Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Research Methodology
2.2.1. Valuation of Water Supply Services
2.2.2. Demand for Water Supply Services
2.2.3. Supply-Demand Balance Analysis of Water Supply Services
2.2.4. Geodetector
2.3. Data
2.3.1. Supply Data
2.3.2. Demand Data
3. Results and Analysis
3.1. Validation and Processing of Model Parameter
3.2. Spatiotemporal Variation in the Supply of Water Supply Services
3.3. Spatiotemporal Variation in the Demand for Water Supply Services
3.4. Spatiotemporal Variation in the FSI of Water Supply Services
3.5. Geodetector Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farberk, S.; Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, S.; Guan, L.; Xu, Z.G.; Zhuo, Y.F.; Wu, C.F.; Ye, Y.M. Combined impact of socioeconomic forces and policy implications: Spatial-temporal dynamics of the ecosystem services value in Yangtze River Delta, China. Sustainability 2019, 11, 2622. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.X.; Dong, X.B.; Wang, X.C.; Zhao, B.Y.; Wei, H.J.; Fan, W.G.; Zhang, C.Y. The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China. Land 2022, 11, 749. [Google Scholar] [CrossRef]
- Trifonova, N.; Scott, B.; Griffin, R.; Pennock, S.; Jeffrey, H. An ecosystem-based natural capital evaluation framework that combines environmental and socio-economic implications of offshore renewable energy developments. Prog. Energy 2022, 4, 032005. [Google Scholar] [CrossRef]
- Haile, K.; Wu, W.; Abiyot, L.; Zinabu, W.; Tenaw, E. Quantifying ecosystem service supply-demand relationship and its link with smallholder farmers’ well-being in contrasting agro-ecological zones of the East African Rift. Glob. Ecol. Conserv. 2021, 31, e01829. [Google Scholar]
- Li, M.; Zheng, P.; Pan, W. Spatial-temporal variation and tradeoffs/synergies analysis on multiple ecosystem services: A case study in Fujian. Sustainability 2022, 14, 3086. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Chen, J.Y.; Alatalo, J.M.; Xu, X.B.; Liu, G.; Wang, Q. Land management to reconcile ecosystem services supply and demand mismatches: A case study in Shanghai municipality, China. Land Degrad. 2020, 31, 2684–2699. [Google Scholar] [CrossRef]
- Spyra, M.; Rosa, D.L.; Zasada, I.; Sylla, M.; Shkaruba, A. Governance of ecosystem services trade-offs in peri-urban landscapes. Land Use Policy 2020, 95, 104617. [Google Scholar] [CrossRef]
- Yang, M.H.; Zhao, X.N.; Wu, P.T.; Hu, P.; Gao, X.D. Quantification and spatially explicit driving forces of the incoordination between ecosystem service supply and social demand at a regional scale. Ecol. Indic. 2022, 137, 108764. [Google Scholar] [CrossRef]
- Zhou, G.S.; Zhou, L.; Ji, Y.H.; Lu, X.M.; Zhou, M.Z. Basin integrity and temporal-spatial connectivity of the water ecological carrying capacity of the Yellow River. Chin. Sci. Bull. 2021, 66, 2785–2792. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, L.; Zhang, S.L.; Gao, C. Dynamic simulation and comprehensive evaluation of the water resources carrying capacity in Guangzhou city, China. Ecol. Indic. 2022, 135, 108528. [Google Scholar] [CrossRef]
- Gharibi, H.; Mahvi, A.H.; Nabizadeh, R.; Arabalibeik, H.; Yunesian, M.; Sowlat, M.H. A novel approach in water quality assessment based on fuzzy logic. J. Environ. Manag. 2012, 112, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Correa, J.C.; Muñoz-Arriola, F.; Bartelt-Hunt, S. Modeling water quantity and quality nonlinearities for watershed adaptability to hydroclimate extremes in agricultural landscapes. Hydrology 2022, 9, 80. [Google Scholar] [CrossRef]
