C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Study Area
2.2. Field Survey
2.3. Analyses of Water Quality and Surface Sediment Parameters
2.4. An Eutrophication Index
2.5. Deployment of Sinking and Re-Floating Sediment Traps in Bottom Seawater–Surface Sediments Interface
2.6. SOD Flux in Bottom Seawater–Surface Sediments Interface
2.7. Nutrient Elution and Diffusion Fluxes in Bottom Seawater–Surface Sediments Interface
2.8. A Mass Balance Model for Bottom Seawater–Surface Sediments Interface
- The system at the interface between the overlying water and surface sediments is under a stable condition, in which input and output fluxes are the same;
- The input flux indicates only the net substance deposition via gravity from the water column to the surface sediments;
- The output flux includes the biological process of decomposing organic particles and the chemical process at the interface under redox conditions;
- The remaining or supplemental fluxes function between the overlying water and surface sediments.
2.9. Statistical Analysis
3. Results
3.1. Spatial Distributions of Environmental Quality Parameters in Bottom Seawater and Surface Sediments in Gamak Bay, August 2017
3.2. Defining Characteristics of Water Masses in Gamak Bay, August 2017 Using PCA and Cluster Analysis
3.3. Net Substance Sinking Fluxes at GA4 in Gamak Bay, August 2017
3.4. SOD Flux at the Bottom Seawater–Surface Sediments Interface at GA4 in Gamak Bay, August 2017
3.5. Nutrient Elution and Diffusion Fluxes at the Bottom Seawater–Surface Sediments Interface at GA4 in Gamak Bay, August 2017
4. Discussion
4.1. Characteristics of Bottom Seawater in Gamak Bay in August 2017
4.2. C, N, and P Mass Balances under the Effects of the Reducing Environment due to Anoxic Water in Gamak Bay in August 2017
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA. Basic Information about Nonpoint Source (NPS) Pollution. Available online: https://www.epa.gov/nps/basic-infor-mation-about-nonpoint-source-nps-pollution (accessed on 8 July 2021).
- Lu, D.; Huang, X.; Yang, B.; Dan, S.F.; Kang, Z.; Zhou, J.; Lao, Y.; Zhong, Q.; Wu, H. Composition and Distributions of Nitrogen and Phosphorus and Assessment of Eutrophication Status in the Maowei Sea. J. Ocean Univ. China 2021, 20, 361–371. [Google Scholar] [CrossRef]
- Morsy, A.; Ebeid, M.; Soliman, A.; Halim, A.A.; Ali, A.; Fahmy, M. Evaluation of the water quality and the eutrophication risk in Mediterranean Sea area: A case study of the Port Said Harbour, Egypt. Environ. Chall. 2022, 7, 100484. [Google Scholar] [CrossRef]
- Takasu, H.; Uchino, K. Nutrient regeneration from riverine high-molecular-weight dissolved organic matter through marine bacterial decomposition in a eutrophic coastal system: The Ariake Sea, Japan. J. Sea Res. 2021, 177, 102114. [Google Scholar] [CrossRef]
- Wang, B.; Xin, M.; Wei, Q.; Xie, L. A historical overview of coastal eutrophication in the China Seas. Mar. Pollut. Bull. 2018, 136, 394–400. [Google Scholar] [CrossRef]
- Baohong, C.; Kang, W.; Xu, D.; Hui, L. Long-term changes in red tide outbreaks in Xiamen Bay in China from 1986 to 2017. Estuar. Coast. Shelf Sci. 2021, 249, 107095. [Google Scholar] [CrossRef]
- Kim, T.H.; Chae, C.U. Environmental impact analysis of acidification and eutrophication due to emissions from the production of concrete. Sustainability 2016, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, H.; Takamatsu, A.; Nagata, S.; Orita, R.; Umehara, A.; Komorita, T.; Shibanuma, S.; Takahashi, T.; Komatsu, T.; Momtani, S. Implications of changes in the benthic environment and decline of macro-benthic communities in the inner part of Ariake Bay in relation to seasonal hypoxia. Plankton Benthos Res. 2015, 10, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Choi, S.-D.; Cho, H.-S. Characteristics of hypoxic water mass occurrence in the Northwestern Gamak Bay, Korea, 2017. J. Korean Soc. Mar. Environ. Saf. 2021, 27, 708–720. [Google Scholar] [CrossRef]
