A Field Study for the Effects of Grass Cover, Rainfall Intensity and Slope Length on Soil Erosion in the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Set-Up
2.3. Experimental Treatments
2.4. Indexes Calculation
2.5. Data Analysis
3. Results
3.1. Soil Erosion Process
3.2. Changes in the Impact of Slope Length on Soil Loss with Grass cover
3.3. Changes of the Impact of Slope Length on Soil Loss with Rainfall Intensity
3.4. Relationship between Grass Cover, Rainfall Intensity, Slope Length, and Erosion Rate
4. Discussion
4.1. Effect of Slope Length on Soil Loss
4.2. Influence of the Slope Length on the Effect of Grass Cover on Soil Loss
4.3. Influence of Slope Length on the Impact of Rainfall Intensity on Soil Loss
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heimhuber, V.; Hannemann, J.C.; Rieger, W. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti. Water 2015, 7, 3832–3860. [Google Scholar] [CrossRef]
- Winchell, M.F.; Jackson, S.H.; Wadley, A.M.; Srinivasan, R. Extension and validation of a geographic information system-based method for calculating the Revised Universal Soil Loss Equation length-slope factor for erosion risk assessments in large watersheds. J. Soil Water Conserv. 2008, 63, 105–111. [Google Scholar] [CrossRef]
- Fu, X.T.; Zhang, L.P. Impact of slope length on soil erosion of sloping farmland with crop in red soil hilly region. Trans. Chin. Soc. Agric. Eng. 2014, 30, 91–98. [Google Scholar]
- Jia, X.; Wang, Y.; Shao, M.A.; Luo, Y.; Zhang, C. Estimating regional losses of soil water due to the conversion of agricultural land to forest in China’s Loess Plateau. Ecohydrology 2017, 10, e1851. [Google Scholar] [CrossRef]
- Masia, S.; Sušnik, J.; Marras, S.; Mereu, S.; Spano, D.; Trabucco, A. Assessment of Irrigated Agriculture Vulnerability under Climate Change in Southern Italy. Water 2018, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, G.L.; Ding, L.M.; Tian, F.P.; Shi, Z.H. Diversity-Productivity Trade-off During Converting Cropland to Perennial Grassland in the Semi-arid Areas of China. Land Degrad. Dev. 2016, 28, 699–707. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Wang, X.; Zhu, P. Soil loss response to plant the litter incorporation rate under simulated rainfall conditions. Land Degrad. Dev. 2019, 30, 1193–1203. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, Q.Q.; Wei, Z.J.; Yu, X.X.; Jia, G.D.; Jiang, J. Partitioning tree water usage into storage and transpiration in a mixed forest. For. Ecosyst. 2021, 8, 13. [Google Scholar] [CrossRef]
- Lee, G.; McLaughlin, R.A.; Whitely, K.D.; Brown, V.K. Evaluation of seven mulch treatments for erosion control and vegetation establishment on steep slopes. J. Soil Water Conserv. 2018, 73, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Erktan, A.; Cécillon, L.; Graf, F.; Roumet, C.; Legout, C.; Rey, F. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: Combined effects of soil, root traits and plant community characteristics. Plant Soil 2016, 398, 121–137. [Google Scholar] [CrossRef]
- Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, H.; Mommer, L.; et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 2015, 397, 1–16. [Google Scholar] [CrossRef]
- Wang, Z.J.; Jiao, J.Y.; Rayburg, S.; Wang, Q.L.; Su, Y. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena 2016, 141, 109–116. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B.J. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2017, 28, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Wang, D.; Wang, L.; Tang, C. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, C.; Wang, Y.; Zhu, Y.; Wei, X.; Shao, M.A. Traditional dry soil layer index method overestimates soil desiccation severity following conversion of cropland into forest and grassland on China’s Loess Plateau. Agric. Ecosyst. Environ. 2020, 291, 106794. [Google Scholar] [CrossRef]
- Feng, X.; Vico, G.; Porporato, A. On the effects of seasonality on soil water balance and plant growth. Water Resour. Res. 2012, 48, 5. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhuang, H.; Jia, G.D.; Yu, X.X.; Jiang, J. Evidence of foliar water uptake in a conifer species. Agric. Water Manag. 2021, 255, 106993. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Serrano-Muela, M.P.; Nadal-Romero, E.; Lana-Renault, N.; González-Hidalgo, J.C.; López-Moreno, J.I.; Beguería, S.; García-Ruiz, J.M. An Exceptional Rainfall Event in the Central Western Pyrenees: Spatial Patterns in Discharge and Impact. Land Degrad. Dev. 2013, 26, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Rachman, A.; Anderson, S.H.; Gantzer, C.J.; Thompson, A.L. Influence of Long-term Cropping Systems on Soil Physical Properties Related to Soil Erodibility. Soil Sci. Soc. Am. J. 2003, 67, 637. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Xia, J.; Cai, C.; Wu, L.; Wei, Z. Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay. Agric. Ecosyst. Environ. 2017, 249, 226–236. [Google Scholar] [CrossRef]
- Qin, R.J.; Li, G.F.; Li, P. Impacts of Precipitation and Land Use Change on Runoff and Sediment in Luoyugou Watershed. J. Soil Water Conserv. 2018, 32, 29–34. [Google Scholar]
- Xu, X.L.; Liu, W.; Kong, Y.P.; Zhang, K.L.; Yu, B.; Chen, J.D. Runoff and water erosion on road side-slopes: Effects of rainfall characteristics and slope length. Transp. Res. Part D: Transp. Environ. 2009, 14, 497–501. [Google Scholar] [CrossRef]
- Kara, Ö.; Şensoy, H.; Bolat, İ. Slope length effects on microbial biomass and activity of eroded sediments. J. Soils Sediments 2010, 10, 434–439. [Google Scholar] [CrossRef]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Min, L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Bagarello, V.; Ferro, V. Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosystes Eng. 2010, 105, 411–422. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Fu, B.J. Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China. Earth Environ. Sci. Trans. R. Soc. Edinb. 2019, 109, 397–406. [Google Scholar] [CrossRef]
