Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. LUME Model Equations
2.2. Estimating Microphysical and Fallout Time-Delay Coefficients from Precipitation Efficiency
- From radiosonde data, PE was estimated through the empirical relation of Equation (12);
- Considering the quantities retrieved from radiosonde and local orography, the was calculated from Equation (9);
- Then, two different assumptions were tested for calculating the coefficient, inverting Equation (8):
- The two coefficients are equal, so This condition, which is plausible according to the range of compatible values proposed by the authors of the model in [57], permits one to invert and resolve Equation (8) coupled with (10) and (11) straightforwardly;
- The fallout term is estimated first, based on the time taken by the water drop to fall vertically from the central part of the cloud to the surface, with an average velocity (Vrain) of 5 m s−1 [17,19,94,97]. In this case, knowing from the radiosonde the average heights of EL (Equilibrium Level) and LCL (Lifted Condensation Level) of the cloud, it is possible to estimate the average cloud height and the fallout coefficient using Equation (13). Then, using Equations (8)–(12), we retrieve the value of the conversion coefficient .
2.3. LUME Error Analysis
2.4. Case Studied in the Central Alps and Northern Apennines
- ▪
- A rather irregular rainfall field distribution was recorded by local rain gauges, with the stations closer to the mountain peaks reporting extreme values;
- ▪
- Longitudinal distribution of the rainfall along the direction of the incoming airflow was shown by the rain gauges network and also by radar observations (where available);
- ▪
- The complete dissipation of the rainfall field was recorded far away from the mountain range along the downward flank, and no rainfall was recorded at the bottom of the range.
3. Results
4. Discussion
4.1. Comments on Cases Studied in the Central Alps and Northern Apennines
4.2. Orographic Precipitation Linear Regression with Elevation
4.3. Comments on LUME
- ▪
- For the 2014 event, Cuneo and Linate WVF0 were in accordance (around 600 kg m−1 s−1), while Ajaccio was higher (832 kg m−1 s−1) but uncertain. LUME was run iteratively, modifying the input WVF0 from Ajaccio at the starting point of the trace until the Cuneo and Linate WVF0 values were matched at the ending point of the trace. As a result, the initial condition for LUME was estimated indirectly from surrounding radiosonde stations. The best performances were obtained by slightly increasing the Ajaccio value up to 900 kg m−1 s−1. Changing the initial condition required a model recalibration that was obtained for τc = 1000 s and τf = 750 s. For simplicity, other initial parameters were kept the same for Ajaccio stations.
- ▪
- For the 2015 event, the same procedure was adopted considering Linate and Cuneo WVF0, respectively equal to 815 and 640 kg m−1 s−1. The best performance was obtained considering the Linate radiosonde as a boundary condition, while when using Cuneo data, rainfall fields were underestimated. Moreover, with respect to the 2015 event, Linate is about 100 km northward, so it is more representative than Cuneo, which is located 150 km westward (Figure 2). The input WVF0 was increased by about 55% up to 1160 kg m−1 s−1and LUME was recalibrated, giving τc = 1300 s and τf = 1000 s.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbate, A.; Papini, M.; Longoni, L. Analysis of Meteorological Parameters Triggering Rainfall-Induced Landslide: A Review of 70 Years in Valtellina. Nat. Hazards Earth Syst. Sci. 2021, 21, 2041–2058. [Google Scholar] [CrossRef]
- Longoni, L.; Ivanov, V.I.; Brambilla, D.; Radice, A.; Papini, M. Analysis of the Temporal and Spatial Scales of Soil Erosion and Transport in a Mountain Basin. Ital. J. Eng. Geol. Environ. 2016, 16, 17–30. [Google Scholar] [CrossRef]