- Jeong, H.; Kang, S.; Jung, H.; Jeong, D.; Oh, J.; Choi, S.; An, Y.; Choo, H.; Choi, S.; Kim, S.; et al. The current status of eutrophication and suggestions of the purification & restoration on surface sediment in the northwestern Gamak bay, Korea, 2017. J. Korean Soc. Mar. Environ. Energy 2019, 22, 105–113. [Google Scholar]
- Graca, B.; Witek, Z.; Burska, D.; Białkowska, I.; Łukawska-Matuszewska, K.; Bolałek, J. Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Mar. Syst. 2006, 63, 141–154. [Google Scholar] [CrossRef]
- Lee, T. Sediment Oxygen Consumption Rate and Hydrogen Sulfide Release by Dissolved Oxygen Depletion in Hypoxic Area of the Gamak Bay, Korea. J. Wet. Res. 2015, 17, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-B.; Lee, S.-Y.; Yu, J.; Choi, Y.-H.; Jung, C.-S.; Lee, P.-Y. The characteristics of oxygen deficient water mass in Gamak Bay. J. Korean Soc. Mar. Environ. Energy 2006, 9, 216–224. [Google Scholar]
- Kim, S.; Hayami, Y.; Tai, A.; Tada, A. The mechanism of bottom water DO variation in summer at the northern mouth of Isahaya Bay, Japan. J. Oceanogr. 2018, 74, 595–605. [Google Scholar] [CrossRef]
- Orita, R.; Umehara, A.; Komorita, T.; Choi, J.W.; Montani, S.; Komatsu, T.; Tsutsumi, H. Contribution of the development of the stratification of water to the expansion of dead zone: A sedimentological approach. Estuar. Coast. Shelf Sci. 2015, 164, 204–213. [Google Scholar] [CrossRef]
- US EPA. Hypoxia in the Gulf of Mexico and Long Island Sound. Available online: https://cfpub.epa.gov/roe/indicator.cfm?i=41 (accessed on 15 April 2022).
- National Institute of Fisheries Science, Korea. Forecast·Breaking News/Abnormal Sea State. Available online: https://www.nifs.go.kr/dokdo/bbs?id=seastate&flag=lis (accessed on 22 April 2022).
- Lee, J.S.; Kim, K.H.; Kim, S.S.; Jung, R.H.; Kim, K.Y.; Park, J.S.; Lee, P.Y.; Lee, Y.S.; Choi, W.J.; Park, Y.C. The assessment of trophic state and the importance of benthic boundary layer in the southern coast of Korea. J. Korean Soc. Oceanogr. 2004, 9, 179–195. [Google Scholar]
- Lee, J.S.; Bahk, K.-S.; Khang, B.-J.; Kim, Y.-T.; Bae, J.-H.; Kim, S.-S.; Park, J.-J.; Choi, O.-I. The development of a benthic chamber (Belc I) for benthic boundary layer studies. J. Korean Soc. Oceanogr. 2010, 15, 41–50. [Google Scholar]
- Lengier, M.; Szymczycha, B.; Brodecka-Goluch, A.; Kłostowska, Ż.; Kuliński, K. Benthic diffusive fluxes of organic and inorganic carbon, ammonium and phosphates from deep water sediments of the Baltic Sea. Oceanologia 2021, 63, 370–384. [Google Scholar] [CrossRef]
- Wilson, T.; DePaul, V. In Situ Benthic Nutrient Flux and Sediment Oxygen Demand in Barnegat Bay, New Jersey. J. Coast. Res. 2017, 78, 46–59. [Google Scholar] [CrossRef]
- Hyun, J.-H.; Lee, H.K.; Kwon, K.K. Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter. J. Korean Soc. Oceanogr. 2003, 8, 210–224. [Google Scholar]
- Herbert, R.A. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 1999, 23, 563–590. [Google Scholar] [CrossRef]
