Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of the Study Area
2.2. Description of SWAT Model and SUFI-2 Model
2.3. Application of SWAT and SUFI-2
Data Type | Description | Information | Source |
---|---|---|---|
Digital Elevation Model | Watershed delineation | Raster, 5 m-resolution | Central Geodetic and Cartographic Documentation Center [49] |
Hydrographic | Site hydrographic data (e.g., rivers, lakes, partial catchments); (reference scale 1:50.000) | Shapefile | Computer Map of the Polish Hydrological Department with descriptions [50] |
Land use | Land-use classification (r.s. 1:100.000) | Shapefile | Corine Land Cover [51] |
Orthophotomap | High resolution orthophotomap | WMS | Geoportal [52] |
Open Street Map | Open Street Map data | Shapefile | Open Street Map [53] |
Soil type | Digital maps of soil and agriculture in digital form (scale 1: 25,000 and 1: 100,000) | Shapefile | Institute of Soil Science and Plant Cultivation in Pulawy [54,55] |
Geological | Geological data describing lithology | Shapefile | Polish Geological Institute in the form of the Detailed Geological Map of Poland [33] |
Weather | Precipitation (mm), temperature (°C), wind speed (m/s), humidity, solar total radiation (MJ/m2) | Daily | Institute of Soil Science and Plant Cultivation in Pulawy and Institute of Meteorology and Water Management [56] |
Streamflow | Calibration and validation | Monthly | Institute of Soil Science and Plant Cultivation in Pulawy |
Sewage treatment plants | Average daily water loading (m3/day) | Daily | National Program of Municipal Wastewater Treatment [57] |
2.4. Climate Change Scenarios
2.5. Climate Change Adaptation Scenarios 1–5
3. Results
3.1. Analysis of Soil Water Content in Zero Scenario for 2021–2050
3.2. Climate Change Adaptation Scenarios Analysis 1–5 for 2041–2050
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IUNG-PIB. Ocena Retencji Wody w Glebie i Zagrożenia Suszą w Oparciu o Bilans Wodny Dla Obszaru Województwa Dolnośląskiego, Zakład Gleboznawstwa Erozji i Ochrony Gruntów; IUNG-PIB: Puławy, Poland, 2013. [Google Scholar]
- Havrylenko, S.B.; Bodoque, J.M.; Srinivasan, R.; Zucarelli, G.V.; Mercuri, P. Assessment of the soil water content in the Pampas region using SWAT. Catena 2016, 137, 298–309. [Google Scholar] [CrossRef]
- Somorowska, U. Soil water storage in Poland over the years 2000-2015 in response to precipitation variability as retrieved from GLDAS Noah simulations. Geogr. Pol. 2017, 90, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, J.; Chen, Y.; Wang, A.; De Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinvasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Szcześniak, M.; Kardel, I.; Berezowski, T.; Okruszko, T.; Srinivasan, R.; Vikhamar Schuler, D.; Kundzewicz, Z.W. Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol. Sci. J. 2017, 62, 1266–1289. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Badora, D.; Wawer, R.; Nierobca, A.; Krol-Badziak, A.; Kozyra, J.; Jurga, B.; Nowocien, E. Modelling the Hydrology of an Upland Catchment of Bystra River in 2050 Climate Using RCP 4.5 and RCP 8.5 Emission Scenario Forecasts. Agriculture 2022, 12, 403. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Theoretical Documentation, Version 2012; Texas Water Resources Institute: Forney, TX, USA, 2012. [Google Scholar]
- Neitsh, S.I.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Forney, TX, USA, 2011. [Google Scholar]
- Kozyra, J.; Żyłowska, K.; Nieróbca, A.; Matyka, M.; Smagacz, J.; Jadczyszyn, T.; Wawer, R. Zmiany Klimatu a Rolnictwo w Polsce Ocena Zagrożeń i Sposoby Adaptacji, Fundacja Na Rzecz Zrównoważonego Rozwoju; Publisher: Warsaw, Poland, 2019; p. 59. [Google Scholar]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Podstawy systemu monitoringu suszy rolniczej. Woda-Sr.-Obsz. Wiej. 2012, 12, 78–91. [Google Scholar]
- KLIMADA 2.0, 2019. KLIMADA 2.0–Baza Wiedzy o Zmianach Klimatu, Scenariusze Zmian Klimatu. 2022. Available online: https://klimada2.ios.gov.pl/ (accessed on 12 January 2020).
- Kundzewicz, Z. Zmiany klimatu, ich przyczyny i skutki–możliwości przeciwdziałania i adaptacji. Studia BAS 2012, 29, 9–30. [Google Scholar]
- Kundzewicz, Z.; Matczak, P. Climate change regional review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef] [Green Version]
- Nieróbca, A.; Kozyra, J.; Mizak, K.; Wróblewska, E. Zmiana długości okresu wegetacyjnego w Polsce. Woda-Sr.-Obsz. Wiej. 2013, 13, 81–94. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Parry, M.L.; Canziani, O.F.; Palukitof, J.P.; van der Linden, P.J.; Hanson, C.E. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https:/www.ipcc.ch/publications_and_data/ar4/wg2/en/contents.html (accessed on 5 December 2021).
- Załatwiaj Sprawy Urzędowe—Przez Internet, Bezpiecznie i Wygodnie! Available online: https://www.gov.pl/web/rolnictwo/kodeks-dobrych-praktyk-wodnych-w-rolnictwie (accessed on 15 April 2020).
- Ministerstwo Środowiska, 2013, Strategiczny Plan Adaptacji dla Sektorów i Obszarów Wrażliwych na Zmiany Klimatu do Roku 2020 z Perspektywą do Roku 2030, Dokument Został Opracowany Przez Ministerstwo Środowiska na Podstawie Analiz Wykonanych Przez Instytut Ochrony Środowiska—Państwowy Instytut Badawczy w Ramach Projektu pn. “Opracowanie i Wdrożenie Strategicznego Planu Adaptacji dla Sektorów i Obszarów Wrażliwych na Zmiany Klimatu—KLIMADA”, Realizowanego na Zlecenie MŚ w Latach 2011–2013 ze Środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej. Warsaw, Poland, 2013. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/Strategiczny_plan_adaptacji_2020.pdf (accessed on 15 March 2021).
- Doroszewski, A.; Jóźwicki, T.; Wróblewska, E.; Kozyra, J. Susza Rolnicza w Polsce w Latach 1961–2010; Wyd. IUNG: Pulawy, Poland, 2014; p. 144. [Google Scholar]
- Doroszewski, A. Susza Rolnicza w Polsce w 2015 Roku. Warszawa, Poland. 2016. Available online: http://gwppl.org/data/uploads/prezentacje/4.%20Susza%20rolnicza_ADoroszewski.pdf (accessed on 18 November 2020).