- Longoni, L.; Papini, M.; Arosio, D.; Zanzi, L. On the Definition of Rainfall Thresholds for Diffuse Landslides. Trans. State Art Sci. Eng. 2011, 53, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, G.; Mulas, M.; Alberoni, P.P.; Truffelli, G.; Corsini, A. Debris Flows Rainfall Thresholds in the Apennines of Emilia-Romagna (Italy) Derived by the Analysis of Recent Severe Rainstorms Events and Regional Meteorological Data. Geomorphology 2020, 358, 107097. [Google Scholar] [CrossRef]
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Crosta, G.; Frattini, P. Rainfall Thresholds for Triggering Soil Slips and Debris Flow. In Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, Siena, Italy, 16–18 October 2001; pp. 463–487. [Google Scholar]
- Coe, J.; Michael, J.; Crovelli, R.; Savage, W.; Laprade, W.; Nashem, W. Probabilistic Assessment of Precipitation-Triggered Landslides Using Historical Records of Landslide Occurrence, Seattle, Washington. Environ. Eng. Geosci. 2004, 10, 103–122. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Albano, R.; Mancusi, L.; Abbate, A. Improving Flood Risk Analysis for Effectively Supporting the Implementation of Flood Risk Management Plans: The Case Study of “Serio” Valley. Environ. Sci. Policy 2017, 75, 158–172. [Google Scholar] [CrossRef]
- Brambilla, D.; Papini, M.; Ivanov, V.I.; Bonaventura, L.; Abbate, A.; Longoni, L. Sediment Yield in Mountain Basins, Analysis, and Management: The SMART-SED Project. In Applied Geology: Approaches to Future Resource Management; De Maio, M., Tiwari, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–59. ISBN 978-3-030-43953-8. [Google Scholar]
- Molinari, D.; Ballio, F.; Menoni, S. Modelling the Benefits of Flood Emergency Management Measures in Reducing Damages: A Case Study on Sondrio, Italy. Nat. Hazards Earth Syst. Sci. 2013, 13, 1913–1927. [Google Scholar] [CrossRef]
- Baartman, J.; Jetten, V.G.; Ritsema, C.; de Vente, J. Exploring Effects of Rainfall Intensity and Duration on Soil Erosion at the Catchment Scale Using OpenLISEM: Prado Catchment, SE Spain. Hydrol. Processes 2012, 26, 1034–1049. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The Rainfall Intensity–Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Ceriani, M.; Lauzi, S.; Padovan, M. Rainfall Thresholds Triggering Debris-Flow in the Alpine Area of Lombardia Region, Central Alps—Italy. In Proceedings of the Man and Mountain’94, Ponte di Legno (BS), Italy, 20 June 1994. [Google Scholar]
- Abbate, A.; Longoni, L.; Papini, M. Extreme Rainfall over Complex Terrain: An Application of the Linear Model of Orographic Precipitation to a Case Study in the Italian Pre-Alps. Geosciences 2021, 2021, 18. [Google Scholar] [CrossRef]
- Stull, R.B. Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; University of British Columbia: Vancouver, BC, Canada, 2017. [Google Scholar]
- De Michele, C.; Rosso, R.; Rulli, M.C. Il Regime Delle Precipitazioni Intense Sul Territorio Della Lombardia: Modello Di Previsione Statistica Delle Precipitazioni Di Forte Intensità e Breve Durata; ARPA Lombardia: Milan, Italy, 2005. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: Oxford, UK, 2006. [Google Scholar]
- Rotunno, R.; Houze, R. Lessons on Orographic Precipitation for the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 811–830. [Google Scholar] [CrossRef]
- Kirshbaum, D.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.; Armon, M.; Borga, M.; Morin, E. Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales. Geophys. Res. Lett. 2021, 48, e2020GL091498. [Google Scholar] [CrossRef]
- Gocho, Y. Numerical Experiment of Orographic Heavy Rainfall Due to a Stratif Orm Cloud. J. Meteorol. Soc. Jpn. Ser. II 1978, 56, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Formetta, G.; Marra, F.; Dallan, E.; Zaramella, M.; Borga, M. Differential Orographic Impact on Sub-Hourly, Hourly, and Daily Extreme Precipitation. Adv. Water Resour. 2021, 159, 104085. [Google Scholar] [CrossRef]
- Bongioannini Cerlini, P.; Emanuel, K.A.; Todini, E. Orographic Effects on Convective Precipitation and Space-Time Rainfall Variability: Preliminary Results. Hydrol. Earth Syst. Sci. 2005, 9, 285–299. [Google Scholar] [CrossRef]
- Pujol, O.; Georgis, J.-F.; Chong, M.; Roux, F. Dynamics and Microphysics of Orographic Precipitation during MAP IOP3. Q. J. R. Meteorol. Soc. 2005, 131, 2795–2819. [Google Scholar] [CrossRef]
- Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic Triggering of Long Lived Convection in Three Dimensions. Meteorol. Atmos. Phys. 2009, 103, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B. The Influence of Mountains on the Atmosphere. In Advances in Geophysics; Saltzman, B., Ed.; Elsevier: Cham, Switzerland, 1979; Volume 21, pp. 87–230. ISBN 0065-2687. [Google Scholar]
- Rontu, L. Studies on Orographic Effects in a Numerical Weather Prediction Model. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2013. [Google Scholar]
- Rädler, A.T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púčik, T. Frequency of Severe Thunderstorms across Europe Expected to Increase in the 21st Century Due to Rising Instability. NPJ Clim. Atmos. Sci. 2019, 2, 30. [Google Scholar] [CrossRef]
- Kahraman, A.; Kendon, E.J.; Chan, S.C.; Fowler, H.J. Quasi-Stationary Intense Rainstorms Spread across Europe under Climate Change. Geophys. Res. Lett. 2021, 48, e2020GL092361. [Google Scholar] [CrossRef]
- Jean-Luc, M.; Brissette François, P.; Lucas-Picher, P.; Magali, T. Arsenault Richard Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. J. Hydrol. Eng. 2021, 26, 03121001. [Google Scholar] [CrossRef]
- Caroletti, G.; Barstad, I. An Assessment of Future Extreme Precipitation in Western Norway Using a Linear Model. Hydrol. Earth Syst. Sci. 2010, 14, 2329–2341. [Google Scholar] [CrossRef] [Green Version]
- Kirchmeier-Young, M.C.; Zhang, X. Human Influence Has Intensified Extreme Precipitation in North America. Proc. Natl. Acad. Sci. USA 2020, 117, 13308. [Google Scholar] [CrossRef]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Volosciuk, C.; Maraun, D.; Semenov, V.A.; Tilinina, N.; Gulev, S.K.; Latif, M. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe. Sci. Rep. 2016, 6, 32450. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Takayabu, Y. Response of Precipitation Extremes to Warming: What Have We Learned from Theory and Idealized Cloud-Resolving Simulations, and What Remains to Be Learned? Environ. Res. Lett. 2020, 15, 035001. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [Green Version]
- IPCC; Allen, M.; Babiker, M.; Chen, Y.; de Coninck, H.; Connors, S.; van Diemen, R.; Dube, O.; Ebi, K.; Engelbrecht, F.; et al. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Abram, N.; Adler, C.; Bindoff, N.; Cheng, L.; Cheong, S.-M.; Cheung, W.; Derksen, C.; Ekaykin, A.; Frölicher, T.; Garschagen, M.; et al. Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.-K.; Rogelj, J.; et al. IPCC AR6 WGI Technical Summary; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Spano, D.; Mereu, V.; Bacciu, V.; Serena, M.; Trabucco, A.; Adinolfi, M.; Giuliana, B.; Bosello, F.; Breil, M.; Coppini, G.; et al. Analisi del Rischio. I Cambiamenti Climatici in Italia; Centro Euro-Mediterraneo sui Cambiamenti Climatici: Lecce, Italy, 2020. [Google Scholar]
- Barredo, J.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing Shifts of Mediterranean and Arid Climates under RCP4.5 and RCP8.5 Climate Projections in Europe. Pure Appl. Geophys. 2018, 175, 3955–3971. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of Climate Change in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy Precipitation Events over the Euro-Mediterranean Region in a Warmer Climate: Results from CMIP5 Models. Reg. Environ. Chang. 2014, 16, 595–602. [Google Scholar] [CrossRef]
- Faggian, P. Future Precipitation Scenarios over Italy. Water 2021, 13, 1335. [Google Scholar] [CrossRef]
- Peres, D.J.; Senatore, A.; Nanni, P.; Cancelliere, A.; Mendicino, G.; Bonaccorso, B. Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean Area) Historical Simulations by High-Quality Observational Datasets in Southern Italy: Insights on Drought Assessment. Nat. Hazards Earth Syst. Sci. 2020, 20, 3057–3082. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Change 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Faggian, P. Climate Change Projection for Mediterranean Region with Focus over Alpine Region and Italy. J. Environ. Sci. Eng. 2015, 4, 482–500. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.; Púčik, T.; Groenemeijer, P.; Czernecki, B.; Kolendowicz, L.; Lagouvardos, K.; Kotroni, V.; Schulz, W. A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. J. Clim. 2019, 32, 1813–1837. [Google Scholar] [CrossRef]
