gerima Watershed, Upper Blue Nile Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Hydrus Model Set Up
3. Statistical Analysis
4. Results and Discussion
4.1. Hydrus 1D Simulation of Water Balance Components
4.2. Evaluation of Model Performance and Parameter Identification
4.3. The Impact of Land Management on Soil Physical Properties
4.4. The Impact of Soil Physical Properties on Soil Hydrological Properties
4.5. The Impact of Land Management on Water Availability
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, K.N.; Ffolliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds, 4th ed.; John Wiley & Sons: New York, NY, USA, 2012; p. 552. [Google Scholar]
- Wang, J.; Shrestha, N.K.; Delavar, M.A.; Meshesha, T.W.; Bhanja, S.N. Modelling Watershed and River Basin Processes in Cold Climate Regions: A Review. Water 2021, 13, 518. [Google Scholar] [CrossRef]
- Awulachew, S.B.; Yilma, A.D.; Loulseged, M.; Loiskandl, W.; Ayana, M.; Alamirew, T. Water Resources and Irrigation Development in Ethiopia; IWMI: Colombo, Sri Lanka, 2007; Volume 123. [Google Scholar]
- Worqlul, A.W.; Rientjes, T.H.M.; Gieske, A.S.M.; Getachew, H.A. Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Processes Int. J. 2009, 23, 3682–3693. [Google Scholar]
- Herweg, K.; Ludi, E. The performance of selected soil and water conservation measures—Case studies from Ethiopia and Eritrea. CATENA 1999, 36, 99–114. [Google Scholar] [CrossRef]
- Schmidt, E.; Zemadim, B. Expanding sustainable land management in Ethiopia: Scenarios for improved agricultural water management in the Blue Nile. Agric. Water Manag. 2015, 158, 166–178. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tesfaye, S.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T.; Adgo, E.; Elias, A. Dynamics of land use and land cover and its effects on hydrologic responses:case study of the Gilgel Tekeze catchment in the highlands of Northern Ethiopia. Environ. Monit. Assess. 2015, 187, 4090. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land-use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Bantider, A.; Hurni, H.; Zeleke, G. Responses of rural households to the impacts of population and land-use changes along the Eastern Escarpment of Wello, Ethiopia. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2011, 65, 42–53. [Google Scholar] [CrossRef]
- Water and Land Resource Center, WLRC. Baseline survey report Aba Gerima watershed, Part II-Biophysical settings of Aba Gerima watershed. Water 2012, 75, 10–15. [Google Scholar]
- Amare, T.; Zegeye, A.D.; Yitaferu, B.; Steenhuis, T.S.; Hurni, H.; Zeleke, G. Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrol. Hydrobiol. 2014, 14, 192–199. [Google Scholar] [CrossRef]
- Kazmin, V. Stratigraphy and correlation of Cenozoic volcanic rocks in Ethiopia. Rep. Ethiop. Inst. Geol. Surv. 1979, 106, 1–26. [Google Scholar]
- Gumma, M.K.; Desta, G.; Amede, T.; Panjala, P.; Smith, A.P.; Kassawmar, T.; Tummala, K.; Zeleke, G.; Whitbread, A.M. Assessing the impacts of watershed interventions using ground data and remote sensing: A case study in Ethiopia. Int. J. Environ. Sci. Technol. 2022, 19, 1653–1670. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land-use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Sarker, S.; Veremyev, A.; Boginski, V.; Singh, A. Critical nodes in river networks. Sci. Rep. 2019, 9, 11178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mersha, B.D.; Zeleke, G.; Alamirew, T.; Dejen, Z.A.; Gebrehiwot, S.G. Soil moisture spatio-temporal variability under treated and untreated catchment conditions in a fragile tropical highland environment: Implication for water security. Arab. J. Geosci. 2022, 15, 696. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Teferi, E.; Bewket, W.; Simane, B. Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia. Environ. Monit. Assess. 2016, 188, 83. [Google Scholar] [CrossRef] [PubMed]