- Chałubińska, A.; Wilgat, T. Podział Fizjograficzny woj. Lubelskiego, Przewodnik V Ogólnopolskiego Zjazdu Polskiego Towarzystwa Geograficznego; Oddział Lubelski PTG: Lublin, Poland, 1954; pp. 3–44. [Google Scholar]
- Jahn, A. Wyżyna Lubelska: Rzeźba i Czwartorzęd; Prace Geograficzne Instytutu Geograficznego PAN, Nr 7, IGiPAN, PWN: Warsaw, Poland, 1956. [Google Scholar]
- Sadurska, E. Charakterystyka Fizycznogeograficzna Dorzecza Bystrej; IUNG: Puławy, Poland, 1980; p. 29. [Google Scholar]
- Ziemnicki, S.; Pałys, S. Erozja wodna w zlewni rzeki Bystrej. Zesz. Probl. Postępów Nauk. Rol. 1977, 193, 44–71. [Google Scholar]
- Wawer, R.; Nowocień, E.; Podolski, B.; Capała, M. Ocena zagrożenia erozją wodną powierzchniową zlewni rzeki Bystrej z wykorzystaniem modelowania przestrzennego. Przegląd Nauk. SGGW Inżynieria I Kształtowanie Sr. Ann. XVII 2008, 3, 20–28. [Google Scholar]
- Jurga, B.; Wawer, R.; Kęsik, K. Zlewnia Rzeki Bystrej Jako Przykład Wyżynnej Zlewni Rolniczej o Wysokich Zdolnościach Buforowych Względem Fosforu-Studium Przypadku, Rolnictwo XXI Wieku–Problemy i Wyzwania, Pod Redakcją Dety Łuczyckiej; Idea Knowledge Future: Wrocław, Poland, 2018; pp. 143–154. ISBN 978-83-945311-9-5. [Google Scholar]
- Wawer, R.; Nowocień, E.; Kozyra, J. Hydrologia i denudacja w zlewni rzeki Bystrej. In Proceedings of the Konferencja Problemy Gospodarowania Zasobami Środowiska w Dolinach Rzecznych, Wrocław, Poland, 27–29 May 2015. [Google Scholar]
- SMGP. Szczegółowa Mapa Geologiczna Polski, Arkusz 747–Nałęczów (M-34-33-A). 2006. Available online: https://bazadata.pgi.gov.pl/data/smgp/arkusze_skany/smgp0747.jpg. (accessed on 5 January 2021).
- Maruszczak, H. Definicja i klasyfikacja lessów oraz utworów lessopodobnych. Przegląd Geol. 2000, 48, 580–586. [Google Scholar]
- Kalarus, K. Wpływ Materiału Macierzystego na Właściwości Gleb Wykształconych Na Lessie; Uniwersytet Jagieloński: Krakow, Poland, 2009. [Google Scholar]
- Piest, R.F.; Ziemnicki, S. Comparative Erosion Rates of Loeass Soils in Poland and Iowa. Trans. Asae 1979, 22, 822–827. [Google Scholar] [CrossRef]
- USDA. United States Department of Agriculture. 1996. Available online: https://www.usda.gov/ (accessed on 1 December 2020).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modelling and assessment. P. I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar]
- Miatkowski, Z.; Smarzyńska, K. Kalibracja i walidacja modelu SWAT do szacowania bilansu wodnego i strat azotu w małym dziale wodnym w centralnej Polsce. J. Water Land Dev. 2016, 29, 31–47. [Google Scholar] [CrossRef]
- QGIS. Quantum GIS 3.10.13 Coruna. 2020. Available online: https://www.qgis.org/pl/site/index.html (accessed on 3 March 2020).
- Winchell, M.; Srinivasan, R. SWAT Editor for SWAT2012—Documentation; Blackland Research Center: Temple, TX, USA, 2012; pp. 1–14. [Google Scholar]
- Bajkiewicz-Grabowska, E.; Mikulski, Z. Hydrologia Ogólna, Pod Redakcją Krystyny Wojtala, Wydawnictwo Naukowe PWN; IBUK: Warsaw, Poland, 2022; ISBN 978-83-01-14579-8. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool. Theoretical Documentation, 2005. Available online: https://swatmodel.tamu.edu/media/1292/swat2005theory.pdf (accessed on 2 January 2022).
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In Proceedings of the International Congress on Modelling and Simulation (MODSI’07), Christchurch, New Zealand, 10–13 December 2007; Oxley, R.L., Kulasiri, D., Eds.; Modelling and Simulation Society of Australia and New Zealands: Melbourne, Australia, 2007; pp. 1596–1602. Available online: https://www.mssanz.org.au/MODSIM07/papers/24_s17/SWAT-CUP_s17_Abbaspour_.pdf (accessed on 3 December 2021).
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual. Swiss Fed. Inst. Aquat. Sci. Technol. 2015, 2015, 1–98. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R.A. Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Bilondi, M.P.; Abbaspour, K.C.; Ghahraman, B. Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-runoff model application. Middle-East J. Sci. Res. 2013, 15, 1255–1263. [Google Scholar]
- Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution based scaling to improve usability of RCM regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- CODGiK, 2013, Centralny Ośrodek Dokumentacji Geodezyjnej i Kartograficznej. Available online: https://www.codgik.gov.pl/, (accessed on 2 February 2018).
- MPHP. 2017. Komputerowa Mapa Podziału Hydrograficznego Polski. Available online: https://danepubliczne.gov.pl/dataset?q=zlewnia&sort=metadata_modified+desc (accessed on 4 June 2018).
- CLC, 2018, CORIN–Land Cover-CLC 2018, Główny Inspektorat Ochrony Środowiska. Available online: https://clc.gios.gov.pl/index.php/clc-2018/o-clc2018 (accessed on 4 June 2018).
- Geoportal, 2020, Instytucja Odpowiedzialna: Główny Urząd Geodezji i Kartografii. Available online: https://mapy.geoportal.gov.pl/wss/service/PZGIK/ORTO/WMS/HighResolution (accessed on 5 March 2020).
- OSM, 2018, Open Street Map. Available online: https://download.geofabrikolandroland.html (accessed on 7 March 2020).
- IUNG-PIB, Digital soil-agriculture maps 1:25000 and 1:100000, Pulawy, Poland, 2010.
- Jadczyszyn, J.; Smreczak, B. Mapa glebowo-rolnicza w skali 1:25 000 i jej wykorzystanie na potrzeby współczesnego rolnictwa. Studia I Rap. IUNG-PIB 2017, 51, 9–27. [Google Scholar] [CrossRef]
- IMGW, 2019, Instytut Meteorologii i Gospodarki Wodnej PIB. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/ (accessed on 3 March 2019).
- KPOSK. Krajowy Program Oczyszczania Ścieków Komunalnych. 2017. Available online: https://www.kzgw.gov.pl/index.php/pl/materialy-informacyjne/programy/krajowy-program-oczyszczania-sciekow-komunalnych, (accessed on 9 March 2020).