- Lv, X.; Zuo, Z.; Sun, J.; Ni, Y.; Wang, Z. Climatic and human-related indicators and their implications for evapotranspiration management in a watershed of Loess Plateau, China. Ecol. Indic. 2019, 101, 143–149. [Google Scholar] [CrossRef]
- Qin, W.; Guo, Q.; Cao, W.; Yin, Z.; Yan, Q.; Shan, Z.; Zheng, F. A new RUSLE slope length factor and its application to soil erosion assessment in a Loess Plateau watershed. Soil Tillage Res. 2018, 182, 10–24. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Liu, G.; Yu, X.X.; Jia, G.D.; Gan, P. Modified vegetation-erosion dynamics model and its application in typical watersheds in the loess plateau. Int. J. Sediment Res. 2011, 26, 81–89. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, G.; Fu, B.J.; Wang, C.; Gupta, H.V.; Zhang, X.; Li, R. A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China. Hydrol. Earth Syst. Sci. 2020, 24, 809–826. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lei, T.; Ban, Y.; Gao, Y. Effect of soil freeze on flow velocity in loess rills. Trans. Chin. Soc. Agric. Mach. 2018, 49, 282–289. [Google Scholar]
- Bagio, B.; Bertol, I.; Wolschick, N.H.; Schneiders, D.; Santos, M.N. Water Erosion in Different Slope Lengths on Bare Soil. Rev. Bras. Ciência Solo 2017, 41, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koomson, E.; Muoni, T.; Marohn, C.; Nziguheba, G.; Cadisch, G. Critical slope length for soil loss mitigation in maize-bean cropping systems in sw Kenya. Geoderma Reg. 2020, 22, e00311. [Google Scholar] [CrossRef]
- Han, Z.; Zhong, S.; Ni, J.; Shi, Z.; Wei, C. Estimation of soil erosion to define the slope length of newly reconstructed gentle-slope lands in hilly mountainous regions. Sci. Rep. 2019, 9, 4676–4688. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K. A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Tresch, S.; Meusburger, K. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX 2019, 6, 219–229. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Huang, B.; Hu, T.; Ling, D. Review on numerical simulation of the internal soil erosion mechanisms using the discrete element method. Water 2021, 13, 169. [Google Scholar] [CrossRef]
- Gordon, L.M.; Bennett, S.J.; Wells, R.R. Response of soil-mantled experimental landscape to exogenic forcing. Water Resour. Res. 2012, 48, W10514. [Google Scholar] [CrossRef] [Green Version]
- Wells, R.R.; Alonso, C.V.; Bennett, S.J. Morphodynamics of headcut development and soil erosion in upland concentrated flows. Soil Sci. Soc. Am. J. 2009, 73, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, Y.; Dong, Y.; Zhang, H.; Zhang, C.; Zhang, Q. Measurement of the connectivity of runoff source areas on a bare soil surface in a laboratory experiment. J. Soil Water Conservation. 2019, 74, 513–519. [Google Scholar] [CrossRef]