- Tesfahunegn, G.B.; Vlek, P.L.G.; Tamene, L. Application of SWAT model to assess erosion hotspot for sub-catchment management at Mai-Negus catchment in northern Ethiopia. East Afr. J. Sci. Technol. 2013, 2, 97–123. [Google Scholar]
- Neill, C.; Melillo, J.M.; Steudler, P.A.; Cerri, C.C.; de Moraes, J.F.; Piccolo, M.C.; Brito, M. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 1997, 7, 1216–1225. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Zhu, Y.; Shao, M.; Xiao, S.; Zhang, C. Vertical distribution and temporal stability of soil water in 21-m profiles under different land uses on the Loess Plateau in China. J. Hydrol. 2015, 527, 543–554. [Google Scholar] [CrossRef]
- Biswas, A.; Si, B.C. Spatial relationship between soil hydraulic and soil physical properties in a farm field. Can. J. Soil Sci. 2009, 89, 473–488. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Meshesha, D.T.; Masunaga, T.; Aklog, D.; Fenta, A.A.; Ebabu, K. Efficiency of soil and water conservation practices in different agro-ecological environments in the Upper Blue Nile Basin of Ethiopia. J. Arid Land 2018, 10, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Tekleab, S.; Uhlenbrook, S.; Mohamed, Y.; Savenije, H.H.G.; Temesgen, M.; Wenninger, J. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrol. Earth Syst. Sci. 2011, 15, 2179–2193. [Google Scholar] [CrossRef] [Green Version]
- Ayenew, T.; Demlie, M.; Wohnlich, S. Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J. Afr. Earth Sci. 2008, 52, 97–113. [Google Scholar] [CrossRef]
S/N | Data Type | Data Source | Purpose |
---|---|---|---|
1 | Soil Physical and Hydrological Properties (Soil moisture, textural composition, Bulk density, Organic content under 400 mm depth within August 2017 to May 2019) | Mersha et al. [16] | Modeling water balance components |
2 | Crop Growth data (soil depth) | Kebelle/District Farmers Training centers (FTC) | Modeling water balance components |
3 | Meteorological Data (Max.–Min daily T in °C, Mean daily Ppt in mm) within August 2017 to May 2019) | WLRC | Modeling water balance components |
4 | Digital elevation Model (DEM) | USGS Earth explorer (https://earthexplorer.usgs.gov/) | Study area description |
5 | Soil type Map | WLRC | Study area description |
6 | Ground water level and wells location | Field survey of the study site (Aba Gerima) | Water availability assessment. |
7 | Aba Gerima shape file and Land cover map. | WLRC | High resolution study area LU map. |
Hydrologic Parameters | Control | Treated | Control | Treated | Control | Treated | Control | Treated |
---|---|---|---|---|---|---|---|---|
AC | ACE | CLF1 | CLF0 | CLG1 | CLG0 | CLS1 | CLS0 | |
Mean Actual Surface Flux (mm/day) | 4.7 | 4.6 | 4.537 | 4.526 | 4.314 | 4.244 | 4.24 | 4.43 |
Mean Actual Root water Uptake (mm/day) | 0.2 | 0.22 | 0.045 | 0.021 | 0.046 | 0.044 | 0.046 | 0.019 |