- Markowski, K. Rolnictwo w Województwie Lubelskim w 2019 r; Urząd Statystyczny w Lublinie: Lublin, Poland, 2020; ISSN 2080-0517. [Google Scholar]
- Lasy Regionu, 2021, Regionalna Dyrekcja Lasów Państwowych w Lublinie. Available online: https://www.lublin.lasy.gov.pl/lasy-regionu#.yg89jegzzaq (accessed on 13 May 2021).
- Kouchi, D.M.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms. Water 2017, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP Tutorial (2): Introduction to SWAT-CUP Program, Parameter Estimator (SPE), 2020. Available online: https://www.youtube.com/watch?v=nNsDPhOI7cc&ab_channel=2w2e (accessed on 7 July 2021).
- ADMS. System Monitorowania Suszy Rolniczej. 2013. Available online: https://susza.iung.pulawy.pl/system/ (accessed on 10 February 2021).
- Hennemuth, T.I.; Jacob, D.; Keup-Thiel, E.; Kotlarski, S.; Nikulin, G.; Otto, J.; Rechid, D.; Sieck, K.; Sobolowski, S.; Szabó, P. Guidance for EURO-CORDEX Climate Projections Data Use. Version 1.0-2017.08. Available online: https://www.euro-cordex.net/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (accessed on 13 April 2021).
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Zmiana 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Landelius, T.; Dahlgren, P.; Gollvik, S.; Jansson, A.; Olsson, E. A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Q. J. R. Meteorol. Soc. 2016, 142, 2132–2142. [Google Scholar] [CrossRef] [Green Version]
- Schulzweida, U.; Kornblueh, L.; Quast, R. CDO user guide. Climate Data Operators, Version 2006, 1, 205–209. [Google Scholar]
- PIK, 2012, Potsdam Institute for Climate Impact Research. Available online: https://www.pik-potsdam.de/~mmalte/rcps/ (accessed on 5 August 2021).
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Hawes, E.; Smith, M. Riparian Buffer Zones: Functions and Recommended Widths Eightmile River Wild and Scenic Study Committee; 2005. Available online: http://www.eightmileriver.org/resources/digital_library/appendicies/09c3_Riparian%20Buffer%20Science_YALE.pdf (accessed on 5 March 2022).
- Mayer, P.M.; Reynolds, S.K.; Canfield, T.J., Jr. Riparian Buffer Width, Vegetative Cover, and Nitrogen Removal Effectiveness: A Review of Current Science and Regulations; U.S. Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory: Gothenburg, Sweden, 2005. [Google Scholar]
- Pawlaczyk, P.; Biedroń, I.; Brzóska, P.; Dondajewska-Pielka, R.; Furdyna, A.; Gołdyn, R.; Grygoruk, M.; Grześkowiak, A.; Horska-Schwarz, S.; Jusik, S.; et al. Podręcznik Dobrych Praktyk Renaturyzacji Wód Powierzchniowych. OPRAC. w Ramach Przedsięwzięcia „Opracowanie Krajowego Programu Renaturyzacji Wód Powierzchniowych”; Państwowe Gospodarstwo Wodne Wody Polskie, Krajowy Zarząd Gospodarki Wodnej: Warszawa, Poland, 2020. [Google Scholar]
- Waidler, D.; White, M.J.; Steglich, E.; Wang, S.; Williams, J.R.; Jones, C.A.; Srinivasan, R. Conservation Practice Modeling Guide for SWAT and APEX; Texas Water Resources Institute: Forney, TX, USA, 2011. [Google Scholar]
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Representation of Agricultural Conservation Practices with SWAT. Hydrol. Processes 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, J.; Sinha, N.K.; Dalal, R.C.; Rattan, L.; Mohanty, M.; Naorem, A.K.; Hati, K.M.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K.; et al. No-Till Farming and Conservation Agriculture in South Asia–Issues, Challenges, Prospects and Benefits. Crit. Rev. Plant Sci. 2020, 39, 236–279. [Google Scholar] [CrossRef]
- Kuś, J. Glebowa materia organiczna–znaczenie, zawartość i bilansowanie. Studia I Rap. IUNG–PIB 2015, 45, 27–53. [Google Scholar]
- Mackey, B.; Prentice, I.; Steffen, W.; House, J.; Lindenmayer, D.; Keith, H.; Berry, S. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 2013, 3, 552–557. [Google Scholar] [CrossRef]
- Będkowska, H. Lasy i Zmiany Klimatu, Centrum Informacyjne Lasów Państwowych; Mozolewska-Adamczyk, M., Ed.; Dyrekcja Generalna Lasów Państwowych, Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu: Bedoń, Poland, 2016; ISBN 978-83-63895-62-4. [Google Scholar]
- Józefaciuk, A.; Nowocień, E.; Wawer, R. Erozja Gleb w Polsce–Skutki Środowiskowe i Gospodarcze, Działania Zaradcze; Monografie i Rozprawy Naukowe IUNG-PIB: Pulawy, Poland, 2014; Volume 44, p. 263. [Google Scholar]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef]
- Borecki, T.; Malinowski, S.; Banasik, K.; Okruszko, T.; Brzeziecki, B.; Kozyra, J.; Gajda, N.; Haman, K. LXXIII Zmiany Klimatu i Ich Następstwa, Instytut Problemów Współczesnej Cywilizacji im. Marka Dietricha; Wydawnictwo SGGW: Warszawa, Poland, 2021; p. 68. ISBN 978-83-89871-44-2. [Google Scholar]
- MOSZNiL, 1997, Polityka Leśna Państwa. Dokument Przyjęty Przez Radę Ministrów w Dniu 22 Kwietnia 1997 r. Ministerstwo Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa, Warszawa, Krajowy Program Zwiększania Lesistości-Stan i Trudności Realizacji z Perspektywy Lokalnej/National Program for Expanding of Forest Cover-Implementation and Its Difficulties from a Local View. Available online: https://www.researchgate.net/publication/322358247_Krajowy_program_zwiekszania_lesistosci_-_stan_i_trudnosci_realizacji_z_perspektywy_lokalnej_National_Program_for_Expanding_of_Forest_Cover_-_implementation_and_its_difficulties_from_a_local_view (accessed on 11 January 2022).
- Report on the Condition of Forests in Poland 2021, Wydano na Zlecenie Dyrekcji Generalnej Lasów Państwowych, p.o. Dyrektora Generalnego Lasów Państwowych mgr inż. Józef Kubica. Warsaw, Poland, 2021. Available online: https://www.gov.pl/attachment/23dcf2c9-6514-45cf-91de-33cebbf06c49 (accessed on 15 March 2022).