- Fang, H. The effect of soil conservation measures on runoff, soil erosion, TN, and TP losses based on experimental runoff plots in northern china. Water 2021, 13, 2334. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.Q.; Zhou, N.; Tian, G.; Poesen, J.; Zhang, Z.D. Linking fine root and understory vegetation to channel erosion in forested hillslopes of southwestern China. Plant Soil 2015, 389, 323–334. [Google Scholar] [CrossRef]
- Alaoui, A.; Caduff, U.; Gerke, H.h.; Weingartner, R. A preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J. 2011, 10, 367–377. [Google Scholar] [CrossRef]
- Bircher, P.; Liniger, H.P.; Prasuhn, V. Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland. Geomorphology 2019, 346, 106850. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, M.; Wang, W. Variations in soil erosion resistance of gully head along a 25-year revegetation age on the loess plateau. Water 2020, 12, 3301. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.J.; De Baerdemaeker, J.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Reichert, J.M.; Norton, L.D. Rill and interrill erodibility and sediment characteristics of clayey Australian Vertosols and a Ferrosol. Soil Res. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Ahmadi, M.; Cerdà, A. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Sci. Total Environ. 2017, 583, 382–392. [Google Scholar] [CrossRef]
- Fu, X.T.; Zhang, L.P.; Wang, Y. Effect of Slope Length and Rainfall Intensity on Runoff and Erosion Conversion from Laboratory to Field. Water Resour. 2019, 46, 530–541. [Google Scholar] [CrossRef]
- Yang, D.; Xiong, D.; Zhang, B.; Guo, M.; Su, Z.; Dong, Y.; Lu, X. Effect of grass basal diameter on hydraulic properties and sediment yield processes in gully beds in the dry-hot valley region of Southwest China. Catena 2017, 152, 299–310. [Google Scholar] [CrossRef]
- Mei, X.; Zhu, Q.; Ma, L.; Zhang, D.; Wang, Y.; Hao, W. Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope. Land Degrad. Dev. 2018, 29, 1353–1365. [Google Scholar] [CrossRef]
- Bracken, L.J.; Wainwright, J.; Ali, G.A.; Tetzlaff, D.; Smith, M.W.; Reaney, S.M.; Roy, A.G. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Diodato, N. Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol. Earth Syst. Sci. 2004, 8, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Yang, P.; Ren, S.; Ao, C.; Li, X.; Gao, W. Slope length effects on processes of total nitrogen loss under simulated rainfall. Catena 2016, 139, 73–81. [Google Scholar] [CrossRef]
Grass Covers (%) | Slope Aspect (°) | Samples | Main Plant Type | Canopy Characteristics | Root Characteristics at the Soil Depth of 0–100 cm |
---|---|---|---|---|---|
0 | 90° | ||||
30 | 90° | 3: 20 cm × 20 cm | EN:CV = 7:3 | H(EN): 12.5 ± 0.4 cm; H(CV): 20.3 ± 0.5 cm; Biomass: 14.23 ± 0.52 g/m2 | L(EN): 26.6 ± 1.2 cm, dia < 0.5 mm; L(CV): 72.5 ± 3.5 cm, dia 7.3 ± 2.1 mm; Biomass: 28.74 ± 1.45 g/m2 |
