The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of V. natans and Sediments
2.2. Experimental Setup and Experimental Conditions
2.3. The Growth Indices of V. natans
2.4. The Physiological and Antioxidant Defense Indices of V. natans
2.4.1. Chlorophyll
2.4.2. Total Protein
2.4.3. Root Activity
2.4.4. Soluble Sugar, Malondialdehyde and Total Superoxide Dismutase
2.5. The Species and Diversity of Bacteria and Algae Dependent on the Epiphytic Biofilm of V. natans
2.6. Data Analysis
3. Results and Discussion
3.1. Effects of Water Flow on the Growth of V. natans
3.2. Effects of Water Flow on the Physiological and Antioxidant Defense Indices of V. natans
3.3. Water Flow Effects on Bacteria Biodiversity of V. natans Epiphytic Biofilm
3.4. The Algae Living in the Epiphytic Biofilm of V. natans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, H.; Peng, S.; Liu, X.; Jia, J.; Wang, H. Phytoremediation of nutrients and organic carbon from contaminated water by aquatic macrophytes and the physiological response. Environ. Technol. Innov. 2020, 21, 101295. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Hong, S.; Jia, Z.; Yu, J.; Xie, P.; Chen, J. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere 2020, 239, 124702. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.L.; Zhang, Y.; Yan, P.; Yan, W.H.; Kong, L.W.; Wang, L.; Liu, B.; Ma, J.; Zuo, J.; Li, J.; et al. Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: Submerged macrophyte distribution influenced by environmental variables. Water Res. 2020, 186, 116379. [Google Scholar] [PubMed]
- Rao, Q.Y.; Su, H.J.; Ruan, L.W.; Deng, X.W.; Wang, L.T.; Rao, X.; Liu, J.R.; Xia, W.L.; Xu, P.K.; Shen, H.; et al. Stoichiometric and physiological mechanisms that link hub traits of submerged macrophytes with ecosystem structure and functioning. Water Res. 2021, 202, 117392. [Google Scholar] [CrossRef]
- Zhao, D.H.; Chen, C.; Yang, J.Q.; Zhou, S.Y.; Du, J.; Zhang, M.; An, S.Q. Mutual promotion of submerged macrophytes and biofilms on artificial macrophytes for nitrogen and COD removal improvement in eutrophic water. Environ. Pollut. 2021, 277, 116718. [Google Scholar] [CrossRef]
- Zhao, T.T.; Chen, P.P.; Zhang, L.J.; Zhang, L.; Gao, Y.H.; Ai, S.; Liu, H.; Liu, X.Y. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen. Bioresour. Technol. 2021, 339, 125620. [Google Scholar] [CrossRef]
- Eliašová, A.; Hrivnák, R.; Štefánová, P.; Svitok, M.; Kochjarová, J.; Oťaheľová, H.; Novikmec, M.; Pal’ove-Balang, P. Effects of ammonium levels on growth and accumulation of antioxidative flavones of the submerged macrophyte Ceratophyllum demersum. Aquat. Bot. 2021, 171, 103376. [Google Scholar] [CrossRef]
- Lishani Wijewardene, L.; Wu, N.C.; Fohrer, N.; Riis, T. Epiphytic biofilms in freshwater and interactions with macrophytes: Current understanding and future directions. Aquat. Bot. 2022, 176, 103467. [Google Scholar] [CrossRef]
- Xu, D.; Xia, Y.; Li, Z.X.; Gu, Y.G.; Lou, C.H.; Wang, H.; Han, J.L. The influence of flow rates and water depth gradients on the growth process of submerged macrophytes and the biomass composition of the phytoplankton assemblage in eutrophic water: An analysis based on submerged macrophytes photosynthesis parameters. Environ. Sci. Pollut. Res. 2020, 27, 31477–31488. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, S.; Lv, X.; Ma, Y.; Han, B. Water flow and temperature drove epiphytic microbial community shift: Insight into nutrient removal in constructed wetlands from microbial assemblage and co-occurrence patterns. Bioresour. Technol. 2021, 7, 125134. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Chao, C.; Yu, H.; Liu, C. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. Environ. Pollut. 2021, 268, 115949. [Google Scholar] [CrossRef]
- Xia, P.H.; Yan, D.B.; Sun, R.G.; Song, X.; Lin, T.; Yi, Y. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China. Sci. Total Environ. 2020, 727, 138398. [Google Scholar] [CrossRef] [PubMed]