- Kaliszewski, A. Krajowy program zwiększania lesistości-stan i trudności realizacji z perspektywy lokalnej/National Program for Expanding of Forest Cover-implementation and its difficulties from a local view. Studia I Mater. CEPL W Rogowie. 2016, 49, 7–19. [Google Scholar]
- Trabucco, A.; Zomer, R.; Bossio, D.A.; van Straaten, O.; Verchot, L. Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 2008, 126, 81–97. [Google Scholar] [CrossRef]
- Kujawa, A.; Kujawa, K.; Zajączkowski, J.; Borek, R.; Tyszko-Chmielowiec, P.; Chmielowiec-Tyszko, D.; Józefczuk, J.; Krukowska-Szopa, I.; Śliwa, P.; Witkos-Gnach, K. Zadrzewienia Na Obszarach Wiejskich–Dobre Praktyki i Rekomendacje; Fundacja Ekorozwoju: Wrocław, Poland, 2019. [Google Scholar]
- Woch, F. Urządzeniowe metody zmniejszania zagrożenia erozyjnego gleb. Studia I Rap. IUNG-PIB Zesz. 2008, 10, 79–102. [Google Scholar] [CrossRef]
- Tałałaj, Z. Wpływ zadrzewień na plonowanie roślin rolniczych. W: Znaczenie zadrzewień w krajobrazie rolniczym oraz aktualne problemy ich rozwoju w przyrodniczo-gospodarczych warunkach Polski. Mat. Konf. Płock 1997, 72, 91. [Google Scholar]
- Podolski, B.; Woch, F. Wpływ bezpośredniego oddziaływania lasów i zadrzewień śródpolnych na plonowanie zbóż ozimych. Pam. Puł. 1999, 119, 101–111. [Google Scholar]
- Lambor, J. Podstawy i Zasady Gospodarki Wodnej; Wydawnictwa Komunikacji i Łączności, Instrukcje i Podręczniki—Publisher of Communication and Communications: Warsaw, Poland, 1965. [Google Scholar]
- Bogusz, A.; Tokarczyk, T. Rola Terenów Zalesionych w Kształtowaniu Retencji Wód Opadowych w Zlewniach Zurbanizowanych; Monografie Komitetu Gospodarki Wodnej PAN: Warsaw, Poland, 2016. [Google Scholar]
- Ozga-Zielińska, M.; Brzeziński, J. Hydrologia Stosowana; PWN: Warszawa, Poland, 1997; 323p. [Google Scholar]
- The Woodland Trust, 2016, Keeping Rivers Cool: A Guidance Manual. Creating Riparian Shade for Climate Change Adaptation. Available online: https://www.woodlandtrust.org.uk/publications/2016/02/keeping-rivers-cool/ (accessed on 27 December 2021).
- Jabłońska, E.; Wiśniewska, M.; Marcinkowski, P.; Grygoruk, M.; Walton, C.R.; Zak, D.; Hoffmann, C.C.; Larsen, S.E.; Trepel, M.; Kotowski, W. Catchment-Scale Analysis Reveals High CostEffectiveness of Wetland Buffer Zones as a Remedy to Non-Point Nutrient Pollution in NorthEastern Poland. Water 2020, 21, 629. [Google Scholar] [CrossRef] [Green Version]
- Babel, M.S.; Gunathilake, M.B.; Jha, M.K. Evaluation of Ecosystem-Based Adaptation Measures for Sediment Yield in a Tropical Watershed in Thailand. Water 2021, 13, 2767. [Google Scholar] [CrossRef]
- Wawer, R.; Kozyra, J. Kruchy bilans wody na polach. Top-Agrar. 2021, 5, 104–107.
- Claire, J.; Berglund, M.; Bluz, K.; Dworak, T.; Marras, S.; Mereu, V.; Michetti, M. Climate Change Adaptation in the Agriculture Sector in Europe; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current Status of Adoption of No-Till Farming in the World and some of its Main Benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Fengyun, Z.; Pute, W.; Xining, Z.; Xuefeng, C. The effects of no-tillage practice on soil physical properties. Afr. J. Biotechnol. 2011, 10, 17645–17650. [Google Scholar] [CrossRef]
- Khan, N.U.; Khan, A.A.; Goheer, M.A.; Shafique, I.; Hussain, S.; Hussain, S.; Javed, T.; Naz, M.; Shabbir, R.; Raza, A.; et al. Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates. Sustainability 2021, 13, 13753. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Kozyra, J. Ograniczenie wpływu zagrożeń klimatycznych w odniesieniu do rolnictwa i obszarów wiejskich. Pol. J. Agron. 2011, 7, 68–81. [Google Scholar]
- Zhao, F.; Wu, Y.; Hui, J.; Sivakumar, B.; Meng, X.; Liu, S. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance Manag. 2021, 16, 24. [Google Scholar] [CrossRef]
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef]
- Dembek, W.; Wiatkowski, M.; Żurek, G.; Kuś, J. Innowacyjne Metody Gospodarowania Zasobami Wody w Rolnictwie, Praca Zbiorowa Pod Red; Dembek, W., Kuś, J., Wiatkowski, M., Zurek, G., Eds.; Centrum Doradztwa Rolniczego w Brwinowie: Brwinów, Poland, 2016. [Google Scholar]
- Woch, F. Kompleksowe Scalanie Gruntów Rolnych i Leśnych Oraz Jego Wpływ na Środowisko, Materiały Szkoleniowe nr 93/2006; Bochniarz, A., Ed.; IUNG-PIB w Puławach, Dział Upowszechniania i Wydawnictw IUNG-PIB: Puławy, Poland, 2006; ISBN 83-89576-43-0. [Google Scholar]