Mean Bottom Flux (mm/day) | 4.1 | 3.8 | 3.25 | 3.3 | 3.22 | 3.28 | 3.3 | 3.5 |
Annual Cumulative Infiltration (mm) | 983.2 | 983.2 | 1152.3 | 1150.5 | 1152.3 | 1150.3 | 1150.3 | 1150.2 |
Cumulative Evaporation (mm) | 47 | 33 | 326.67 | 319.68 | 329.05 | 322.7 | 321.37 | 294.24 |
Mean SWS (mm) | 100.3 | 106 | 142.3 | 153.8 | 132.39 | 120.57 | 103.7 | 113.5 |
Sites | Model Performance | Sites | Model Performance | ||
---|---|---|---|---|---|
AC | ME | 0.00 | CLS 0 | ME | 0.00 |
MAE | 0.01 | MAE | 0.01 | ||
RMSE | 0.02 | RMSE | 0.02 | ||
R2 | 0.86 | R2 | 0.78 | ||
ACE | ME | 0.00 | CLF 1 | ME | −0.05 |
MAE | 0.02 | MAE | 0.06 | ||
RMSE | 0.03 | RMSE | 0.09 | ||
R2 | 0.77 | R2 | 0.55 | ||
CLF 0 | ME | −0.16 | CLG 1 | ME | 0.00 |
MAE | 0.16 | MAE | 0.02 | ||
RMSE | 0.17 | RMSE | 0.03 | ||
R2 | 0.77 | R2 | 0.78 | ||
CLG 0 | ME | 0.01 | CLS 1 | ME | 0.00 |
MAE | 0.03 | MAE | 0.02 | ||
RMSE | 0.04 | RMSE | 0.02 | ||
R2 | 0.79 | R2 | 0.73 |
Watershed Management Type | Site | Soil Layer (mm) | Soil Texture | BD (g/mm3) | ||
---|---|---|---|---|---|---|
% Clay | % Silt | % Sand | ||||
Controlled | AC | 0–100 | 10 | 32 | 58 | 0.00102 |
100–200 | 20 | 20 | 60 | 0.001032 | ||
200–300 | 30 | 40 | 30 | 0.000934 | ||
300–400 | 46 | 36 | 18 | 0.000888 | ||
Treated | ACE | 0–200 | 24 | 40 | 36 | 0.001262 |
200–400 | 32.7 | 40 | 27.3 | 0.001063 | ||
Controlled | CLF1 | 0–400 | 52 | 20.5 | 27.5 | 0.001098 |
Treated | CLF0 | 0–200 | 31 | 39 | 30 | 0.001206 |
200–400 | 53 | 26 | 21 | 0.001199 | ||
Controlled | CLG1 | 0–200 | 47 | 26 | 27 | 0.001027 |
200–300 | 32 | 26 | 42 | 0.001117 | ||
300–400 | 28 | 26 | 46 | 0.001023 | ||
Treated | CLG0 | 0–100 | 32 | 42 | 26 | 0.001223 |
100–300 | 48 | 32 | 20 | 0.000993 | ||
300–400 | 38 | 26 | 36 | 0.000994 | ||
Controlled | CLS1 | 0–200 | 20 | 20 | 60 | 0.001064 |
200–300 | 18 | 38 | 44 | 0.001184 | ||
300–400 | 15 | 22 | 63 | 0.00116 | ||
Treated | CLS0 | 0–100 | 26 | 38 | 36 | 0.001178 |
100–400 | 44.7 | 26 | 28.7 | 0.001227 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fikadu, T.; Teferi, E.; Dubale, B.; Gusha, B.; Mantel, S.K.; Tanner, J.; Palmer, C.G.; Woldu, Z.; Alamirew, T.; Zeleke, G. Implications of Watershed Management Practices on Water Availability Using Hydrus-1D Model in the Aba Gerima Watershed, Upper Blue Nile Basin, Ethiopia. Water 2022, 14, 3095. https://doi.org/10.3390/w14193095
Fikadu T, Teferi E, Dubale B, Gusha B, Mantel SK, Tanner J, Palmer CG, Woldu Z, Alamirew T, Zeleke G. Implications of Watershed Management Practices on Water Availability Using Hydrus-1D Model in the Aba Gerima Watershed, Upper Blue Nile Basin, Ethiopia. Water. 2022; 14(19):3095. https://doi.org/10.3390/w14193095
Chicago/Turabian StyleFikadu, Tekuamework, Ermias Teferi, Berihun Dubale, Bukho Gusha, Sukhmani K. Mantel, Jane Tanner, Carolyn G. (Tally) Palmer, Zerihun Woldu, Tena Alamirew, and Gete Zeleke. 2022. "Implications of Watershed Management Practices on Water Availability Using Hydrus-1D Model in the Aba Gerima Watershed, Upper Blue Nile Basin, Ethiopia" Water 14, no. 19: 3095. https://doi.org/10.3390/w14193095
APA StyleFikadu, T., Teferi, E., Dubale, B., Gusha, B., Mantel, S. K., Tanner, J., Palmer, C. G., Woldu, Z., Alamirew, T., & Zeleke, G. (2022). Implications of Watershed Management Practices on Water Availability Using Hydrus-1D Model in the Aba Gerima Watershed, Upper Blue Nile Basin, Ethiopia. Water, 14(19), 3095. https://doi.org/10.3390/w14193095