- Battin, T.J.; Kaplan, L.A.; Newbold, J.D.; Hansen, C. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 2003, 426, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.R.; Zhao, Z.H.; Xia, L.L.; Adam, A.; Li, Y.; Chen, D.Q.; Mela, S.M.; Li, H. The dissipation and risk alleviation mechanism of pahs and nitrogen in constructed wetlands: The role of submerged macrophytes and their biofilms-leaves. Environ. Int. 2019, 131, 104940. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gu, P.; Ji, X.; Li, H.; Zhang, J.; Zheng, Z. Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: Plant structural, physicochemical and microbial properties-sciencedirect. Ecotoxicol. Environ. Saf. 2020, 189, 109990. [Google Scholar] [CrossRef]
- Liu, Y.X.; Hu, T.T.; Song, Y.J.; Chen, H.P.; Lv, Y.K. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater. J. Biosci. Bioeng. 2015, 120, 549–554. [Google Scholar] [CrossRef]
- Stevens, C.L.; Hurd, C.L. Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 1997, 346, 119–128. [Google Scholar] [CrossRef]
- Jones, J.I.; Young, J.O.; Moss, E.B. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J. Ecol. 2002, 90, 12–24. [Google Scholar] [CrossRef]
- Atapaththu, K.S.; Miyagi, A.; Atsuzawa, K.; Kaneko, Y.; Kawai-Yamada, M.; Asaeda, T. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John. Plant Biol. 2015, 17, 997–1004. [Google Scholar] [CrossRef]
- Soana, E.; Gavioli, A.; Tamburini, E.; Fano, E.A.; Castaldelli, G. To mow or not to mow: Reed biofilms as denitrification hotspots in drainage canals. Ecol. Eng. 2018, 113, 1–10. [Google Scholar] [CrossRef]
- Swe, T.; Lombardo, P.; Ballot, A.; Thrane, J.E.; Sample, J.; Eriksen, T.E.; Mjelde, M. The importance of aquatic macrophytes in a eutrophic tropical shallow lake. Limnologica 2021, 90, 125910. [Google Scholar] [CrossRef]
- Sartory, D.P.; Grobbelaar, J.U. Extraction of chlorophyll a from fresh water phytoplankton for spectrophotometric analysis. Hydrobiologia 1984, 114, 177–187. [Google Scholar] [CrossRef]
- Wei, Y.J.; Li, K.A.; Tong, S.Y. A linear regression method for the study of the Coomassie brilliant blue protein assay. Talanta 1997, 44, 923–930. [Google Scholar] [CrossRef]
- Clemensson-Lindell, A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. Plant Soil 1994, 159, 297–300. [Google Scholar] [CrossRef]
- Nilsson, C. Distribution of stream-edge vegetation along a gradient of current velocity. J. Ecol. 1987, 75, 513–522. [Google Scholar] [CrossRef]
- Crossley, M.N.; Dennison, W.C.; Williams, R.R.; Wearing, A.H. The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia 2002, 489, 63–70. [Google Scholar] [CrossRef]
- Thurston, R.V.; Russo, R.C.; Vinogradov, G.A. Ammonia Toxicity to Fishes-Effect of pH on the Toxicity of the Un-Ionized Ammonia Species. Environ. Sci. Technol. 1981, 15, 837–840. [Google Scholar] [CrossRef]
- Fan, B.; Li, J.; Wang, X.; Chen, J.; Liu, Z. Ammonia spatiotemporal distribution and risk assessment for freshwater species in aquatic ecosystem in China. Ecotoxicol. Environ. Saf. 2021, 207, 111541. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wang, H.; Zheng, Y.; Zhu, B.L.; Wu, X.E.; Zhao, F. Extracellular electron transfer of Methylophilus methylotrophs. Process Biochem. 2020, 94, 313–318. [Google Scholar] [CrossRef]
- Chu, S.Y.; Zhang, X.Y.; Xiao, J.B.; Chen, R.H. Dynamic nutrient removal potential of a novel submerged macrophyte Rotala rotundifolia, and its growth and physiological response to reduced light available. J. Environ. Manag. 2021, 293, 112965. [Google Scholar] [CrossRef] [PubMed]
- Madsen, T.V.; Enevoldsen, H.O.; Jorgensen, T.B. Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant Cell Environ. 1993, 6, 317–322. [Google Scholar] [CrossRef]
- Cao, T.; Xie, P.; Ni, L.Y.; Zhang, M.; Xu, J. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte, Potamogeton crispus, under NH4+ stress and low light availability. Environ. Exp. Bot. 2009, 66, 74–78. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, T.; Ni, L.; Ping, X.; Li, Z. Carbon, nitrogen and antioxidant enzyme responses of potamogeton crispus to both low light and high nutrient stresses. Exp. Bot. 2010, 68, 44–50. [Google Scholar] [CrossRef]