- Woch, F.; Pijanowski, J.; Kuryłowicz, T. Kompleksowe urządzanie obszarów wiejskich jako szansa dla rozwoju wsi. Pol. J. Agron. 2018, 33, 16–32. [Google Scholar]
Weather Station | Measurement Period | ||||
---|---|---|---|---|---|
Precipitation (mm) | Temperature (°C) | Wind Speed (m/s) | Humidity | Solar Total Radiation (MJ/m2) | |
Pulawy | 2005–2017 | 2005–2017 | 2005–2017 | 2005–2017 | 2005–2017 |
Rogalow | 2005–2017 | ||||
Lublin Radawiec | 2005–2017 | 2005–2017 | 2005–2017 | 2005–2017 |
Models | Scenario Assumptions | Radiative Forcing | ||||
---|---|---|---|---|---|---|
GCM/RCM Simulation | Change in Average Annual Air Temperature | Change in Average Annual Precipitation | +4.5 W m−2 | +8.5 W m−2 | ||
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
EC-EARTH/RACMO22E | +1.5 °C | +1.8 °C | +15% | +6% | RCP 4.5.1 | RCP 8.5.1 |
EC-EARTH/HIRHAM5 | +1.6 °C | +1.9 °C | +12% | +5% | RCP 4.5.2 | RCP 8.5.2 |
EC-EARTH/RCA4 | +1.6 °C | +2.2 °C | +15% | +11% | RCP 4.5.3 | RCP 8.5.3 |
Corine Land Cover Legend | CLC | SWAT | S-0 | AS-1 | AS-2 |
---|---|---|---|---|---|
Code | Code | Part (%) | Part (%) | Part (%) | |
Discontinuous urban fabric | 112 | URML | 0.92 | 0.9 | 0.9 |
Industrial or commercial units | 121 | UCOM | 1.55 | 1.49 | 1.49 |
Mineral extraction sites | 131 | UIDU | 0.02 | 0.02 | 0.02 |
Sport and leisure facilities | 142 | FESC | 0.02 | 0.02 | 0.02 |
SUM= | 2.51 | 2.43 | 2.43 | ||
Non-irrigated arable land | 211 | CRDY | 52.35 | 50.57 | 52.23 |
Vineyards | 221 | GRAP | 0.03 | 0.03 | 0.03 |
Fruit trees and berry plantations | 222 | ORCD | 10.85 | 10.55 | 10.83 |
Pastures | 231 | PAST | 5.89 | 5.35 | 5.55 |
Complex cultivation patterns | 242 | AGRL | 9.04 | 8.68 | 8.86 |
Land principally occupied by agriculture with significant areas of natural vegetation | 243 | CRGR | 0.05 | 0.05 | 0.05 |
SUM= | 78.21 | 75.23 | 77.55 | ||
Mixed forest | 313 | FRST | 16.34 | 19.65 | 17.37 |
Transitional woodland-shrub | 324 | SHRB | 2.43 | 2.18 | 2.23 |
Inland marshes | 411 | WEHB | 0.26 | 0.25 | 0.21 |
Water courses | 511 | WATR | 0.27 | 0.26 | 0.21 |
Climate Scenario | RCP 4.5 | RCP 8.5 | |||||
---|---|---|---|---|---|---|---|
Climate Projection | Model 2010–2017 | RACMO22E (RCP 4.5.1) | HIRHAM5 (RCP 4.5.2) | RCA4 (RCP 4.5.3) | RACMO22E (RCP 8.5.1) | HIRHAM5 (RCP 8.5.2) | RCA4 (RCP 8.5.3) |
Time interval | 2041–2050 | ||||||
Season | Seasonal average of soil water content (mm) | ||||||
DJF | 344 | 332 | 336 | 337 | 340 | 342 | 340 |
−3.5% | −2.3% | −2.1% | −1.3% | −0.7% | −1.2% | ||
MAM | 322 | 303 | 311 | 318 | 318 | 321 | 321 |
−5.8% | −3.3% | −1.3% | −1.2% | −0.1% | −0.2% | ||
JJA | 309 | 292 | 291 | 303 | 313 | 306 | 306 |
−5.4% | −5.6% | −2.0% | +1.4% | −0.8% | −1.0% | ||
SON | 328 | 313 | 321 | 322 | 327 | 329 | 328 |
−4.4% | −2.0% | −1.8% | −0.2% | +0.4% | +0.2% | ||
Average annual | 326 | 310 | 315 | 320 | 324 | 325 | 324 |
−4.7% | −3.3% | −1.8% | −0.4% | −0.3% | −0.6% |
Time Interval | 2041–2050 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Scenario | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | ||
Season | Seasonal average of soil water content (mm) | |||||||||||||
DJF | 332 | 318 | 332 | 332 | 333 | 330 | RACMO22E (RCP 4.5.1) | 340 | 326 | 340 | 340 | 339 | 339 | RACMO22E (RCP 8.5.1) |
−4.2% | −0.1% | 0.0% | +0.1% | −0.6% | −4.0% | 0.0% | 0.0% | −0.1% | −0.1% | |||||
MAM | 303 | 290 | 303 | 303 | 303 | 301 | 318 | 305 | 318 | 318 | 318 | 317 | ||
−4.1% | 0.0% | 0.0% | +0.1% | −0.7% | −4.1% | 0.0% | 0.0% | 0.0% | −0.2% | |||||
JJA | 292 | 278 | 292 | 292 | 293 | 288 | 313 | 299 | 313 | 313 | 314 | 312 | ||
−4.8% | −0.1% | 0.0% | +0.3% | −1.4% | −4.6% | −0.1% | 0.0% | +0.1% | −0.4% | |||||
SON | 313 | 299 | 313 | 313 | 315 | 310 | 327 | 313 | 327 | 327 | 328 | 326 | ||
−4.6% | −0.1% | 0.0% | +0.4% | −1.0% | −4.4% | −0.1% | 0.0% | +0.2% | −0.3% | |||||
Average annual | 310 | 296 | 310 | 310 | 311 | 307 | 324 | 311 | 324 | 324 | 325 | 324 | ||
−4.4% | 0.0% | 0.0% | +0.2% | −0.9% | −4.3% | 0.0% | 0.0% | +0.1% | −0.2% | |||||
DJF | 336 | 322 | 336 | 336 | 337 | 335 | HIRHAM5 (RCP 4.5.2) | 342 | 328 | 342 | 342 | 342 | 342 | HIRHAM5 (RCP 8.5.2) |
