A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. North American Regional Reanalysis (NARR)
2.2. Catchment-Based Macro-Scale Floodplain (CaMA-Flood) Model
Components of the CaMa-Flood Model
2.3. Methodology of Floodplain Mapping
2.4. Determination of Flood Hazard
ծ =ζ ((ɗ1),…, (ɗn)); ծ ∈ Ȟ; p ∈ P and (ɗ1), …, (ɗn) ∈ D
2.5. Quantification of Exposure of Properties Due to Flooding
2.6. Development of Flood Map Viewer
3. Results
3.1. Floodplain Maps Derived by Utilizing NARR
3.2. Validation of Floodplain Maps with Benchmark Maps
3.3. Exposure of Property to Flooding at a Decadal Time Scale
3.4. Flood Map Viewer
4. Discussions
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
CaMA-Flood | Catchment-based Macro-scale Floodplain |
D | Set of all flood depths |
ɗn | Inundation depth for a particular grid |
FLOW | The Flexible Location of Waterways technique |
G3WBM | Global Water Body Map |
GEV | Generalized Extreme Value |
GWD-LR | Global River Width |
Ȟ | Flood Hazard |
MERIT DEM | Multi-Error-Removed Improved-Terrain DEM |
NARR | North American Regional Reanalysis |
OSM | Open Street Map |
p | Total number of grid cells in the flood model domain |
References
- Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jong-man, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Tanoue, M.; Watanabe, S.; Hirabayashi, Y. Quantifying the effect of autonomous adaptation to global river flood projections: Application to future flood risk assessments. Environ. Res. Lett. 2018, 13, 014006. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The global flood protection benefits of mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef]
- Munich, Re. NatCatSERVICE Database. Munich RE, Munich. 2018. Available online: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html (accessed on 25 March 2022).
- UNISDR—The United Nations Office for Disaster Risk Reduction: The Human Cost of Weather-Related Disasters 1995–2015. 2015. Available online: https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf (accessed on 22 March 2022).
- Willner, S.N.; Otto, C.; Levermann, A. Global economic response to river floods. Nat. Clim. Chang. 2018, 8, 594–598. [Google Scholar] [CrossRef]
- Wing, O.E.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Bianchi, A.; Dottori, F.; Feyen, L. Climatic and socio-economic controls of future coastal flood risk in Europe. Nat. Clim. Chang. 2018, 8, 776–780. [Google Scholar] [CrossRef]
- Smith, A.; Bates, P.D.; Wing, O.; Sampson, C.; Quinn, N.; Neal, J. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 2019, 10, 1814. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Bernhofen, M.V.; Whyman, C.; Trigg, M.A.; Sleigh, P.A.; Smith, A.M.; Sampson, C.C.; Yamazaki, D.; Ward, P.J.; Rudari, R.; Pappenberger, F.; et al. A first collective validation of global fluvial flood models for major floods in Nigeria and Mozambique. Environ. Res. Lett. 2018, 13, 104007. [Google Scholar] [CrossRef] [Green Version]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Vittal, H.; Yadav, V.; Ghosh, S.; Rao, G.S.; Karmakar, S. A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. J. Environ. Manag. 2020, 255, 109733. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Gaur, A.; Simonovic, S.P. Future Changes in Flood Hazards across Canada under a Changing Climate. Water 2018, 10, 1441. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Gaur, A.; Yamazaki, D.; Simonovic, S.P. Flooding related consequences of climate change on Canadian cities and flow regulation infrastructure. Water 2019, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.H.; Yamazaki, D.; Koirala, S.; Hirabayashi, Y.; Kanae, S.; Dadson, S.J.; Hall, W.H.; Sun, F. Long-term changes in global socio-economic benefits of flood defenses and residual risk based on CMIP5 climate models. Earth’s Future 2018, 6, 938–954. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Van Beek, L.P.H.; Jongman, B.; Ward, P.J.; Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 2013, 17, 1871–1892. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Jongman, B.; Weiland, F.S.; Bouwman, A.; Van Beek, R.; Bierkens, M.F.P.; Ligtvoet, W.; Winsemius, H.C. Assessing flood risk at the global scale: Model set-up, results, and sensitivity. Environ. Res. Lett. 2013, 8, 044019. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [Google Scholar] [CrossRef]