- Daly, C.; Taylor, G.; Gibson, W. The PRISM Approach to Mapping Precipitation and Temperature. In Proceedings of the 10th AMS Conference on Applied Climatology, Reno, NV, USA, 20–24 October 1997. [Google Scholar]
- Napoli, A.; Crespi, A.; Ragone, F.; Maugeri, M.; Pasquero, C. Variability of Orographic Enhancement of Precipitation in the Alpine Region. Sci. Rep. 2019, 9, 13352. [Google Scholar] [CrossRef] [Green Version]
- Mazzoglio, P.; Butera, I.; Alvioli, M.; Claps, P. The Role of Morphology in the Spatial Distribution of Short-Duration Rainfall Extremes in Italy. Hydrol. Earth Syst. Sci. 2022, 26, 1659–1672. [Google Scholar] [CrossRef]
- Singer, M.B.; Michaelides, K.; Hobley, D.E.J. STORM 1.0: A Simple, Flexible, and Parsimonious Stochastic Rainfall Generator for Simulating Climate and Climate Change. Geosci. Model Dev. 2018, 11, 3713–3726. [Google Scholar] [CrossRef] [Green Version]
- Terzago, S.; Palazzi, E.; von Hardenberg, J. Stochastic Downscaling of Precipitation in Complex Orography: A Simple Method to Reproduce a Realistic Fine-Scale Climatology. Nat. Hazards Earth Syst. Sci. 2018, 18, 2825–2840. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B.; Barstad, I. A Linear Theory of Orographic Precipitation. J. Atmos. Sci. 2004, 61, 1377–1391. [Google Scholar] [CrossRef]
- Daly, C.; Slater, M.E.; Roberti, J.A.; Laseter, S.H.; Swift, L.W., Jr. High-Resolution Precipitation Mapping in a Mountainous Watershed: Ground Truth for Evaluating Uncertainty in a National Precipitation Dataset. Int. J. Climatol. 2017, 37, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Osborn Herbert, B. Estimating Precipitation in Mountainous Regions. J. Hydraul. Eng. 1984, 110, 1859–1863. [Google Scholar] [CrossRef]
- Dinka, M.O.; Hromadka, T.V., II. Prasada Rao Development and Application of Conceptual Rainfall-Altitude Regression Model: The Case of Matahara Area (Ethiopia). In Topics in Hydrometerology; IntechOpen: Rijeka, Croatia, 2019; Chapter 3; ISBN 978-1-83880-561-6. [Google Scholar]
- Srivastava, A.; Yetemen, O.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P. Influence of Orographic Precipitation on Coevolving Landforms and Vegetation in Semi-Arid Ecosystems. Earth Surf. Processes Landf. 2022, 28, 1125–1142. [Google Scholar] [CrossRef]
- Mazzoglio, P.; Butera, I.; Claps, P. I2-RED: A Massive Update and Quality Control of the Italian Annual Extreme Rainfall Dataset. Water 2020, 12, 3308. [Google Scholar] [CrossRef]
- Singer, M.B.; Michaelides, K. Deciphering the Expression of Climate Change within the Lower Colorado River Basin by Stochastic Simulation of Convective Rainfall. Environ. Res. Lett. 2017, 12, 104011. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.-G.; Ahn, J.-B.; Lee, J.; Shim, K.-M.; Jung, M.-P. Improvement of Daily Precipitation Estimations Using PRISM with Inverse-Distance Weighting. Theor. Appl. Climatol. 2020, 139, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G. Mountain Weater and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Smith, R. A Linear Time-Delay Model of Orographic Precipitation. J. Hydrol. 2003, 282, 2–9. [Google Scholar] [CrossRef]
- Smith, R.B. 100 Years of Progress on Mountain Meteorology Research. Meteorol. Monogr. 2018, 59, 1–73. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.M.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; NCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Steppeler, J.; Doms, G.; Schättler, U.; Bitzer, H.W.; Gassmann, A.; Damrath, U.; Gregoric, G. Meso-Gamma Scale Forecasts Using the Nonhydrostatic Model LM. Meteorol. Atmos. Phys. 2003, 82, 75–96. [Google Scholar] [CrossRef]