−4.1% | 0.0% | 0.0% | +0.1% | −0.2% | −4.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||||
MAM | 311 | 298 | 311 | 311 | 311 | 310 | 321 | 308 | 321 | 321 | 321 | 321 | ||
−4.1% | 0.0% | 0.0% | 0.0% | −0.2% | −4.0% | 0.0% | 0.0% | 0.0% | −0.1% | |||||
JJA | 291 | 277 | 291 | 291 | 292 | 288 | 306 | 292 | 306 | 306 | 307 | 304 | ||
−4.8% | −0.1% | 0.0% | +0.2% | −1.1% | −4.6% | −0.1% | 0.0% | +0.1% | −0.6% | |||||
SON | 321 | 307 | 321 | 321 | 322 | 319 | 329 | 315 | 329 | 329 | 330 | 328 | ||
−4.4% | −0.1% | 0.0% | +0.3% | −0.5% | −4.3% | −0.1% | 0.0% | +0.2% | −0.2% | |||||
Average annual | 315 | 301 | 315 | 315 | 315 | 313 | 325 | 311 | 324 | 325 | 325 | 324 | ||
−4.3% | −0.1% | 0.0% | +0.2% | −0.5% | −4.2% | 0.0% | 0.0% | +0.1% | −0.3% | |||||
DJF | 337 | 323 | 337 | 337 | 337 | 336 | RCA4 (RCP 4.5.3) | 340 | 326 | 340 | 340 | 340 | 340 | RCA4 (RCP 8.5.3) |
−4.1% | 0.0% | 0.0% | 0.0% | −0.2% | −4.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||||
MAM | 318 | 305 | 317 | 318 | 318 | 317 | 321 | 308 | 321 | 321 | 321 | 321 | ||
−4.1% | 0.0% | 0.0% | 0.0% | −0.2% | −4.0% | 0.0% | 0.0% | 0.0% | −0.1% | |||||
JJA | 303 | 289 | 302 | 303 | 303 | 300 | 306 | 291 | 305 | 306 | 306 | 303 | ||
−4.6% | −0.1% | 0.0% | +0.2% | −0.8% | −4.7% | −0.1% | 0.0% | +0.2% | −0.7% | |||||
SON | 322 | 307 | 322 | 322 | 323 | 320 | 328 | 314 | 328 | 328 | 329 | 327 | ||
−4.5% | −0.1% | 0.0% | +0.2% | −0.5% | −4.3% | −0.1% | 0.0% | +0.2% | −0.4% | |||||
Average annual | 320 | 306 | 320 | 320 | 320 | 318 | 324 | 310 | 324 | 324 | 324 | 323 | ||
−4.3% | −0.1% | 0.0% | +0.1% | −0.4% | −4.3% | −0.1% | 0.0% | +0.1% | −0.3% |
Time Interval | 2041–2050 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Scenario | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | ||
Season | Seasonal sum of total runoff (mm) | |||||||||||||
DJF | 35 | 35 | 35 | 35 | 36 | 34 | RACMO22E (RCP 4.5.1) | 55 | 54 | 55 | 55 | 56 | 54 | RACMO22E (RCP 8.5.1) |
−1.0% | −0.1% | 0.0% | +3.7% | −3.1% | −0.8% | −0.1% | 0.0% | +2.4% | −1.3% | |||||
MAM | 31 | 31 | 31 | 31 | 32 | 30 | 47 | 47 | 47 | 47 | 48 | 46 | ||
−0.5% | −0.2% | 0.0% | +3.6% | −3.3% | 0.1% | −0.1% | 0.0% | +2.4% | −1.1% | |||||
JJA | 30 | 30 | 30 | 30 | 31 | 29 | 49 | 49 | 49 | 49 | 50 | 48 | ||
−0.2% | −0.2% | 0.0% | +3.2% | −3.9% | 0.0% | −0.1% | 0.0% | +2.1% | −1.8% | |||||
SON | 32 | 32 | 32 | 32 | 34 | 31 | 49 | 48 | 49 | 49 | 50 | 48 | ||
−0.4% | −0.1% | 0.0% | +4.7% | −3.5% | −0.3% | −0.1% | 0.0% | +3.2% | −1.6% | |||||
Annual sum | 128 | 127 | 128 | 128 | 133 | 123 | 199 | 199 | 199 | 199 | 204 | 196 | ||
−0.5% | −0.2% | 0.0% | +3.8% | −3.4% | −0.3% | −0.1% | 0.0% | +2.5% | −1.5% | |||||
DJF | 39 | 39 | 39 | 39 | 40 | 38 | HIRHAM5 (RCP 4.5.2) | 52 | 52 | 52 | 52 | 53 | 51 | HIRHAM5 (RCP 8.5.2) |
−0.4% | −0.2% | 0.0% | +2.8% | −2.7% | −0.3% | −0.1% | 0.0% | +2.0% | −1.6% | |||||
MAM | 43 | 43 | 43 | 43 | 44 | 42 | 61 | 61 | 61 | 61 | 61 | 60 | ||
−0.2% | −0.2% | 0.0% | +2.4% | −2.1% | −0.2% | −0.1% | 0.0% | +1.3% | −1.2% | |||||
JJA | 36 | 36 | 36 | 36 | 37 | 35 | 53 | 53 | 53 | 53 | 54 | 52 | ||
+0.3% | 0.0% | 0.0% | +2.3% | −3.1% | +0.2% | 0.0% | 0.0% | +1.4% | −1.6% | |||||
SON | 36 | 36 | 36 | 36 | 37 | 35 | 51 | 51 | 51 | 51 | 52 | 50 | ||
−0.4% | −0.1% | 0.0% | +3.5% | −3.3% | −0.2% | −0.1% | 0.0% | +2.3% | −1.7% | |||||
Annual sum | 154 | 154 | 154 | 154 | 159 | 150 | 217 | 216 | 216 | 217 | 220 | 213 | ||
−0.2% | −0.1% | 0.0% | +2.7% | −2.8% | −0.1% | −0.1% | 0.0% | +1.7% | −1.5% | |||||
DJF | 50 | 50 | 50 | 50 | 52 | 50 | RCA4 (RCP 4.5.3) | 71 | 71 | 71 | 71 | 72 | 70 | RCA4 (RCP 8.5.3) |
−0.4% | −0.1% | 0.0% | +2.5% | −1.7% | −0.2% | −0.1% | 0.0% | +2.1% | −1.3% | |||||
MAM | 51 | 50 | 51 | 51 | 52 | 50 | 68 | 68 | 68 | 68 | 69 | 67 | ||
−0.2% | −0.1% | 0.0% | +2.2% | −1.3% | −0.2% | −0.1% | 0.0% | +1.8% | −1.0% | |||||
JJA | 39 | 39 | 39 | 39 | 40 | 39 | 60 | 60 | 60 | 60 | 61 | 59 | ||
+0.2% | 0.0% | 0.0% | +2.4% | −2.0% | 0.0% | 0.0% | 0.0% | +1.6% | −1.3% | |||||
SON | 44 | 44 | 44 | 44 | 46 | 44 | 70 | 69 | 70 | 70 | 72 | 69 | ||
−0.3% | −0.2% | 0.0% | +3.4% | −1.9% | −0.5% | −0.1% | 0.0% | +2.5% | −1.1% | |||||
Annual sum | 185 | 184 | 185 | 185 | 190 | 182 | 268 | 268 | 268 | 268 | 274 | 265 | ||
−0.2% | −0.1% | 0.0% | +2.6% | −1.7% | −0.2% | −0.1% | 0.0% | +2.0% | −1.2% |