- Kheradpisheh, Z.; Mirzaei, M.; Mahvi, A.H.; Mokhtari, M.; Azizi, R.; Fallahzadeh, H.; Ehrampoush, M.h. Impact of drinking water fluoride on human thyroid hormones: A case-control study. Sci. Rep. 2018, 8, 2674. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Shin, J.; Hyung, J.; Kim, K.; Koo, J.; Cha, Y.K. Willingness to pay for improved water supply services based on asset management: A contingent valuation study in South Korea. Water 2021, 13, 2040. [Google Scholar] [CrossRef]
- Godfrey, S.; Asmare, G.; Gossa, T.; Paba, M. Fuzzy logic analysis of the build, capacity build and transfer (B-CB-T) modality for urban water supply service delivery in Ethiopia. Water 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Han, W. Performance evaluation for urban water supply services in China. Water Supply 2020, 20, 3511–3516. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Zhang, D.; Huang, J.L.; Li, D.H.; Ding, N.; Zhu, J.F.; Xie, Y.J.; Wang, X.R. Evaluating water provision service at the sub-watershed scale by combining supply, demand, and spatial flow. Ecol. Indic. 2021, 127, 107745. [Google Scholar] [CrossRef]
- Zhang, X.Q.; He, S.Y.; Yang, Y. Evaluation of wetland ecosystem services value of the yellow river delta. Environ. Monit. Assess. 2021, 193, 353. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Bebi, P.; Bishop, I.D.; Schmid, W.A. Linking GIS-based models to value ecosystem services in an Alpine region. J. Environ. Manag. 2008, 89, 197–208. [Google Scholar] [CrossRef]
- Hoffmann, J.; Muro, J.; Dubovyk, O. Predicting species and structural diversity of temperate forests with satellite remote sensing and deep learning. Remote Sens. 2022, 14, 1631. [Google Scholar] [CrossRef]
- Benra, F.; Frutos, A.D.; Gaglio, M.; Garretón, C.A.; Lucia, M.F.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Liu, R.; Niu, X.; Wang, B.; Song, Q.F. InVEST model-based spatiotemporal analysis of water supply services in the Zhangcheng District. Forests 2021, 12, 1082. [Google Scholar] [CrossRef]
- Bejagam, V.; Keesara, V.R.; Sridhar, V. Impacts of climate change on water provisional services in Tungabhadra basin using InVEST model. River Res. Appl. 2021, 38, 94–106. [Google Scholar] [CrossRef]
- Emlaei, Z.; Pourebrahim, S.; Heidari, H.; Lee, K.E. The impact of climate change as well as land-use and land-cover changes on water yield services in Haraz Basin. Sustainability 2022, 14, 7578. [Google Scholar] [CrossRef]
- Zhao, C.; Xiao, P.N.; Qian, P.; Xu, J.; Yang, L.; Wu, Y.X. Spatiotemporal differentiation and balance pattern of ecosystem service supply and demand in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 7223. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural-urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Boithias, L.; Acuna, V.; Vergonos, L.; Ziv, G.; Marce, R.; Sabater, S. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470–471, 567–577. [Google Scholar] [CrossRef]
- Azlan, N.N.I.M.; Malek, M.A.; Zolkepli, M.; Salim, J.M.; Ahmed, A.N. Sustainable management of water demand using fuzzy inference system: A case study of Kenyir Lake, Malaysia. Environ. Sci. Pollut. Res. 2021, 28, 20261–20272. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Xie, G.D.; Liu, J.Y.; Qin, K.Y.; Wang, Y.Y.; Zhang, C.S.; Lei, G.C. How to coordinate cross-regional water resource relationship by integrating water supply services flow and interregional ecological compensation. Ecol. Indic. 2021, 126, 107595. [Google Scholar] [CrossRef]