- Hines, D.E.; Lisa, J.A.; Song, B.; Tobias, C.R.; Borrett, S.R. Estimating the effects of seawater intrusion on an estuarine nitrogen cycle by comparative network analysis. Mar. Ecol. Prog. Ser. 2015, 524, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Zerkle, A.L.; Poulton, S.W.; Newton, R.J.; Mettam, C.; Claire, M.W.; Bekker, A.; Junium, C.K. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 2017, 542, 465–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Higa, H.; Koibuchi, Y.; Kobayashi, H.; Toratani, M.; Sakuno, Y. Numerical Simulation and Remote Sensing for the Analysis of Blue Tide Distribution in Tokyo Bay in September 2012. J. Adv. Simulat. Sci. Eng. 2015, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Millero, F.J. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar. Chem. 1996, 52, 1–16. [Google Scholar] [CrossRef]
- Sundby, B.; Gobeil, C.; Silverberg, N.; Alfonso, M. The phosphorus cycle in coastal marine sediments. Limnol. Oceanogr. 1992, 37, 1129–1245. [Google Scholar] [CrossRef]
- Barbosa, J.S.B.; Bellotto, V.R.; da Silva, D.B.; Lima, T.B. Nitrogen and phosphorus budget for a deep tropical reservoir of the Brazilian Savannah. Water 2019, 11, 1205. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.-Y.; Cho, K.-J. Environmental conditions of sediment and bottom waters near sediment in the downstream of the Nagdong River. Korean J. Ecol. Environ. 2003, 36, 311–321. [Google Scholar]
- Kim, T.H.; Jung, J.H.; Choi, S.H.; Choi, I.S.; Oh, J.M. Physicochemical Characteristics and Nutrient Release from Sediment in an Urban Stream. Ecol. Resil. Infrastruct. 2015, 2, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, K.-H.; Yu, J.; Jung, R.-H.; Ko, T.-S. Estimation of oxygen consumption rate and organic carbon oxidation rate at the sediment/water interface of coastal sediments in the South Sea of Korea using an oxygen microsensor. J. Korean Soc. Oceanogr. 2003, 8, 392–400. [Google Scholar]
- Park, J.; Cho, Y.; Lee, W.-C.; Hong, S.; Kim, H.-C.; Kim, J.-B.; Park, J. Characteristics of carbon circulation for ascidian farm in Jindong Bay in summer and winter. J. Wet. Res. 2012, 14, 211–221. [Google Scholar]
- Shim, J.H.; Kang, Y.; Choi, J. Chemical fluxes at the sediment-water interface below marine fish cages on the coastal water off Tong-Young, South Coast of Korea. J. Korean Soc. Oceanogr. 1997, 2, 151–159. [Google Scholar]
- Kim, J.-B.; Park, J.-I.; Jung, C.-G.; Choi, W.-J.; Lee, W.-C.; Lee, Y.-H. Physicochemical characteristics of seawater in Gamak Bay for a period of hypoxic water mass disappearance. J. Korean Soc. Mar. Environ. Saf. 2010, 16, 241–248. [Google Scholar]
- Oh, S.-J.; Park, J.-S.; Yoon, Y.-H.; Yang, H.-S. Variation analysis of phytoplankton communities in northern Gamak Bay, Korea. J. Korean Soc. Mar. Environ. Saf. 2009, 15, 329–338. [Google Scholar]
- Kim, B.-K.; Lee, M.-O.; Park, S.-J. Characteristics of water temperature and salinity variations, and seawater exchange in Gamak Bay. J. Korean Soc. Mar. Environ. Energy 2012, 15, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.O.; Kim, J.K.; Kim, B.K. Past, present, and future for the study of Gamak Bay, Korea. J. Korean Soc. Mar. Environ. Energy 2020, 23, 148–164. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, D.W.; Nguyen Hoang, L.; Choi, T.B.; Cho, H.S. Heavy metal pollution in the surface sediments of the Korean South-West Environmental Preservation Sea Areas. J. Korean Soc. Environ. Anal. 2017, 20, 93–99. [Google Scholar]
- Ministry of Oceans and Fisheries, Korea. The Official Experiment Standard of Marine Environment. Available online: https://www.law.go.kr/admRulLsInfoP.do?ad-mRulSeq=2000000109042#:~:text=%EC%A0%9C1%EC%A1%B0(%EB%AA%A9%EC%A0%81)%20%EC%9D%B4,%EC%A0%95%EC%9D%98%EB%8A%94%20%EB%8B%A4%EC%9D%8C%EA%B3%BC%20%EA%B0%99%EB%8B%A4 (accessed on 22 April 2022).