60 | 90° | 3: 20 cm × 20 cm | EN:CV = 65:35 | H(EN): 12.2 ± 0.6 cm; H(CV): 21.5 ± 0.8 cm; Biomass: 87.26 ± 1.12 g/m2 | L(EN): 32.5 ± 1.6 cm, dia < 0.5 mm; L(CV): 69.3 ± 5.4 cm, dia 6.8 ± 2.5 mm; Biomass: 170.43 ± 7.86 g/m2 |
90 | 90° | 3: 20 cm × 20 cm | EN:CV = 7:3 | H(EN): 12.8 ± 0.7 cm; H(CV): 19.6 ± 0.8 cm; Biomass: 165.68 ± 1.22 g/m2 | L(EN): 35.5 ± 1.8 cm, dia < 0.5 mm; L(CV): 80.3 ± 6.2 cm, dia 7.1 ± 2.6 mm; Biomass: 325.43 ± 10.23 g/m2 |
Grass Covers (%) | Slope Length (m) | Pre-Rainfall Soil Water Content/% | Soil Bulk Density/(g·cm−3) | Soil Void Ratio | Particle Size | ||
---|---|---|---|---|---|---|---|
Sand (%) (0.02–2 mm) | Silt (%) (0.002–0.02 mm) | Clay (%) (<0.002 mm) | |||||
0 | 2 | 20.82 ± 0.56 | 1.44 ± 0.15 | 0.86 | 9.21 ± 0.23 | 68.18 ± 3.17 | 22.61 ± 2.18 |
4 | 20.04 ± 0.44 | 1.43 ± 0.21 | 0.88 | 9.14 ± 0.25 | 68.27 ± 2.68 | 22.59 ± 2.64 | |
6 | 19.57 ± 0.52 | 1.41 ± 0.18 | 0.88 | 9.16 ± 0.13 | 68.06 ± 2.75 | 22.78 ± 2.12 | |
8 | 19.88 ± 0.47 | 1.43 ± 0.16 | 0.89 | 9.12 ± 0.18 | 68.12 ± 3.16 | 22.76 ± 2.23 | |
10 | 20.41 ± 0.61 | 1.41 ± 0.18 | 0.88 | 9.23 ± 0.16 | 68.09 ± 3.24 | 22.68 ± 2.31 | |
30 | 2 | 19.33 ± 0.78 | 1.38 ± 0.24 | 0.95 | 9.45 ± 0.15 | 70.83 ± 2.13 | 19.72 ± 2.79 |
4 | 20.14 ± 0.86 | 1.37 ± 0.25 | 0.97 | 9.42 ± 0.21 | 70.94 ± 2.13 | 19.64 ± 2.66 | |
6 | 19.26 ± 0.87 | 1.37 ± 0.21 | 0.98 | 9.37 ± 0.16 | 70.77 ± 2.13 | 19.86 ± 2.73 | |
8 | 19.35 ± 0.86 | 1.36 ± 0.18 | 0.97 | 9.38 ± 0.18 | 70.86 ± 2.13 | 19.76 ± 2.83 | |
10 | 19.63 ± 0.75 | 1.37 ± 0.31 | 0.96 | 9.41 ± 0.23 | 70.93 ± 2.13 | 19.66 ± 2.72 | |
60 | 2 | 19.71 ± 1.04 | 1.34 ± 0.33 | 1.02 | 11.06 ± 0.19 | 69.84 ± 2.75 | 19.10 ± 4.20 |
4 | 20.38 ± 0.94 | 1.33 ± 0.35 | 1.03 | 11.36 ± 0.21 | 69.97 ± 2.64 | 18.67 ± 4.25 | |
6 | 20.25 ± 1.01 | 1.32 ± 0.28 | 1.03 | 11.12 ± 0.24 | 69.96 ± 2.68 | 18.92 ± 4.31 | |
8 | 20.49 ± 1.04 | 1.35 ± 0.36 | 1.04 | 11.23 ± 0.15 | 69.94 ± 2.87 | 18.83 ± 4.35 | |
10 | 20.37 ± 1.02 | 1.34 ± 0.32 | 1.03 | 11.15 ± 0.18 | 69.86 ± 2.72 | 18.99 ± 4.27 | |
90 | 2 | 19.88 ± 0.77 | 1.30 ± 0.21 | 1.04 | 9.43 ±0.22 | 71.23 ± 2.55 | 19.34 ± 2.75 |
4 | 20.13 ± 0.79 | 1.31 ± 0.22 | 1.03 | 9.12 ±0.23 | 71.45 ± 2.64 | 19.43 ± 2.73 | |
6 | 20.54 ± 0.76 | 1.32 ± 0.27 | 1.05 | 9.05 ±0.28 | 71.31 ± 2.61 | 19.64 ± 2.68 | |
8 | 20.03 ± 0.88 | 1.31 ± 0.26 | 1.06 | 9.25 ±0.33 | 71.34 ± 2.68 | 19.41 ± 2.88 | |
10 | 20.11 ± 0.96 | 1.31 ± 0.29 | 1.05 | 9.16 ± 0.24 | 71.42 ± 2.59 | 19.42 ± 2.74 |
Grass Covers (%) | Slope Length (mm) | RR (mm min−1) | RRD (mm) | U (m s−1) | SLR (g m−2 min−1) | SC (g L−1) | ELI % |
---|---|---|---|---|---|---|---|
0 | 2 | 0.96 ± 0.17d | 1.46 ± 0.03e | 0.13 ± 0.00e | 19.19 ± 3.22d | 13.37 ± 4.92d | 0 |
4 | 0.97 ± 0.13c | 2.33 ± 0.03d | 0.24 ± 0.01d | 47.28 ± 6.18c | 53.39 ± 8.30c | 146 | |
6 | 0.99 ± 0.20b | 3.04 ± 0.03c | 0.27 ± 0.01c | 103.52 ± 17.20b | 101.06 ± 27.17b | 439 | |
8 | 1.04 ± 0.22b | 3.26 ± 0.04b | 0.30 ± 0.01b | 102.41 ± 16.63b | 92.95 ± 13.88b | 434 | |