- Chacko, S.; Kurian, J.; Ravichandran, C.; Vairavel, S.M.; Kumar, K. An assessment of water yield ecosystem services in Periyar Tiger Reserve, Southern Western Ghats of India. Geol. Ecol. Landsc. 2021, 5, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Nahib, I.; Ambarwulan, W.; Rahadiati, A.; Munajati, S.L.; Prihanto, Y.; Suryanta, J.; Turmudi, T.; Nuswantoro, A.C. Assessment of the impacts of climate and LULC changes on the water yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability 2021, 13, 3919. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.P.; Zhang, D.G.; Tao, W.Q. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Sci. Total Environ. 2021, 793, 148559. [Google Scholar] [CrossRef] [PubMed]
- Nyathikala, S.A.; Kulshrestha, M. Performance measurement of water supply services: A cross-country comparison between India and the UK. Environ. Manag. 2020, 66, 517–534. [Google Scholar] [CrossRef]
- Chen, J.S.; Ren, L. From county competition to county co-cooperation: The strategic choice of high-quality development of county economy. Reform 2022, 35, 88–98. [Google Scholar]
- Ding, X.; Dong, X.; Hou, B.; Fan, G.; Zhang, X. Visual platform for water quality prediction and pre-warning of drinking water source area in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 309, 127398. [Google Scholar] [CrossRef]
- Liu, C.X.; Wang, C.X.; Li, Y.C. Ecological security pattern and spatial variation in the Three Gorges Reservoir Area (Chongqing Section), China. Environment. Dev. Sustain. 2022, 24, 1–19. [Google Scholar] [CrossRef]
- Zhang, A.; Cornwell, W.; Li, Z.; Xiong, G.; Fan, D.; Xie, Z. Strong restrictions on the trait range of co-occurring species in the newly created riparian zone of the Three Gorges Reservoir Area, China. J. Plant Ecol. 2019, 12, 825–833. [Google Scholar] [CrossRef]
- Peng, L.; Xu, D.; Wang, X. Vulnerability of rural household livelihood to climate variability and adaptive strategies in landslide-threatened western mountainous regions of the Three Gorges Reservoir Area, China. Clim. Dev. 2018, 11, 469–484. [Google Scholar] [CrossRef]
- Liao, K.; Wu, Y.P.; Miao, F.S. System reliability analysis of landslides subjected to fluctuation of reservoir water level: A case study in the Three Gorges Reservoir area, China. Bull. Eng. Geol. Environ. 2022, 81, 225. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, P.; Xia, J.J.; He, W.J.; Gao, X. Temporal and spatial analysis of the ecosystem service values in the Three Gorges Reservoir area of China based on land use change. Environ. Sci. Pollut. Res. Int. 2022, 29, 26549–26563. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, R.; Meadows, M.E.; Ji, G.; Xu, J. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.S.; Long, X.; Zhang, Q.; Liu, D.; Wu, H.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ouda, O.K.M.; Papadopoulou, M.P. Virtual water content for meat and egg production through livestock farming in Saudi Arabia. Appl. Water Sci. 2017, 7, 4691–4703. [Google Scholar] [CrossRef] [Green Version]
- Narayan, N.S.; Naresh, K. Virtual water trade and its implications on water sustainability. Water Supply 2022, 22, 1704–1715. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Li, N.; Wang, H. Spatial and temporal patterns of supply and demand balance of water supply services in the Dongjiang Lake Basin and its beneficiary areas. J. Resour. Ecol. 2015, 6, 386–396. [Google Scholar]
