Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model
2.3. SWAT Model Input Data
2.4. Reanalysis Data
2.4.1. ERA-20CM
2.4.2. ERA5-Land
2.5. Bias Correction
2.6. Calibration, Validation, and Uncertainty Analysis
2.7. Performance of Precipitation and Hydrological Modeling
2.8. Hydrological Drought Analysis
3. Results and Discussion
3.1. Precipitation Product Evaluation
3.2. Calibration, Validation, and Uncertainty Analysis
3.3. Hydrological Validation Based on Reanalysis Products
3.4. Drought Analysis
3.5. Hydrological Retrospective (HR) and Historical Droughts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumí, J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Sci. Total Environ. 2019, 649, 846–865. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, A.N.; Hugo, V.; Coelho, R.; Xavier, A.C.; Romero, L.; Melo, D.C.D.; Xuan, Y.; Hu, G.J.; Petersen, W.A.; Almeida, N. Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmos. Res. 2019, 218, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Vila, D.A.; Chiquetto, J.B.; Fernandes, A.d.A.; Alvim, D.S. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Balmaseda, M.; Balsamo, G.; Engelen, R.; Simmons, A.J.; Thépaut, J.-N. Toward a consistent reanalysis of the climate system. Bull. Am. Meteorol. Soc. 2014, 95, 1235–1248. [Google Scholar] [CrossRef]
- Auerbach, D.A.; Easton, Z.M.; Walter, M.T.; Flecker, A.S.; Fuka, D.R. Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics. Hydrol. Process. 2016, 30, 3466–3477. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.
- Kim, D.-I.; Han, D. Evaluation of ERA-20cm reanalysis dataset over South Korea. J. Hydro-Environ. Res. 2019, 23, 10–24. [Google Scholar] [CrossRef]
- Gao, L.; Bernhardt, M.; Schulz, K.; Chen, X.; Chen, Y.; Liu, M. A first evaluation of ERA-20CM over China. Mon. Weather Rev. 2016, 144, 45–57. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Hersbach, H.; Peubey, C.; Simmons, A.; Berrisford, P.; Poli, P.; Dee, D. ERA-20CM: A twentieth-century atmospheric model ensemble. Q. J. R. Meteorol. Soc. 2015, 141, 2350–2375. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- Correa, S.W.; de Paiva, R.C.D.; Espinoza, J.C.; Collischonn, W. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts. J. Hydrol. 2017, 549, 667–684. [Google Scholar] [CrossRef] [Green Version]
- Jajarmizadeh, M.; Sidek, L.M.; Mirzai, M.; Alaghmand, S.; Harun, S.; Majid, M.R. Prediction of Surface Flow by Forcing of Climate Forecast System Reanalysis Data. Water Resour. Manag. 2016, 30, 2627–2640. [Google Scholar] [CrossRef]
- Alfieri, L.; Lorini, V.; Hirpa, F.A.; Harrigan, S.; Zsoter, E.; Prudhomme, C.; Salamon, P. A global streamflow reanalysis for 1980–2018. J. Hydrol. X 2020, 6, 100049. [Google Scholar] [CrossRef] [PubMed]
- Correa, S.W.; Paiva, R.C.D.; Siqueira, V.; Collischonn, W. Hydrological reanalysis across the 20th century: A case study of the Amazon Basin. J. Hydrol. 2019, 570, 755–773. [Google Scholar] [CrossRef]
- Colli, G.R.; Vieira, C.R.; Dianese, J.C. Biodiversity and conservation of the Cerrado: Recent advances and old challenges. Biodivers. Conserv. 2020, 29, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-I.; Kwon, H.; Han, D. Exploring the Long-Term Reanalysis of Precipitation and the Contribution of Bias Correction to the Reduction of Uncertainty over South Korea: A Composite Gamma-Pareto Distribution Approach to the Bias Correction. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A.; Barker, L.J.; Tanguy, M.; Parry, S.; Harrigan, S.; Legg, T.P.; Prudhomme, C.; Hannaford, J. A multi-objective ensemble approach to hydrological modelling in the UK: An application to historic drought reconstruction. Hydrol. Earth Syst. Sci. 2019, 23, 3247–3268. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Hasan, H.H.; Razali, S.F.M.; Muhammad, N.S.; Ahmad, A. Research trends of hydrological drought: A systematic review. Water 2019, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.d.S.; Viola, M.R.; Junqueira, R.; de Mello, C.R.; Bento, N.L.; Avanzi, J.C. Quantifying the Climate Change-Driven Impacts on the Hydrology of a Data-Scarce Watershed Located in the Brazilian Tropical Savanna. Hydrol. Process. 2022, 36, 1–15. [Google Scholar] [CrossRef]
- Rodrigues, J.A.M.; Viola, M.R.; Alvarenga, L.A.; Mello, C.R.; Chou, S.C.; Oliveira, V.A.; Uddameri, V.; Morais, M.A.V. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. Int. J. Climatol. 2019, 40, 2511–2526. [Google Scholar] [CrossRef]
- Junqueira, R.; Viola, M.R.; de Mello, C.R.; Vieira-Filho, M.; Alves, M.V.G.; Amorim, J.D.S. Drought severity indexes for the Tocantins River Basin, Brazil. Theor. Appl. Climatol. 2020, 141, 465–481. [Google Scholar] [CrossRef]
- IBGE-Instituto Brasileiro de Geografia e Estatística. Biomas e Sistema Costeiro-Marinho do Brasil-1:250.000; IBGE, Coordenação de Recursos Naturais e Estudos Ambientais: Rio de Janeiro, Brazil, 2019; pp. 125–138.