- Okaichi, T. The cause of red tide in neritic water. Japanese Association for the Protection of Fisheries Resources: Tokyo, Japan, 1985; pp. 58–75. [Google Scholar]
- Kang, Y.; Kim, H.-J.; Moon, C.-H. Eutrophication driven by aquaculture fish farms controls phytoplankton and dinoflagellate cyst abundance in the southern coastal waters of Korea. J. Mar. Sci. Eng. 2021, 9, 362. [Google Scholar] [CrossRef]
- Garrison, T.F.; Kaminski, M.A.; Tawabini, B.; Frontalini, F. Sediment oxygen demand and benthic foraminiferal faunas in the Arabian Gulf: A test of the method on a siliciclastic substrate. Saudi J. Biol. Sci. 2021, 28, 2907–2913. [Google Scholar] [CrossRef]
- Bowie, G.L.; Mills, W.B.; Porcella, D.B.; Campbell, C.L.; Pagenkopf, J.R.; Rupp, G.L.; Johnson, K.M.; Chan, P.W.H.; Gherini, S.A.; Chamberlin, C.E. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, 2nd ed; US EPA: Athens, GA, USA, 1985. Available online: https://webpages.charlotte.edu/~jdbowen/6141/bowie_et_al_1985/sect1-1.pdf (accessed on 22 April 2022).
- Truax, D.D.; Member, I.; Shindala, A.; Sartain, H. Comparison of two sediment oxygen demand measurement techniques. J. Environ. Eng. 1995, 121, 619–624. [Google Scholar] [CrossRef]
- Mehring, A.S.; Kuehn, K.A.; Tant, C.J.; Pringle, C.M.; Lowrance, R.R.; Vellidis, G. Contribution of surface leaf-litter breakdown and forest composition to benthic oxygen demand and ecosystem respiration in a South Georgia blackwater river. Freshw. Sci. 2014, 33, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Shimotori, K.; Yamamoto, H.; Imai, A.; Kohzu, A.; Okamoto, T. Development of a new high-throughput and small-size method for measuring sediment oxygen demand in lakes. J. Soils Sediments 2021, 21, 1222–1231. [Google Scholar] [CrossRef]
- Choi, S.M. Characteristics of Hypoxia Water Masses and the Disruption of Marine Ecosystem in Gamak Bay. Doctor Dissertation, Graduate School Chonnam National University, Gwangju, Korea, February 2021. [Google Scholar]
- Kim, K.H.; Kim, S.-H.; Jin, D.R.; Huh, I.A.; Hyun, J.-H. A study on the measurement method for benthic nutrient flux in freshwater sediments. J. Korean Soc. Environ. Eng. 2017, 39, 288–302. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, C.-K. A study on the measurement of nutrients release from Sediment. J. Environ. Sci. Int. 2002, 11, 1333–1337. [Google Scholar]
- Seitzinger, S.P. Denitrification and Nitrification Rates in Aquatic Sediments. In Handbook of Methods in Aquatic Microbial Ecology, 1st ed.; Kemp, P.F., Sherr, B.F., Sherr, E.B., Cole, J.J., Eds.; Lewis Publisher: Boca Raton, FL, USA, 1993. [Google Scholar]
- Richard, A.; de Montaudouin, X.; Rubiello, A.; Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 2021, 9, 749. [Google Scholar] [CrossRef]
- Louchouarn, P.; Lucotte, M.; Duchemin, E.; de Vernal, A. Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: Phosphorus, carbon and iron burial rates. Mar. Geol. 1997, 139, 181–200. [Google Scholar] [CrossRef]
- Boudreau, B.P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 37–46. [Google Scholar]
- Klump, J.V.; Martens, C.S. Biogeochemical cycling in an organic rich coastal marine basin-II. Nutrient sediment-water exchange processes. Geochim. Cosmochim. Acta 1981, 45, 101–121. [Google Scholar] [CrossRef]
- Li, Y.; Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974, 38, 703–714. [Google Scholar]