Time Interval | 2041–2050 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Scenario | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | ||
Season | Seasonal sum of sediment yield (t/ha) | |||||||||||||
DJF | 0.17 | 0.16 | 0.17 | 0.05 | 0.12 | 0.16 | RACMO22E (RCP 4.5.1) | 0.25 | 0.23 | 0.25 | 0.07 | 0.18 | 0.24 | RACMO22E (RCP 8.5.1) |
−9% | −1% | −72% | −28% | −5% | −9% | 0% | −71% | −30% | −5% | |||||
MAM | 0.08 | 0.07 | 0.08 | 0.02 | 0.07 | 0.07 | 0.07 | 0.06 | 0.07 | 0.02 | 0.06 | 0.06 | ||
−9% | 0% | −71% | −14% | −8% | −7% | 0% | −71% | −7% | −7% | |||||
JJA | 0.15 | 0.14 | 0.15 | 0.05 | 0.13 | 0.12 | 0.22 | 0.20 | 0.22 | 0.06 | 0.16 | 0.18 | ||
−9% | −1% | −70% | −13% | −21% | −9% | 0% | −72% | −28% | −17% | |||||
SON | 0.15 | 0.14 | 0.15 | 0.04 | 0.08 | 0.13 | 0.18 | 0.16 | 0.18 | 0.05 | 0.11 | 0.17 | ||
−7% | −1% | −72% | −48% | −14% | −11% | −1% | −72% | −41% | −5% | |||||
Annual sum | 0.55 | 0.51 | 0.55 | 0.16 | 0.40 | 0.49 | 0.72 | 0.65 | 0.71 | 0.20 | 0.50 | 0.65 | ||
−9% | −1% | −71% | −27% | −12% | −9% | 0% | −72% | −30% | −9% | |||||
DJF | 0.11 | 0.10 | 0.10 | 0.03 | 0.08 | 0.10 | HIRHAM5 (RCP 4.5.2) | 0.12 | 0.11 | 0.12 | 0.04 | 0.09 | 0.12 | HIRHAM5 (RCP 8.5.2) |
−10% | −1% | −72% | −23% | −4% | −9% | 0% | −71% | −22% | −4% | |||||
MAM | 0.13 | 0.12 | 0.13 | 0.04 | 0.12 | 0.12 | 0.24 | 0.22 | 0.24 | 0.07 | 0.21 | 0.22 | ||
−6% | 0% | −71% | −7% | −8% | −8% | −1% | −71% | −13% | −8% | |||||
JJA | 0.12 | 0.11 | 0.12 | 0.03 | 0.09 | 0.10 | 0.21 | 0.20 | 0.21 | 0.06 | 0.16 | 0.17 | ||
−11% | −2% | −72% | −25% | −16% | −8% | −1% | −71% | −23% | −18% | |||||
SON | 0.19 | 0.17 | 0.19 | 0.05 | 0.10 | 0.16 | 0.22 | 0.20 | 0.22 | 0.06 | 0.12 | 0.20 | ||
−9% | −1% | −73% | −49% | −13% | −10% | −1% | −72% | −44% | −10% | |||||
Annual sum | 0.54 | 0.50 | 0.54 | 0.15 | 0.39 | 0.48 | 0.79 | 0.72 | 0.79 | 0.23 | 0.59 | 0.71 | ||
−9% | −1% | −72% | −29% | −11% | −9% | −1% | −71% | −25% | −11% | |||||
DJF | 0.11 | 0.10 | 0.11 | 0.03 | 0.09 | 0.11 | RCA4 (RCP 4.5.3) | 0.14 | 0.12 | 0.14 | 0.04 | 0.10 | 0.13 | RCA4 (RCP 8.5.3) |
−9% | −1% | −73% | −23% | 0% | −9% | −1% | −72% | −24% | −7% | |||||
MAM | 0.15 | 0.14 | 0.15 | 0.05 | 0.14 | 0.13 | 0.16 | 0.15 | 0.16 | 0.05 | 0.15 | 0.14 | ||
−11% | 0% | −70% | −7% | −12% | −9% | −1% | −72% | −6% | −14% | |||||
JJA | 0.11 | 0.10 | 0.11 | 0.03 | 0.08 | 0.09 | 0.14 | 0.12 | 0.14 | 0.04 | 0.13 | 0.11 | ||
−12% | −1% | −73% | −25% | −21% | −11% | −1% | −71% | −7% | −23% | |||||
SON | 0.20 | 0.18 | 0.20 | 0.06 | 0.12 | 0.18 | 0.57 | 0.51 | 0.56 | 0.16 | 0.32 | 0.50 | ||
−9% | 0% | −72% | −42% | −10% | −10% | −1% | −72% | −43% | −12% | |||||
Annual sum | 0.57 | 0.52 | 0.57 | 0.16 | 0.43 | 0.51 | 1.00 | 0.90 | 0.99 | 0.28 | 0.71 | 0.87 | ||
−10% | −1% | −72% | −26% | −11% | −10% | −1% | −72% | −29% | −13% |
Time Interval | 2041–2050 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Scenario | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | S-0 | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | ||
Season | Seasonal sum of actual evapotranspiration (mm) | |||||||||||||
DJF | 27 | 27 | 27 | 27 | 27 | 27 | RACMO22E (RCP 4.5.1) | 29 | 29 | 29 | 29 | 29 | 29 | RACMO22E (RCP 8.5.1) |
−0.9% | −0.1% | 0.0% | −0.2% | −0.4% | −0.7% | 0.0% | 0.0% | −0.4% | −0.5% | |||||
MAM | 154 | 151 | 154 | 154 | 154 | 156 | 156 | 154 | 156 | 156 | 156 | 157 | ||
−1.9% | −0.1% | 0.0% | 0.0% | +1.4% | −1.7% | −0.1% | 0.0% | −0.3% | +0.7% | |||||
JJA | 166 | 169 | 166 | 166 | 163 | 168 | 165 | 168 | 165 | 165 | 162 | 166 | ||
+2.0% | +0.2% | 0.0% | −1.5% | +1.4% | +1.8% | +0.2% | 0.0% | −1.5% | +1.0% | |||||
SON | 70 | 70 | 70 | 70 | 67 | 70 | 70 | 70 | 70 | 70 | 68 | 70 | ||
+0.4% | 0.0% | 0.0% | −4.0% | +0.1% | +0.3% | 0.0% | 0.0% | −3.2% | +0.1% | |||||
Annual sum | 416 | 417 | 416 | 416 | 411 | 421 | 420 | 420 | 420 | 420 | 415 | 423 | ||
+0.1% | 0.0% | 0.0% | −1.3% | +1.1% | +0.1% | 0.0% | 0.0% | −1.3% | +0.7% | |||||
DJF | 24 | 24 | 24 | 24 | 24 | 24 | HIRHAM5 (RCP 4.5.2) | 23 | 23 | 23 | 23 | 23 | 23 | HIRHAM5 (RCP 8.5.2) |
−0.7% | 0.0% | 0.0% | −0.2% | −0.4% | −0.7% | 0.0% | 0.0% | −0.3% | −0.4% | |||||
MAM | 149 | 146 | 148 | 149 | 148 | 150 | 135 | 133 | 135 | 135 | 136 | 137 | ||
−1.9% | −0.1% | 0.0% | −0.1% | +1.2% | −1.7% | −0.1% | 0.0% | +0.1% | +1.0% | |||||
JJA | 152 | 155 | 152 | 152 | 150 | 154 | 152 | 155 | 153 | 152 | 150 | 154 | ||