- Nunes, Y.R.F.; Azevedo, I.F.P.; Neves, W.V.; Veloso, M.d.D.M.; Souza, R.D.A.; Fernandes, G.W. Pandeiros: O Pantanal Mineiro. MG. Biota 2009, 2, 4–17. [Google Scholar]
- Santos, U.; Silva, P.C.; Barros, L.C.; Dergam, J.A. Fish fauna of the Pandeiros River, a region of environmental protection for fish species in Minas Gerais state, Brazil. Check List 2015, 11, 1507. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.B.; Gonzaga, G.; Dos Santos, D.F.; Reboita, M.S. Classificação climática de Köppen e de Thornthwaite para Minas Gerais: Cenário atual e projeções futuras. Rev. Bras. Climatol. 2018, 1, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Junqueira, R.; Viola, M.R.; Amorim, J.d.S.; Mello, C.R. De Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin. Resources 2020, 9, 123. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Ferraz, S.E.T. An objective criterion for determining the South Atlantic convergence zone. Front. Environ. Sci. 2015, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Prado, L.F.; Wainer, I.; Yokoyama, E.; Khodri, M.; Garnier, J. Changes in summer precipitation variability in central Brazil over the past eight decades. Int. J. Climatol. 2021, 41, 4171–4186. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Grassland, W.J.R. Soil & Water Assessment Tool Theoretical Documentation: Version 2009; Texas Water Resources Institute: Forney, TX, USA, 2011. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Soil Conservation Service (SCS). Section 4, Hydrology. In National Engineering Handbook; United States Department of Agriculture: Washington, DC, USA, 1972. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Penman, H.L. Evaporation: An introductory survey. Neth. J. Agric. Sci. 1956, 4, 9–29. [Google Scholar] [CrossRef]
- Williams, J.R. Flood Routing With Variable Travel Time or Variable Storage Coefficients. Trans. ASAE 1969, 12, 100–103. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56-Crop Evapotranspiration; FFood and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Haltiner, G.J.; Martin, F.L. Dynamic and Physical Meteorology. McGraw-Hill Book Company: New York, NY, USA, 1957. [Google Scholar]
- FEAM-Fundação Estadual do Meio. Ambiente Mapa de solos do Estado de Minas Gerais; FEAM: Belo Horizonte, Brazil, 2010.
- IBGE-Instituto Brasileiro de Geografia e Estatística. Mapa de Cobertura e Uso da Terra do Brasil 2010; IBGE: Rio de Jeneiro, Brazil, 2018.