- Li, D.L.; Wu, S.Y.; Liu, L.B.; Liang, Z.; Li, S.C. Evaluating regional water security through a freshwater ecosystem service flow model: A case study in Beijing-Tianjian-Hebei region, China. Ecol. Indic. 2017, 81, 159–170. [Google Scholar] [CrossRef]
- Liu, J.Y.; Qin, K.Y.; Lin, Z.; Yu, X.; Xie, G.D. How to allocate interbasin water resources? A method based on water flow in water-deficient areas. Environ. Dev. 2020, 34, 100460. [Google Scholar] [CrossRef]
- Shi, K.; Bai, Y.J.; Guo, Y.R.; Cheng, Y.W.; Hua, Y.Y.; Yu, X.L. Assessment of regional water resource security: A case study from Hebei Province, China. Teh. Vjesn. 2020, 27, 1781–1790. [Google Scholar]
- Xu, M.T.; Bao, C. Quantifying the spatiotemporal characteristics of China’s energy efficiency and its driving factors: A Super-RSBM and Geodetector analysis. J. Clean. Prod. 2022, 356, 131867. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhou, Z.X. Water resources security pattern of the Weihe River Basin based on spatial flow model of water supply service. Sci. Geogr. Sin. 2021, 41, 350–359. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.P.; Zhang, D.G. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. J. Appl. Ecol. 2020, 31, 2731–2739. [Google Scholar]
- Karnieli, A.; Ben-Asher, J. A daily runoff simulation in semi-arid watersheds based on soil water deficit calculations. J. Hydrol. 1993, 149, 9–25. [Google Scholar] [CrossRef]
- Deng, C.X.; Zhu, D.M.; Liu, Y.J.; Li, Z.W. Spatial matching and flow in supply and demand of water provision services: A case study in Xiangjiang River Basin. J. Mt. Sci. 2022, 19, 228–240. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ren, M.; Mao, D.H. Supply and demand analysis and service flow research of water production service in Lianshui River basin. Ecol. Sci. 2021, 40, 186–195. [Google Scholar]
- Gou, M.; Li, L.; Ouyang, S.; Wang, N.; Xiao, W. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Zhang, G.H.; Ding, W.F.; Liu, H.Y.; Liang, Y.; Xu, L.; Ouyang, Z. Quantifying climatic and anthropogenic influences on water discharge and sediment load in Xiangxi River Basin of the Three Gorges Reservoir Area. Water Resour. 2021, 48, 204–218. [Google Scholar] [CrossRef]
- Liu, C.F.; Wang, J.X.; Xu, X.Y. Regional division and standard accounting of ecological compensation from the perspective of ecosystem service flow: A case study of Shiyang River Basin. China Popul. Resour. Environ. 2021, 31, 157–165. [Google Scholar]
- Zou, Y.; Mao, D.H. Analysis of water yield service of Lianshui River Basin in China based on ecosystem services flow model. Water Supply 2022, 22, 335–346. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.M.; Zhou, X.W.; Yin, Z.; Liu, T.; Xin, Q.C. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services. J. Arid. Land 2022, 14, 115–138. [Google Scholar] [CrossRef]
- Tan, S.J.; Xie, D.T.; Ni, J.P.; Chen, F.X.; Ni, C.S.; Shao, A.J.; Wang, J.l.; Zhu, D.; Wang, S.; Lei, P.; et al. Identification of nonpoint source pollution source/sink in a typical watershed of the Three Gorges Reservoir Area, China: A case study of the Qijiang River. J. Clean. Prod. 2022, 330, 129694. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Chen, D.M. Conceptualization and institutional construction of the strategic reserve of freshwater resources: Taking the strategic reserve of freshwater resources in Three Gorges Reservoir Area as a practical sample. China Soft Sci. 2022, 37, 7–19. [Google Scholar]