- Kreibich, H.; Di Baldassarre, G.; Vorogushyn, S.; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.M.; Bubeck, P.; Caloiero, T.; et al. Adaptation to Flood Risk: Results of International Paired Flood Event Studies. Earth’s Future 2017, 5, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Shin, H.H.; Hong, S.-Y.; Jiménez, P.A.; Dudhia, J.; Hong, J. Impacts of Subgrid-Scale Orography Parameterization on Simulated Surface Layer Wind and Monsoonal Precipitation in the High-Resolution WRF Model. J. Geophys. Res. Atmos. 2015, 120, 644–653. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Zhang, H.; Ju, C.; Shi, J.; Zhang, J.; Mamtimin, A.; Fan, S. Performance Evaluation of Sub-Grid Orographic Parameterization in the WRF Model over Complex Terrain in Central Asia. Atmosphere 2020, 11, 1164. [Google Scholar] [CrossRef]
- Merino, A.; García-Ortega, E.; Navarro, A.; Sánchez, J.L.; Tapiador, F.J. WRF Hourly Evaluation for Extreme Precipitation Events. Atmos. Res. 2022, 274, 106215. [Google Scholar] [CrossRef]
- Klasa, C.; Arpagaus, M.; Walser, A.; Wernli, H. An Evaluation of the Convection-Permitting Ensemble COSMO-E for Three Contrasting Precipitation Events in Switzerland. Q. J. R. Meteorol. Soc. 2018, 144, 744–764. [Google Scholar] [CrossRef]
- Gebhardt, C.; Theis, S.E.; Paulat, M.E.; Ben Bouallègue, Z. Uncertainties in COSMO-DE Precipitation Forecasts Introduced by Model Perturbation and Variations of Later Boundaries. Atmos. Res. 2011, 100, 168–177. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Sandu, I.; Wedi, N.; Vosper, S.B.; Zadra, A.; Boussetta, S.; Bouyssel, F.; van Niekerk, A.; Tolstykh, M.A.; Ujiie, M. Uncertainty in the Representation of Orography in Weather and Climate Models and Implications for Parameterized Drag. J. Adv. Model. Earth Syst. 2019, 11, 2567–2585. [Google Scholar] [CrossRef] [Green Version]
- Heim, C.; Panosetti, D.; Schlemmer, L.; Leuenberger, D.; Schär, C. The Influence of the Resolution of Orography on the Simulation of Orographic Moist Convection. Mon. Weather Rev. 2020, 148, 2391–2410. [Google Scholar] [CrossRef] [Green Version]
- Suhas, E.; Zhang, G. Evaluation of Trigger Functions for Convective Parameterization Schemes Using Observations. J. Clim. 2014, 27, 7647–7666. [Google Scholar] [CrossRef] [Green Version]
- Tiesi, A.; Pucillo, A.; Bonaldo, D.; Ricchi, A.; Carniel, S.; Miglietta, M.M. Initialization of WRF Model Simulations with Sentinel-1 Wind Speed for Severe Weather Events. Front. Mar. Sci. 2021, 8, 573489. [Google Scholar] [CrossRef]
- Meyer, D.; Riechert, M. Open Source QGIS Toolkit for the Advanced Research WRF Modelling System. Environ. Model. Softw. 2019, 112, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Liu, T.; Dong, W.; Liao, X.; Luo, S.; Wu, K.; Zhu, X.; Zheng, Z.; Wen, X. Integrating Remote Sensing Data with WRF Model for Improved 2-m Temperature and Humidity Simulations in China. Dyn. Atmos. Oceans 2020, 89, 101127. [Google Scholar] [CrossRef]
- Bonanno, R.; Lacavalla, M.; Sperati, S. A New High-Resolution Meteorological Reanalysis Italian Dataset: MERIDA. Q. J. R. Meteorol. Soc. 2019, 145, 1756–1779. [Google Scholar] [CrossRef]
- Du, Y.; Xu, T.; Che, Y.; Yang, B.; Chen, S.; Su, Z.; Su, L.; Chen, Y.; Zheng, J. Uncertainty Quantification of WRF Model for Rainfall Prediction over the Sichuan Basin, China. Atmosphere 2022, 13, 838. [Google Scholar] [CrossRef]
- Cánovas-García, F.; García-Galiano, S.; Alonso-Sarría, F. Assessment of Satellite and Radar Quantitative Precipitation Estimates for Real Time Monitoring of Meteorological Extremes over the Southeast of the Iberian Peninsula. Remote Sens. 2018, 10, 1023. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, V.; Ivashkin, V.; Rudenko, I.; Ganshin, A.; Molchanov, A.; Ovcharenko, S.; Grokhovetskiy, R.; Bushmarinov, I.; Solomentsev, D. Precipitation Nowcasting with Satellite Imagery. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2680–2688. [Google Scholar]
- Rientjes, T.H.M.; Haile, A.T.; Gieske, A.S.M.; Maathuis, B.H.P.; Habib, E. Satellite Based Cloud Detection and Rainfall Estimation in the Upper Blue Nile Basin. In Nile River Basin: Hydrology, Climate and Water Use; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 93–107. ISBN 978-94-007-0689-7. [Google Scholar]