- Bermúdez, M.; Cea, L.; Van Uytven, E.; Willems, P.; Farfán, J.F.; Puertas, J. A robust method to update local river inundation maps using global climate model output and weather typing based statistical downscaling. Water Resour. Manag. 2020, 34, 4345–4362. [Google Scholar] [CrossRef]
- Toosi, A.S.; Doulabian, S.; Tousi, E.G.; Calbimonte, G.H.; Alaghmand, S. Large-scale flood hazard assessment under climate change: A case study. Ecol. Eng. 2020, 147, 105765. [Google Scholar] [CrossRef]
- Hunter, J.R.; Woodworth, P.L.; Wahl, T.; Nicholls, R.J. Using global tide gauge data to validate and improve the representation of extreme sea levels in flood impact studies. Glob. Planet. Chang. 2017, 156, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Gründemann, G.J.; Werner, M.; Veldkamp, T.I. The potential of global reanalysis datasets in identifying flood events in Southern Africa. Hydrol. Earth Syst. Sci. 2018, 22, 4667–4683. [Google Scholar] [CrossRef] [Green Version]
- Senatore, A.; Davolio, S.; Furnari, L.; Mendicino, G. Reconstructing flood events in Mediterranean coastal areas using different reanalyses and high-resolution meteorological models. J. Hydrometeorol. 2020, 21, 1865–1887. [Google Scholar] [CrossRef]
- NRCan (2018) Natural Resources Canada. Federal Floodplain Mapping Framework. Available online: https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=308128 (accessed on 7 June 2022).
- Public Safety Canada (2017) Floods. Available online: https://www.publicsafety.gc.ca/cnt/mrgnc-mngmnt/ntrlhzrds/fld-en.aspx> (accessed on 10 March 2022).
- Zadeh, S.M.; Burn, D.H.; O’Brien, N. Detection of trends in flood magnitude and frequency in Canada. J. Hydrol. Reg. Stud. 2020, 28, 100673. [Google Scholar] [CrossRef]
- Parliamentary Budget Officer of Canada. Estimate of the Average Annual Cost for Disaster Financial Assistance Arrangements Due to Weather Events. 2016. Available online: https://www.pbo-dpb.gc.ca/web/default/files/Documents/Reports/2016/DFAA/DFAA_EN.pdf (accessed on 3 June 2022).
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Ashtine, M.; Bello, R.; Higuchi, K. Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012. Renew. Sustain. Energy Rev. 2016, 56, 272–282. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Simonovic, S.P. Changes in floodplain regimes over Canada due to climate change impacts: Observations from CMIP6 models. Sci. Total Environ. 2021, 792, 148323. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Yamazaki, D.; Oki, T.; Kanae, S. Deriving a global river network map and its subgrid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 2009, 13, 2241. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; O’Loughlin, F.; Trigg, M.A.; Miller, Z.F.; Pavelsky, T.M.; Bates, P.D. Development of the global width database for large rivers. Water Resour. Res. 2014, 50, 3467–3480. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lee, M.; Choi, W.; Rasmussen, P.F. Utilizing North American Regional Reanalysis for climate change impact assessment on water resources in central Canada. In Proceedings of the 13th World Water Congress, Montpellier, France, 1–4 September 2008. [Google Scholar]
- Essou, G.R.; Sabarly, F.; Lucas-Picher, P.; Brissette, F.; Poulin, A. Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling? J. Hydrometeorol. 2016, 17, 1929–1950. [Google Scholar] [CrossRef]
- Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal, J.C.; Alfieri, L.; Freer, J.E. A high-resolution global flood hazard model. Water Resour. Res. 2015, 51, 7358–7381. [Google Scholar] [CrossRef] [Green Version]