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.N.; et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Hersbach, H.; Peubey, C.; Simmons, A.; Poli, P. ERA-20CM: A twentieth century atmospheric model ensemble. Report 2013, 46, 1–44. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J. ERA5-Land Hourly Data from 1981 to Present; Copernicus Climate Change Service Climate Data Store: Brussels, Belgium, 2019. [Google Scholar]
- Muñoz-Sabater, J. ERA5-Land Hourly Data from 1950 to 1980; Copernicus Climate Change Service Climate Data Store: Brussels, Belgium, 2021. [Google Scholar]
- Lenderink, G.; Buishand, A.; van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Junqueira, R.; Viola, M.R.; Amorim, J.d.S.; Camargos, C.; de Mello, C.R. Hydrological modeling using remote sensing precipitation data in a Brazilian savanna basin. J. South Am. Earth Sci. 2022, 115, 103773. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2015. [Google Scholar]
- Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L. Evaluating precipitation estimates from Eta, TRMM and CHRIPS data in the south-southeast region of Minas Gerais state-Brazil. Remote Sens. 2018, 10, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Yevjevich, V.M. Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Ph.D. Thesis, Colorado State University, Fort Collins, Colorado, 1967. [Google Scholar]
- Gehne, M.; Hamill, T.M.; Kiladis, G.N.; Trenberth, K.E. Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Clim. 2016, 29, 7773–7795. [Google Scholar] [CrossRef]
- ECMWF. IFS Documentation CY45R1; ECMWF: Reading, UK, 2018. [Google Scholar]
- Junqueira, R.; Amorim, J.d.S.; Viola, M.R.; De Mello, C.R.; Uddameri, V.; Prado, L.F. Drought occurrences and impacts on the upper Grande river basin, Brazil. Meteorol. Atmos. Phys. 2022, 134, 45. [Google Scholar] [CrossRef]
- Sarkar, S.; Maity, R. Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Jacques-Coper, M.; Garreaud, R.D. Characterization of the 1970s climate shift in South America. Int. J. Climatol. 2015, 35, 2164–2179. [Google Scholar] [CrossRef]
- Pontes Filho, J.D.; Souza Filho, F.d.A.; Martins, E.S.P.R.; Studart, T.M.D.C. Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010-2016 drought in the semiarid northeast Brazil region. An. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.O.; Mello, C.R. Meteorological droughts in part of southeastern Brazil: Understanding the last 100 years. An. Acad. Bras. Cienc. 2021, 93, 1–17. [Google Scholar] [CrossRef]
- Jesus, E.T.; Amorim, J.S.; Junqueira, R.; Viola, M.R.; Mello, C.R. Meteorological and hydrological drought from 1987 to 2017 in Doce River Basin, Southeastern Brazil. Rev. Bras. Recur. Hídricos 2020, 25, 1–12. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M. Crise Hídrica em São Paulo em 2014: Seca e Desmatamento. GEOUSP Espaço Tempo 2015, 19, 485. [Google Scholar] [CrossRef] [Green Version]
- Cuartas, L.A.; Cunha, A.P.M.d.A.; Alves, J.A.; Parra, L.M.P.; Deusdará-Leal, K.; Costa, L.C.O.; Molina, R.D.; Amore, D.; Broedel, E.; Seluchi, M.E.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- Ribeiro, F.L.; Guevara, M.; Vázquez-Lule, A.; Paula Cunha, A.; Zeri, M.; Vargas, R. The impact of drought on soil moisture trends across Brazilian biomes. Nat. Hazards Earth Syst. Sci. 2021, 21, 879–892. [Google Scholar] [CrossRef]
- de Almeida, R.; Barbosa, P.S.F. Simulation of the occurrence of drought events via copulas. RBRH 2020, 25, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.T. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
Statistical Metrics | Equation | Ideal Value | Unit |
---|---|---|---|
Pearson correlation coefficient | 1 | - | |