- Foresti, L.; Pozdnoukhov, A. Exploration of Alpine Orographic Precipitation Patterns with Radar Image Processing and Clustering Techniques. Meteorol. Appl. 2012, 19, 407–419. [Google Scholar] [CrossRef]
- Sene, K. Hydrometeorology: Forecasting and Applications; Springer: Berlin/Heidelberg, Germany, 2010; p. 355. ISBN 978-90-481-3402-1. [Google Scholar]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A. Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98. Mon. Weather Rev. 2004, 132, 1721–1745. [Google Scholar] [CrossRef] [Green Version]
- Davolio, S.; Della Fera, S.; Laviola, S.; Miglietta, M.M.; Levizzani, V. Heavy Precipitation over Italy from the Mediterranean Storm “Vaia” in October 2018: Assessing the Role of an Atmospheric River. Mon. Weather Rev. 2020, 148, 3571–3588. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Vázquez, M.; Lavers, D. Atmospheric Rivers: A Mini-Review. Front. Earth Sci. 2014, 2, 2. [Google Scholar] [CrossRef]
- Jiang, Q.; Smith, R.B. Cloud Timescales and Orographic Precipitation. J. Atmos. Sci. 2003, 60, 1543–1559. [Google Scholar] [CrossRef]
- Luino, F. Sequence of Instability Processes Triggered by Heavy Rainfall in the Northern Italy. Geomorphology 2005, 66, 13–39. [Google Scholar] [CrossRef]
- Barstad, I.; Schüller, F. An Extension of Smith’s Linear Theory of Orographic Precipitation: Introduction of Vertical Layers. J. Atmos. Sci. 2011, 68, 2695–2709. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J. Microphysics of Clouds and Precipitation; Taylor & Francis: Abingdon-on-Thames, UK, 2010; Volume 18, ISBN 978-0-7923-4211-3. [Google Scholar]
- Robinson, P.J.; Lutz, J.T. Precipitation Efficiency of Cyclonic Storms. Ann. Assoc. Am. Geogr. 1978, 68, 81–88. [Google Scholar] [CrossRef]
- Sui, C.-H.; Li, X.; Yang, M.-J. On the Definition of Precipitation Efficiency. J. Atmos. Sci. 2007, 64, 4506–4513. [Google Scholar] [CrossRef]
- Noel, J.; Dobur, J.C. A Pilot Study Examining Model-Derived Precipitation Efficiency for Use in Precipitation Forecasting in the Eastern United States. Natl. Weather Dig. 2002, 26, 1–6. [Google Scholar]
- Marwitz, J.D. Precipitation Efficiency of Thunderstorms on the High Plains. J. Rech. Atmos. 1972, 6, 367–370. [Google Scholar]
- Shen, S.; Somerville, R. Climate Mathematics: Theory and Applications; Cambridge University Press: Cambridge, UK, 2019; ISBN 978-1-108-47687-4. [Google Scholar]
- Brownlees, C.; Cipollini, F.; Gallo, G. Multiplicative Error Models. In Handbook of Volatility Models and Their Applications; Wiley: Firenze, Italy, 2011. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Huffman, G.J.; Adler, R.F.; Tang, L.; Sapiano, M.; Maggioni, V.; Wu, H. Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative? Geophys. Res. Lett. 2013, 40, 2060–2065. [Google Scholar] [CrossRef] [Green Version]
- McMillan, H.; Jackson, B.; Clark, M.; Kavetski, D.; Woods, R. Rainfall Uncertainty in Hydrological Modelling: An Evaluation of Multiplicative Error Models. J. Hydrol. 2011, 400, 83–94. [Google Scholar] [CrossRef]
- Ciccarese, G.; Mulas, M.; Corsini, A. Combining Spatial Modelling and Regionalization of Rainfall Thresholds for Debris Flows Hazard Mapping in the Emilia-Romagna Apennines (Italy). Landslides 2021, 18, 3513–3529. [Google Scholar] [CrossRef]
- ISPRA. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori Di Rischio; ISPRA: Ispra, Italy, 2018. [Google Scholar]
- Rappelli, F. Definizione delle Soglie Pluviometriche d’Innesco Frane Superficiali e Colate Torrentizie: Accorpamento per Aree Omogenee; IRER, Istituto Regionale di Ricerca della Lombardia: Milan, Italy, 2008. [Google Scholar]
- Serafin, S.; Zardi, D. Structure of the Atmospheric Boundary Layer in the Vicinity of a Developing Upslope Flow System: A Numerical Model Study. J. Atmos. Sci. 2010, 67, 1171–1185. [Google Scholar] [CrossRef]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.; Rotach, M.; Schmidli, J.; et al. Exchange Processes in the Atmospheric Boundary Layer over Mountainous Terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- ARPA Emilia Rete Monitoraggio ARPA Emilia. Available online: https://www.arpae.it/it/temi-ambientali/meteo (accessed on 20 May 2022).