- Kim, D.; Park, C. Estimation of nutrients released from sediments of Deukryang Bay. J. Environ. Sci. Int. 1998, 7, 425–431. [Google Scholar]
- Yamamoto, T.; Matsuda, O.; Hashimoto, T.; Imose, H.; Kitamura, T. Estimation of benthic fluxes of dissolved inorganic nitrogen and phosphorus from sediments of the Seto Inland Sea. Oceanogr. Jpn. 1998, 7, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Klump, J.V.; Martens, C.S. Biogeochemical cycling in an organic-rich coastal marine basin. 5. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances, and the stoichiometry of nutrient regeneration. Geochim. Cosmochim. Acta 1987, 51, 1161–1173. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, K.H.; Shim, J.H.; Han, J.H.; Choi, Y.H.; Khang, B.J. Massive sedimentation of fine sediment with organic matter and enhanced benthic-pelagic coupling by an artificial dyke in semi-enclosed Chonsu Bay, Korea. Mar. Pollut. Bull. 2012, 64, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Cho, Y.-S.; Lee, W.-C.; Hong, S.-J.; Kim, H.-C.; Kim, J.-B. Comparison of material flux at the sediment-water interface in marine finfish and abalone cage farms, Southern Coast of Korea; In-situ and laboratory incubation examination. J. Korean Soc. Mar. Environ. Saf. 2012, 18, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, S.H.; Kim, Y.T.; Hong, S.J.; Han, J.H.; Hyun, J.H.; Shin, K.H. Influence of sea squirt (Halocynthia roretzi) aquaculture on benthic-pelagic coupling in coastal waters: A study of the South Sea in Korea. Estuar. Coast. Shelf Sci. 2012, 99, 10–20. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, Y.T.; Shin, K.H.; Hyun, J.H.; Kim, S.Y. Benthic nutrient fluxes at longline sea squirt and oyster aquaculture farms and their role in coastal ecosystems. Aquac. Int. 2011, 19, 931–944. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.S.; Hyun, J.H. Extremely high sulfate reduction, sediment oxygen demand and benthic nutrient flux associated with a large-scale artificial dyke and its implication to benthic-pelagic coupling in the Yeongsan River estuary, Yellow Sea. Mar. Pollut. Bull. 2017, 120, 126–135. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Jun, S.-H.; Lee, Y.-S.; Lee, Y.-H.; Kim, B.-M. Characteristics of phosphate flux at the sediment-water interface in Gamak Bay during the hypoxic water mass. J. Environ. Sci. Int. 2011, 20, 1069–1078. [Google Scholar] [CrossRef]
- Holmer, M.; Marb, U.; Terrados, J.; Duarte, C.M.; Fortes, M.D. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Mar. Pollut. Bull. 2002, 44, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Nickell, L.A.; Black, K.D.; Hughes, D.J.; Overnell, J.; Brand, T.; Nickell, T.D.; Breuer, E.; Harvey, S.M. Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland. J. Exp. Mar. Biol. Ecol. 2003, 285–286, 221–233. [Google Scholar] [CrossRef]
- Jeon, J.; Moon, S.; Oh, S.J. Bio-monitoring System using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor). J. Mar. Life Sci. 2016, 1, 25–30. [Google Scholar]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of hypoxia for marine biodiversity. Proc. Nati. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.Y.; Shin, H.C. Differences in the community structures of macrobenthic polychaetes from farming grounds and natural habitats in Gamak bay. J. Korean Soc. Mar. Environ. Energy 2016, 19, 297–309. [Google Scholar] [CrossRef]