- Haleemzai, H.A.; Sediqi, A. Impacts of water development plans on regional water cooperation: A case study of Amu River Basin. J. Water Resour. Prot. 2018, 10, 1012–1030. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Z.; Yang, R.J.; Li, X.H.; Zhang, L.; Liu, W.G.; Zhang, Y.; Liu, Y.Z.; Liu, Q. Study on trans-boundary water quality and quantity ecological compensation standard: A case of the Bahao Bridge section in Yongding River, China. Water 2021, 13, 1488. [Google Scholar] [CrossRef]
- Chen, Y.B.; Yin, G.W.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [Google Scholar] [CrossRef]
- Men, B.H.; Liu, H.Y. Water resource system vulnerability assessment of the Heihe River Basin based on pressure-state-response (PSR) model under the changing environment. Water Sci. Technol. 2018, 18, 1956–1967. [Google Scholar] [CrossRef]
Livestock Products | Pork | Beef | Aquatic Product | Milk |
---|---|---|---|---|
Virtual water content | 3561 | 19,989 | 5000 | 2201 |
Factor Classification | Driving Factors | Factor Code |
---|---|---|
Socio-economic factor | Cultivated land area | X1 |
Gross industrial production | X2 | |
Number of resident population | X3 | |
Pork production | X4 | |
Beef production | X5 | |
Production of aquatic products | X6 | |
Milk production | X7 | |
Sectoral water consumption factor | Agricultural water | X8 |
Industrial water | X9 | |
Domestic water | X10 | |
Livestock water | X11 | |
Climate factor | Precipitation | X12 |
Actual evaporation | X13 |
Land-Use Type | Land-Use Code | LUCC Vegetation | Kc | Root Depth (mm) |
---|---|---|---|---|
Paddy field | 11 | 1 | 0.7 | 2100 |
Dry land | 12 | 1 | 0.65 | 2000 |
Forest land | 21 | 1 | 1 | 5200 |
Shrubland | 22 | 1 | 0.95 | 5200 |
Woodland | 23 | 1 | 0.93 | 5200 |
Other forest land | 24 | 1 | 0.93 | 5200 |
High coverage grassland | 31 | 1 | 0.8 | 2600 |
Middle coverage grassland | 32 | 1 | 0.65 | 2300 |
Low coverage grassland | 33 | 1 | 0.65 | 2000 |
Canal | 41 | 0 | 1 | 100 |
Lake | 42 | 0 | 1 | 100 |
Reservoir pond | 43 | 0 | 1 | 100 |
Beach | 46 | 0 | 1 | 1000 |
Urban land | 51 | 0 | 0.3 | 100 |
Rural settlement | 52 | 0 | 0.2 | 100 |
Other construction lands | 53 | 0 | 0.3 | 100 |
Swampland | 64 | 0 | 1 | 300 |
Bare rock land | 66 | 0 | 0.2 | 300 |
Driving Factors | q-Value | |||
---|---|---|---|---|
2005 | 2010 | 2015 | 2018 | |
X1 | 0.45 *** | 0.44 *** | 0.57 *** | 0.43 *** |
X2 | 0.67 *** | 0.69 *** | 0.66 *** | 0.68 *** |
X3 | 0.51 *** | 0.68 *** | 0.71 *** | 0.80 *** |
X4 | 0.48 *** | 0.43 *** | 0.39 *** | 0.52 *** |
X5 | 0.06 *** | 0.38 *** | 0.36 *** | 0.41 *** |
X6 | 0.67 *** | 0.76 *** | 0.59 *** | 0.58 *** |
X7 | 0.59 *** | 0.59 *** | 0.65 *** | 0.49 *** |
X8 | 0.41 *** | 0.58 *** | 0.50 *** | 0.29 *** |
X9 | 0.62 *** | 0.86 *** | 0.79 *** | 0.89 *** |
X10 | 0.60 *** | 0.81 *** | 0.80 *** | 0.78 *** |
X11 | 0.51 *** | 0.38 *** | 0.60 *** | 0.60 *** |
X12 | 0.23 *** | 0.66 *** | 0.25 *** | 0.30 *** |
X13 | 0.11 *** | 0.13 *** | 0.14 *** | 0.19 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhao, Y.; Wen, C. Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance. Water 2022, 14, 2271. https://doi.org/10.3390/w14142271
He J, Zhao Y, Wen C. Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance. Water. 2022; 14(14):2271. https://doi.org/10.3390/w14142271
Chicago/Turabian StyleHe, Jia, Yiqiu Zhao, and Chuanhao Wen. 2022. "Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance" Water 14, no. 14: 2271. https://doi.org/10.3390/w14142271
APA StyleHe, J., Zhao, Y., & Wen, C. (2022). Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance. Water, 14(14), 2271. https://doi.org/10.3390/w14142271