Root Mean Square Error | 0 | mm | |
Kling–Gupta efficiency | 1 | - | |
Percent bias | 0 | % | |
Nash–Sutcliffe efficiency | 1 | - | |
Logarithmic Nash–Sutcliffe efficiency | 1 | - |
Statistic | ERA-20CM Ensemble Members | AE | ERA5-Land | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ens0 | Ens1 | Ens2 | Ens3 | Ens4 | Ens5 | Ens6 | Ens7 | Ens8 | Ens9 | |||
r * | 0.14 | 0.17 | 0.17 | 0.15 | 0.15 | 0.16 | 0.17 | 0.19 | 0.18 | 0.17 | 0.30 | 0.43 |
RMSE (mm.day−1) * | 10.9 | 10.6 | 10.5 | 10.9 | 10.7 | 10.8 | 10.6 | 10.4 | 10.5 | 10.6 | 9.1 | 9.1 |
KGE * | 0.09 | 0.12 | 0.11 | 0.09 | 0.08 | 0.11 | 0.10 | 0.14 | 0.11 | 0.12 | 0.06 | 0.36 |
r ** | 0.64 | 0.70 | 0.64 | 0.67 | 0.65 | 0.62 | 0.66 | 0.67 | 0.68 | 0.68 | 0.78 | 0.89 |
RMSE (mm.month−1) ** | 99.7 | 90.7 | 98.8 | 96.0 | 95.3 | 101.4 | 96.0 | 94.7 | 92.2 | 92.2 | 75.3 | 56.1 |
KGE ** | 0.64 | 0.70 | 0.63 | 0.66 | 0.63 | 0.61 | 0.65 | 0.66 | 0.67 | 0.67 | 0.70 | 0.86 |
Parameters | Description | Initial Range | Final Range | BP | ||
---|---|---|---|---|---|---|
r_CN2.mgt | SCS runoff Curve Number for moisture condition II | −0.100 | 0.100 | −0.100 | 0.002 | −0.090 |
v_ALPHA_BF.gw | Baseflow alpha factor | 0.0050 | 0.0100 | 0.0050 | 0.0078 | 0.0051 |
a_GW_DELAY.gw | Groundwater delay | 0.00 | 60.00 | 22.72 | 60.00 | 50.09 |
a_GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur | 0 | 2000 | 0 | 1208 | 925 |
v_CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | 0.00 | 20.00 | 5.92 | 17.78 | 14.27 |
v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.020 | 0.200 | 0.109 | 0.200 | 0.190 |
r_SLSUBBSN.hru | Average slope length | 0.00 | 1.00 | 0.39 | 1.00 | 0.78 |
v_RCHRG_DP.gw | Deep aquifer percolation fraction | 0.000 | 0.200 | 0.093 | 0.200 | 0.198 |
v_CH_K1.sub | Effective hydraulic conductivity in tributary channel alluvium | 0.00 | 20.00 | 0.00 | 12.48 | 2.86 |
v_CH_N2.rte | Manning’s “n” value for the main channel | 0.000 | 0.300 | 0.149 | 0.300 | 0.259 |
p-Factor | r-Factor | NSE | LNSE | PBIAS (%) | KGE | |
---|---|---|---|---|---|---|
Calibration | 0.98 | 1.29 | 0.89 | 0.88 | −1.8 | 0.94 |
Validation | 0.95 | 1.24 | 0.78 | 0.72 | −12.7 | 0.85 |
Statistic | ERA-20CM Ensemble Members | AE | ERA5-Land | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ens0 | Ens1 | Ens2 | Ens3 | Ens4 | Ens5 | Ens6 | Ens7 | Ens8 | Ens9 | |||
NSE | −0.41 | −0.25 | −0.47 | −0.09 | −0.31 | −0.24 | −1.08 | −0.34 | −0.16 | −0.50 | −0.42 | 0.62 |
LNSE | −0.86 | −0.61 | −1.04 | −0.24 | −0.63 | −0.34 | −0.66 | −0.74 | −0.48 | −1.12 | −0.92 | 0.47 |
PBIAS (%) | 29.6 | 24.6 | 34.4 | 18.5 | 31.3 | 18.6 | 14.3 | 30.6 | 27.5 | 31.1 | 38.6 | 20.0 |
KGE | 0.20 | 0.32 | 0.21 | 0.37 | 0.28 | 0.29 | 0.07 | 0.26 | 0.38 | 0.19 | 0.25 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junqueira, R.; Viola, M.R.; Amorim, J.d.S.; Wongchuig, S.C.; Mello, C.R.d.; Vieira-Filho, M.; Coelho, G. Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin. Water 2022, 14, 2178. https://doi.org/10.3390/w14142178
Junqueira R, Viola MR, Amorim JdS, Wongchuig SC, Mello CRd, Vieira-Filho M, Coelho G. Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin. Water. 2022; 14(14):2178. https://doi.org/10.3390/w14142178
Chicago/Turabian StyleJunqueira, Rubens, Marcelo R. Viola, Jhones da S. Amorim, Sly C. Wongchuig, Carlos R. de Mello, Marcelo Vieira-Filho, and Gilberto Coelho. 2022. "Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin" Water 14, no. 14: 2178. https://doi.org/10.3390/w14142178
APA StyleJunqueira, R., Viola, M. R., Amorim, J. d. S., Wongchuig, S. C., Mello, C. R. d., Vieira-Filho, M., & Coelho, G. (2022). Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin. Water, 14(14), 2178. https://doi.org/10.3390/w14142178