- Hawker, L.; Rougier, J.; Neal, J.; Bates, P.; Archer, L.; Yamazaki, D. Implications of simulating global digital elevation models for flood inundation studies. Water Resour. Res. 2018, 54, 7910–7928. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bates, P.D.; Neal, J.C.; Yamazaki, D. Bare-Earth DEM Generation in Urban Areas for Flood Inundation Simulation Using Global Digital Elevation Models. Water Resour. Res. 2021, 57, e2020WR028516. [Google Scholar] [CrossRef]
- Hao, C.; Yunus, A.P.; Subramanian, S.S.; Avtar, R. Basin-wide flood depth and exposure mapping from SAR images and machine learning models. J. Environ. Manag. 2021, 297, 113367. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Blais, E.-L.; Greshuk, J.; Stadnyk, T. The 2011 flood event in the Assiniboine River Basin: Causes, assessment and damages. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2016, 41, 74–84. [Google Scholar] [CrossRef]
- Tavares da Costa, R.; Mazzoli, P.; Bagli, S. Limitations posed by Free DEMs in watershed studies: The case of river Tanaro in Italy. Front. Earth Sci. 2019, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Rannie, W. The 1997 flood event in the Red River basin: Causes, assessment and damages. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2016, 41, 45–55. [Google Scholar] [CrossRef]
- Simonovic, S.P. Decision support system for flood management in the Red River Basin. Can. Water Resour. J. 1999, 24, 203–223. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, L.; Thistlethwaite, J.; Minano, A.; Henstra, D.; Scott, D. Leveraging Hazard, Exposure, and Social Vulnerability Data to Assess Flood Risk to Indigenous Communities in Canada. Int. J. Disaster Risk Sci. 2021, 12, 821–838. [Google Scholar] [CrossRef]
- Albano, R.; Sole, A.; Adamowski, J. READY: A web-based geographical information system for enhanced flood resilience through raising awareness in citizens. Nat. Hazards Earth Syst. Sci. 2015, 15, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Windsor, M.; Muste, M.; Demir, I. A web-based decision support system for collaborative mitigation of multiple water-related hazards using serious gaming. J. Environ. Manag. 2020, 255, 109887. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Roberts, M.J.; van der Keur, P.; Harjanne, A.; Egilson, D.; Alfonso, L. Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management. Int. J. Disaster Risk Reduct. 2018, 31, 1295–1306. [Google Scholar] [CrossRef]
Name of the Model | Source |
---|---|
CaMa-Flood; Catchment-Based Macro-scale Floodplain model | http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/, accessed on 22 March 2021 |
CIMA-UNEP; Centro Internazionale in Monitoraggio Ambientale and United Nations Environment Program model | https://www.preventionweb.net/organizations/8635, accessed on 10 April 2021 |
GLOFRIS; Global Flood Risk (model | https://www.globalfloods.eu/, accessed on 15 August 2021 |
JRC; Joint Research Centre model | https://ec.europa.eu/knowledge4policy/organisation/jrc-joint-research-centre_en, accessed on 16 September 2021 |
Fathom Global model | https://www.fathom.global/, accessed on 18 April 2021 |
LIS-FLOOD | http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/, accessed on 6 May 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, M.P.; Simonovic, S.P. A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada. Water 2022, 14, 2280. https://doi.org/10.3390/w14142280
Mohanty MP, Simonovic SP. A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada. Water. 2022; 14(14):2280. https://doi.org/10.3390/w14142280
Chicago/Turabian StyleMohanty, Mohit Prakash, and Slobodan P. Simonovic. 2022. "A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada" Water 14, no. 14: 2280. https://doi.org/10.3390/w14142280
APA StyleMohanty, M. P., & Simonovic, S. P. (2022). A Comprehensive Approach for Floodplain Mapping through Identification of Hazard Using Publicly Available Data Sets over Canada. Water, 14(14), 2280. https://doi.org/10.3390/w14142280