- ARPA Lombardia Rete Monitoraggio ARPA Lombardia. Available online: www.arpalombardia.it/stiti/arpalombardia/meteo (accessed on 20 May 2022).
- Rädler, A.; Groenemeijer, P.; Pistotnik, G.; Sausen, R.; Faust, E. Identification of Favorable Environments for Thunderstorms in Reanalysis Data. Meteorol. Z. 2015, 26, 59–70. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. EOS Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Quan Luna, B.; Blahůt, J.; Camera, C.; Westen, C.J.; Apuani, T.; Jetten, V.G.; Sterlacchini, S. Physically Based Dynamic Run-Out Modelling for Quantitative Debris Flow Risk Assessment: A Case Study in Tresenda, Northern Italy. Environ. Earth Sci. 2013, 72, 645–661. [Google Scholar] [CrossRef]
- ARPA Piemonte. L’Evento Alluvionale del 28–29 Giugno 1997 in Piemonte; Settore per la Prevenzione del Rischio Geologico, Meteorologico e Sismico: Torino, Italy, 1997; p. 24. [Google Scholar]
- Ćurić, M. Numerical Modeling of Thunderstorm. Theor. Appl. Climatol. 1989, 40, 227–235. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Bryan, G.H.; Van Den Heever, S.C. Cumulonimbus Clouds and Severe Convective Storms. In Storm and Cloud Dynamics; Elsevier: London, UK, 2011. [Google Scholar]
- Emanuel, K.A. Atmospheric Convection; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Kunz, M.; Kottmeier, C. Orographic Enhancement of Precipitation over Low Mountain Ranges. Part I: Model Formulation and Idealized Simulations. J. Appl. Meteor. Climatol. 2006, 45, 1025–1040. [Google Scholar] [CrossRef]
- Chardon, M. Les Catastrophes Naturelles de l’été 1987 En Lombardie: Crues, Inondations, Écroulement de Val Pola. Rev. Géogr. Alp. 1990, 78, 59–87. [Google Scholar] [CrossRef]
- Anip, M.; Market, P. Dominant Factors Influencing Precipitation Efficiency in a Continental Mid-Latitude Location. Tellus A 2007, 59, 122–126. [Google Scholar] [CrossRef]
- Hodges, D.; Pu, Z. Characteristics and Variations of Low-Level Jets and Environmental Factors Associated with Summer Precipitation Extremes over the Great Plains. J. Clim. 2019, 32, 5123–5144. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. Extreme Precipitation in Models: An Evaluation. Weather Forecast. 2016, 31, 1853–1879. [Google Scholar] [CrossRef]
- Davolio, S.; Silvestro, F.; Gastaldo, T. Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over Liguria, Italy. J. Hydrometeorol. 2017, 18, 2659–2680. [Google Scholar] [CrossRef]
- Gallus, W.; Parodi, A.; Maugeri, M. Possible Impacts of a Changing Climate on Intense Ligurian Sea Rainfall Events. Int. J. Climatol. 2017, 38, 323–329. [Google Scholar] [CrossRef]
- Weller, E.; Shelton, K.; Reeder, M.J.; Jakob, C. Precipitation Associated with Convergence Lines. J. Clim. 2017, 30, 3169–3183. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Ralph, F.; Waliser, D.; Dettinger, M.; Rutz, J.; Anderson, M.; Gorodetskaya, I.; Guan, B.; Neff, W. The Future of Atmospheric River Research and Applications. In Atmospheric Rivers; Springer: Cham, Switzerland, 2020; pp. 219–247. ISBN 978-3-030-28905-8. [Google Scholar]
- Lavers, D.; Villarini, G.; Allan, R.; Wood, E.; Wade, A. The Detection of Atmospheric Rivers in Atmospheric Reanalyses and Their Links to British Winter Floods and the Large-Scale Climatic Circulation. J. Geophys. Res. Atmos. 2012, 117, 20106. [Google Scholar] [CrossRef]
Additive | Multiplicative | |
---|---|---|
Functional Form | ||
Bias [mm] | ||