+2.0% | +0.2% | 0.0% | −1.2% | +1.7% | +1.7% | +0.2% | 0.0% | −1.3% | +1.3% | |||||
SON | 61 | 61 | 61 | 61 | 59 | 61 | 65 | 66 | 65 | 65 | 63 | 65 | ||
+0.3% | 0.0% | 0.0% | −3.6% | 0.0% | +0.1% | 0.0% | 0.0% | −3.3% | 0.0% | |||||
Annual sum | 386 | 386 | 386 | 386 | 382 | 390 | 377 | 377 | 377 | 377 | 372 | 380 | ||
+0.1% | 0.0% | 0.0% | −1.1% | +1.1% | 0.0% | 0.0% | 0.0% | −1.1% | +0.9% | |||||
DJF | 31 | 31 | 31 | 31 | 31 | 31 | RCA4 (RCP 4.5.3) | 34 | 34 | 34 | 34 | 34 | 34 | RCA4 (RCP 8.5.3) |
−0.7% | 0.0% | 0.0% | −0.2% | −0.6% | −0.8% | 0.0% | 0.0% | −0.2% | −0.5% | |||||
MAM | 136 | 134 | 136 | 136 | 136 | 137 | 141 | 138 | 141 | 141 | 141 | 142 | ||
−1.7% | −0.1% | 0.0% | −0.2% | +0.8% | −1.6% | −0.1% | 0.0% | −0.1% | +0.8% | |||||
JJA | 168 | 170 | 168 | 168 | 165 | 170 | 158 | 161 | 158 | 158 | 156 | 160 | ||
+1.5% | +0.2% | 0.0% | −1.4% | +1.3% | +1.7% | +0.2% | 0.0% | −1.5% | +1.3% | |||||
SON | 69 | 70 | 69 | 69 | 67 | 69 | 72 | 73 | 73 | 72 | 69 | 72 | ||
+0.4% | 0.0% | 0.0% | −3.5% | 0.0% | +0.2% | 0.0% | 0.0% | −4.2% | 0.0% | |||||
Annual sum | 404 | 405 | 405 | 404 | 399 | 408 | 406 | 406 | 406 | 406 | 400 | 409 | ||
+0.1% | 0.0% | 0.0% | −1.3% | +0.8% | +0.1% | 0.0% | 0.0% | −1.4% | +0.7% |
RCP 4.5 | RCP 8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | Soil water Content (mm) | Total Runoff (mm) | Sediment Yield (t/ha) | Actual Evapotranspiration (mm) | Soil Water Content (mm) | Total Runoff (mm) | Sediment Yield (t/ha) | Actual Evapotranspiration (mm) | |
DJF | −4.1% | −0.6% | −9.3% | −0.7% | −4.0% | −0.4% | −9.1% | −0.7% | AS-1 |
MAM | −4.1% | −0.2% | −8.7% | −1.9% | −4.0% | −0.1% | −8.5% | −1.7% | |
JJA | −4.7% | +0.1% | −10.4% | +1.9% | −4.6% | +0.1% | −9.1% | +1.7% | |
SON | −4.5% | −0.4% | −8.5% | +0.4% | −4.3% | −0.4% | −10.5% | +0.2% | |
Average | −4.4% | −0.3% | −9.2% | +0.1% | −4.2% | −0.2% | −9.5% | +0.1% | |
DJF | 0.0% | −0.1% | −1.0% | 0.0% | 0.0% | −0.1% | −0.4% | 0.0% | AS-2 |
MAM | 0.0% | −0.1% | 0.0% | −0.1% | 0.0% | −0.1% | −0.8% | −0.1% | |
JJA | −0.1% | −0.1% | −1.3% | +0.2% | −0.1% | 0.0% | −0.7% | +0.2% | |
SON | −0.1% | −0.1% | −0.6% | 0.0% | −0.1% | −0.1% | −0.9% | 0.0% | |
Average | −0.1% | −0.1% | −0.7% | 0.0% | 0.0% | −0.1% | −0.8% | 0.0% | |
DJF | 0.0% | 0.0% | −72.4% | 0.0% | 0.0% | 0.0% | −71.5% | 0.0% | AS-3 |
MAM | 0.0% | 0.0% | −70.4% | 0.0% | 0.0% | 0.0% | −71.3% | 0.0% | |
JJA | 0.0% | 0.0% | −71.6% | 0.0% | 0.0% | 0.0% | −71.4% | 0.0% | |
SON | 0.0% | 0.0% | −72.5% | 0.0% | 0.0% | 0.0% | −72.2% | 0.0% | |
Average | 0.0% | 0.0% | −71.8% | 0.0% | 0.0% | 0.0% | −71.7% | 0.0% | |
DJF | +0.1% | +2.9% | −25.3% | −0.2% | 0.0% | +2.2% | −26.2% | −0.3% | AS-4 |
MAM | 0.0% | +2.6% | −8.5% | −0.1% | 0.0% | +1.8% | −9.8% | −0.1% | |
JJA | +0.2% | +2.6% | −20.3% | −1.4% | +0.2% | +1.7% | −20.9% | −1.4% | |
SON | +0.3% | +3.8% | −46.2% | −3.7% | +0.2% | +2.6% | −42.7% | −3.6% | |
Average | +0.2% | +3.0% | −27.3% | −1.2% | +0.1% | +2.1% | −28.2% | −1.2% | |
DJF | −0.3% | −2.4% | −3.1% | −0.5% | −0.1% | −1.4% | −5.1% | −0.5% | AS-5 |
MAM | −0.4% | −2.1% | −9.6% | +1.1% | −0.1% | −1.1% | −9.8% | +0.9% | |
JJA | −1.1% | −2.9% | −19.5% | +1.5% | −0.6% | −1.6% | −18.8% | +1.2% | |
SON | −0.7% | −2.8% | −12.2% | 0.0% | −0.3% | −1.4% | −10.5% | 0.0% | |
Average | −0.6% | −2.5% | −11.2% | +1.0% | −0.3% | −1.4% | −11.2% | +0.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badora, D.; Wawer, R.; Nieróbca, A.; Król-Badziak, A.; Kozyra, J.; Jurga, B.; Nowocień, E. Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment. Water 2022, 14, 2288. https://doi.org/10.3390/w14152288
Badora D, Wawer R, Nieróbca A, Król-Badziak A, Kozyra J, Jurga B, Nowocień E. Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment. Water. 2022; 14(15):2288. https://doi.org/10.3390/w14152288
Chicago/Turabian StyleBadora, Damian, Rafał Wawer, Anna Nieróbca, Aleksandra Król-Badziak, Jerzy Kozyra, Beata Jurga, and Eugeniusz Nowocień. 2022. "Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment" Water 14, no. 15: 2288. https://doi.org/10.3390/w14152288
APA StyleBadora, D., Wawer, R., Nieróbca, A., Król-Badziak, A., Kozyra, J., Jurga, B., & Nowocień, E. (2022). Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment. Water, 14(15), 2288. https://doi.org/10.3390/w14152288