- Moon, S.-Y.; Oh, H.-J.; Kim, S.-Y. Short-term variations of mesozooplankton related to the environmental factors in Gamak Bay during summer, 2006. J. Environ. Sci. Int. 2009, 18, 21–32. [Google Scholar]
- Kim, M. Sediment trap studies to understand the oceanic carbon cycling: Significance of resuspended sediments. J. Korean Soc. Oceanogr. 2021, 26, 145–166. [Google Scholar]
- Henson, S.A.; Sanders, R.; Madsen, E.; Morris, P.J.; le Moigne, F.; Quartly, G.D. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett. 2011, 38, L04606. [Google Scholar] [CrossRef] [Green Version]
- Accornero, A.; Picon, P.; Bovée, F.d.; Charrière, B.; Buscail, R. Organic carbon budget at the sediment–water interface on the Gulf of Lions continental margin. Cont. Shelf Res. 2003, 23, 79–92. [Google Scholar] [CrossRef]
- Laverock, B.; Gilbert, J.A.; Tait, K.; Osborn, A.M.; Widdicombe, S. Bioturbation: Impact on the marine nitrogen cycle. Biochem. Soc. Trans. 2011, 39, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Gomez, E.; Durillon, C.; Rofes, G.; Picot, B. Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence. Water Res. 1999, 33, 2437–2447. [Google Scholar] [CrossRef]
- Kim, P.-J.; Shon, S.-G.; Park, S.-Y.; Kim, S.-S.; Jang, S.-J.; Jeon, S.-B.; Ju, J.-S. Biogeochemistry of metal and nonmetal elements in the surface sediment of the Gamak Bay. J. Korean Soc. Mar. Environ. Saf. 2012, 18, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-M. Estimation of Nutrients Transport in Kamak Bay using the Eco-hydrodynamic Model. J. Environ. Sci. Int. 2003, 12, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.I.; Cho, H.S. A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed. J. Environ. Sci. Int. 2002, 11, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.W.; Oh, H.J.; Shin, Y.K. Effects of Water Temperature on The Mass Mortality of Pacific Oyster, Crassostrea gigas in Gamak Bay. Korean J. Malacol. 2013, 29, 245–250. [Google Scholar] [CrossRef] [Green Version]
Parameters | SPM | SPM Flux | POC | POC Flux | PON | PON Flux | POP | POP |
---|---|---|---|---|---|---|---|---|
Unit | mg/L | mg/m2/d | mg/L | mg/m2/d | mg/L | mg/m2/d | mg/L | mg/m2/d |
Sinking Flux | 352.0 | 17,600 | 30.6 | 1531.2 | 5.6 | 278.8 | 0.3 | 38.6 |
Re-floating Flux | 282.0 | 14,100 | 13.4 | 670.2 | 1.9 | 90.8 | 0.1 | 12.6 |
Net Sinking Flux | - | 3500 | - | 861.0 | - | 187.9 | - | 26.0 |
Parameter | NH4+ | NOx− | DIN | DIP |
---|---|---|---|---|
Unit | mg N/m2/d | mg N/m2/d | mg N/m2/d | mg P/m2/d |
Nutrient Elution Flux | 33.7 | −4.1 | 29.6 | 46.7 |
Nutrient Diffusion Flux | 5.81 | 0.04 | 5.85 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Kang, Y.; Cho, H. C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea. Water 2022, 14, 2244. https://doi.org/10.3390/w14142244
Jeong H, Kang Y, Cho H. C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea. Water. 2022; 14(14):2244. https://doi.org/10.3390/w14142244
Chicago/Turabian StyleJeong, Huiho, Yoonja Kang, and Hyeonseo Cho. 2022. "C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea" Water 14, no. 14: 2244. https://doi.org/10.3390/w14142244
APA StyleJeong, H., Kang, Y., & Cho, H. (2022). C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea. Water, 14(14), 2244. https://doi.org/10.3390/w14142244