Root Mean Square Error [mm] | ||
All Indicator Scores (AIS) [mm] |
Event | Location | Station | Extreme Precipitation | Hydrogeological Effects | ||
---|---|---|---|---|---|---|
- | - | - | Max Amount (mm) | Duration (h) | Return Period (yr) | - |
21–23 May 1983 | Tresenda (SO) | Ponte di Ganda | 261 | 60 | ≈100 | Shallow landslides |
26–30 June 1997 | Bellano (LC) | Bellano | 283 | 96 | ≈50 | Flash floods |
12–13 July 2008 | Talamona (SO) | Morbegno | 60 (174) | 12 ** (72) | ≈2 (10) | Debris flows |
11–12 June 2019 | Premana (LC) | Premana | 209 | 13 | ≈200 | Flash floods |
12–13 October 2014 | Parma (PR) | Marra | 296.6 (298.8) | 8 ** (12) | ≈200 | Debris flows |
13–14 September 2015 | Piacenza (PC) | Salsominore | 307.4 (308.6) | 6 ** (12) | ≈200 | Debris flows |
Event | Location | LUME Parameters for Each Extreme Precipitation Event | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | U (m s-1) | Dir (°) | Hw (m) | WVF0 max (kg m−1 s−1) | τc (s−1) | τf (s−1) | hBL (m) | Pbackground (mm) |
21–23 May 1983 | Tresenda (SO) | 18.6 | 192.4 | 2600 | 482.4 | 3750 | 500 | ≈600 | 34 |
26–30 June 1997 | Bellano (LC) | 20.8 | 196.4 | 2600 | 731.3 | 3500 | 750 | ≈400 | 76 |
12–13 July 2008 | Talamona (SO) | 15.8 | 222.3 | 2600 | 545.6 | 2500 | 1000 | ≈250 | 60 |
11–12 June 2019 | Premana (LC) | 22.2 | 194.3 | 2600 | 607.5 | 1000 | 500 | ≈600 | 10 |
12–13 October 2014 | Parma (PR) | 15.4 | 205.1 | 2600 | 832 (610) [600] | 1000 | 750 | ≈100 | 0 |
13–14 September 2015 | Piacenza (PC) | 15.9 | 229.2 | 2600 | 720 (640) [815] | 1300 | 1000 | ≈100 | 0 |
Event | Location | BIAS (mm) | RMSE (mm) | AIS (mm) | ||
---|---|---|---|---|---|---|
- | - | Additive | Multiplicative | Additive | Multiplicative | - |
21–23 May 1983 | Tresenda (SO) | 7.9 | 2.05 | 29.42 | 35.92 | 75.29 [5] |
26–30 June 1997 | Bellano (LC) | −16.80 | −19.81 | 39.80 | 41.76 | 118.17 [6] |
12–13 July 2008 | Talamona (SO) | 4.9 | 5.09 | 30.81 | 29.79 | 70.59 [2] |
11–12 June 2019 | Premana (LC) | 4.31 | 2.92 | 19.78 | 19.42 | 46.43 [1] |
12–13 October 2014 | Parma (PR) | −3.76 | −0.2 | 33.36 | 47.07 | 84.35 [4] |
13–14 September 2015 | Piacenza (PC) | −4.43 | −3.4 | 32.24 | 48.93 | 89.05 [5] |
Event | Location | Linear Regression Precipitation–Elevation Coefficients | ||
---|---|---|---|---|
- | - | a [mm m-1] | b [mm] | R2 |
21–23 May 1983 | Tresenda (SO) | 0.096 | 64.386 | 0.400 |
26–30 June 1997 | Bellano (LC) | 0.030 | 169.280 | 0.010 |
12–13 July 2008 | Talamona (SO) | 0.069 | 94.731 | 0.385 |
11–12 June 2019 | Premana (LC) | 0.057 | 61.786 | 0.322 |
12–13 October 2014 | Parma (PR) | 0.130 | 30.267 | 0.239 |
13–14 September 2015 | Piacenza (PC) | 0.167 | 115.240 | 0.410 |
16–19 July 1987 | Event 1987 | 0.125 | 150 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbate, A.; Papini, M.; Longoni, L. Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy. Water 2022, 14, 2218. https://doi.org/10.3390/w14142218
Abbate A, Papini M, Longoni L. Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy. Water. 2022; 14(14):2218. https://doi.org/10.3390/w14142218
Chicago/Turabian StyleAbbate, Andrea, Monica Papini, and Laura Longoni. 2022. "Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy" Water 14, no. 14: 2218. https://doi.org/10.3390/w14142218
APA StyleAbbate, A., Papini, M., & Longoni, L. (2022). Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy. Water, 14(14), 2218. https://doi.org/10.3390/w14142218