- Adamec, L.; Kučerová, A.; Janeček, Š. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020, 165, 103238. [Google Scholar] [CrossRef]
- Keerthisinghe, G.; Hocking, P.J.; Ryan, P.R.; Delhaize, E. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ. 2010, 21, 467–478. [Google Scholar] [CrossRef]
- He, D.; Ren, L.J.; Wu, Q.L. Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: Diversity and host-specificity. Chin. J. Oceanol. Limnol. 2012, 30, 237–247. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. Appl. Environ. Microb. 2003, 69, 1875–1883. [Google Scholar] [CrossRef] [Green Version]
- Blakney, A.J.C.; Patten, C.L. A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens. FEMS Microbiol. Ecol. 2011, 77, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Holst, O. Müller-Loennies, S. 1.04–Microbial Polysaccharide Structures; Hans Kamerling, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 123–179. [Google Scholar]
- Lu, Y.F.; Kronzucker, H.J.; Shi, W.M. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environ. Pollut. 2021, 287, 117587. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kim, Y.; Choi, J.W.; Jeong, S.; Cho, K. Soil microbial communities-mediated bioattenuation in simulated aquifer storage and recovery (ASR) condition: Long-term study. Environ. Res. 2021, 197, 111069. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pei, T.; Du, J.; Huang, H.R.; Deng, M.R.; Zhu, H.H. Comparative genomic analysis of the genus Novosphingobium and the description of two novel species Novosphingobium aerophilum sp. nov. and Novosphingobium jiangmenense sp. Nov. Syst. Appl. Microbiol. 2021, 44, 126202. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Bhatt, R. Role of soil associated exiguobacterium in reducing arsenic toxicity and promoting plant growth in vigna radiata. Eur. J. Soil Biol. 2016, 75, 142–150. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, Z.; Xia, L.; Zhang, D.; Javid, H. Dissipation characteristics of pyrene and ecological contribution of submerged macrophytes and their biofilms-leaves in constructed wetland. Bioresour. Technol. 2018, 267, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Z.; Wang, L.; Chen, L.; Shen, H.; Chen, J. Proliferation of filamentous green algae along with submerged macrophytes planting, and the role of microbe. Ecol. Eng. 2019, 139, 105570. [Google Scholar] [CrossRef]
Phylum | Genera | Dominant Species | The Dominant Indices | |
---|---|---|---|---|
Dynamic | Static | |||
Bacillariophyta | Cocconeis | C. placentula | 0.125 | 0.036 |
Melosira | M. varians | 0.058 | 0.113 | |
Fragillaria | F. sp.1 | 0.029 | 0.072 | |
F. sp.2 | 0.135 | 0.032 | ||
Nitzschia | N. sp. | 0.096 | 0.036 | |
Navicula | N.gracilis | / | 0.068 | |
N. sp. | / | 0.045 | ||
Gomphonema | G. sp. | / | 0.027 | |
Achnanthes | A. sp. | 0.038 | / | |
Cyanophyta | Aphanizomenon | A. sp. | 0.115 | 0.090 |
Oscillatoria | O. sp. | 0.077 | 0.034 | |
Chlorophyta | Scenedesmus | S. bijuga | / | 0.077 |
Characium | C. sp. | / | 0.059 | |
Chlamydomonas | C. sp. | / | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Gao, Y.; Hu, Z.; Jiang, X.; Yang, L. The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water. Water 2022, 14, 2236. https://doi.org/10.3390/w14142236
Ren L, Gao Y, Hu Z, Jiang X, Yang L. The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water. Water. 2022; 14(14):2236. https://doi.org/10.3390/w14142236
Chicago/Turabian StyleRen, Liman, Yan Gao, Zhixin Hu, Xue Jiang, and Liuyan Yang. 2022. "The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water" Water 14, no. 14: 2236. https://doi.org/10.3390/w14142236
APA StyleRen, L., Gao, Y., Hu, Z., Jiang, X., & Yang, L. (2022). The Growth of Vallisneria natans and Its Epiphytic Biofilm in Simulated Nutrient-Rich Flowing Water. Water, 14(14), 2236. https://doi.org/10.3390/w14142236