10 | 1.08 ± 0.29a | 3.94 ± 0.04a | 0.41 ± 0.01a | 167.95 ± 19.85a | 224.41 ± 29.76a | 775 | |
30 | 2 | 0.87 ± 0.50d | 1.69 ± 0.08d | 0.12 ± 0.01e | 8.05 ± 5.03d | 9.69 ± 5.64d | 0 |
4 | 0.89 ± 0.41c | 2.70 ± 0.06c | 0.19 ± 0.02d | 30.26 ± 12.67c | 30.2 ± 14.49c | 21 | |
6 | 0.92 ± 0.41b | 3.39 ± 0.05bc | 0.23 ± 0.01c | 52.89 ± 18.33b | 49.57 ± 16.51b | 44 | |
8 | 0.95 ± 0.37b | 3.81 ± 0.05ab | 0.27 ± 0.01b | 61.51 ± 18.21b | 58.15 ± 21.50b | 32 | |
10 | 0.99 ± 0.38a | 4.83 ± 0.04a | 0.31 ± 0.01a | 82.89 ± 33.95a | 142.36 ± 24.89a | 930 | |
60 | 2 | 0.59 ± 0.61d | 1.66 ± 0.11d | 0.12 ± 0.03d | 8.83 ± 1.00c | 9.03 ± 1.32ac | 0 |
4 | 0.64 ± 0.31bc | 3.25 ± 0.08c | 0.16 ± 0.02c | 14.27 ± 1.91bc | 14.67 ± 1.32ac | 10 | |
6 | 0.71 ± 34c | 3.82 ± 0.08ab | 0.22 ± 0.02b | 18.81 ± 2.13b | 18.81 ± 1.89a | 16 | |
8 | 0.76 ± 0.31b | 3.82 ± 0.08a | 0.28 ± 0.01a | 28.7 ± 4.80b | 24.87 ± 3.47a | 24 | |
10 | 0.75 ± 0.41a | 4.34 ± 0.07a | 0.27 ± 0.01a | 24.87 ± 3.80a | 15.32 ± 1.81b | 182 | |
90 | 2 | 0.35 ± 0.14c | 1.73 ± 0.05c | 0.10 ± 0.01c | 2.42 ± 0.53b | 3.30 ± 1.50b | 0 |
4 | 0.39 ± 0.10bc | 2.68 ± 0.05b | 0.15 ± 0.00bc | 5.18 ± 2.73ab | 5.50 ± 1.76ab | 15 | |
6 | 0.46 ± 0.12ab | 3.41 ± 0.04a | 0.17 ± 0.01b | 10.71 ± 5.03a | 12.31 ± 4.96a | 29 | |
8 | 0.53 ± 0.16a | 3.41 ± 0.03a | 0.17 ± 0.01a | 7.34 ± 3.11a | 8.37 ± 4.15a | 20 | |
10 | 0.51 ± 0.17a | 3.88 ± 0.04a | 0.20 ± 0.01a | 13.91 ± 5.48a | 14.44 ± 4.53a | 475 |
Rainfall Intensities (mm/min−1) | Slope Length (mm) | RR (mm min−1) | RRD (mm) | U (m s−1) | SLR (g m−2 min−1) | SC (g L−1) | ELI % |
---|---|---|---|---|---|---|---|
1 | 2 | 0.40 ± 0.14d | 1.61 ± 0.05d | 0.12 ± 0.00d | 13.21 ± 3.48b | 10.10 ± 2.48b | 0 |
4 | 0.45 ± 0.12c | 2.44 ± 0.05c | 0.15 ± 0.01c | 5.86 ± 1.14ab | 4.00 ± 1.13c | −56 | |
6 | 0.51 ± 0.10b | 3.08 ± 0.04b | 0.20 ± 0.01b | 8.39 ± 2.10a | 6.50 ± 1.67c | −36 | |
8 | 0.58 ± 0.07b | 3.45 ± 0.04ab | 0.17 ± 0.00b | 6.13 ± 2.33a | 4.07 ± 1.22ac | −54 | |
10 | 0.63 ± 0.16a | 4.05 ± 0.04a | 0.25 ± 0.01a | 13.61 ± 2.07a | 11.01 ± 1.53a | 3 | |
1.5 | 2 | 0.59 ± 0.61d | 1.66 ± 0.11c | 0.12 ± 0.03c | 8.83 ± 1.00c | 9.03 ± 1.32ab | 0 |
4 | 0.64 ± 0.31cd | 3.25 ± 0.08b | 0.16 ± 0.02b | 14.27 ± 1.91ac | 14.67 ± 1.32ab | 62 | |
6 | 0.71 ± 34c | 3.82 ± 0.08ab | 0.22 ± 0.02a | 18.81 ± 2.13a | 18.81 ± 1.89a | 113 | |
8 | 0.76 ± 0.31a | 3.82 ± 0.08a | 0.28 ± 0.01a | 28.7 ± 4.80a | 24.87 ± 3.47a | 225 | |
10 | 0.75 ± 0.41b | 4.34 ± 0.07a | 0.27 ± 0.01a | 24.87 ± 3.80b | 15.32 ± 1.81c | 182 | |
2 | 2 | 0.93 ± 0.48d | 2.29 ± 0.07c | 0.10 ± 0.01e | 10.74 ± 2.81e | 12.25 ± 1.46c | 0 |
4 | 0.97 ± 00.46c | 3.11 ± 0.07bc | 0.17 ± 0.01d | 20.62 ± 4.73d | 19.98 ± 1.88bc | 92 | |
6 | 1.02 ± 0.46c | 3.45 ± 0.06a | 0.18 ± 0.00c | 18.57 ± 4.53c | 28.61 ± 1.72b | 73 | |
8 | 1.08 ± 0.51b | 3.86 ± 0.06a | 0.22 ± 0.01b | 28.1 ± 6.27b | 31.25 ± 3.48ab | 162 | |
10 | 1.14 ± 0.55a | 4.31 ± 0.07a | 0.25 ± 0.01a | 36.23 ± 10.69a | 26.98 ± 2.33a | 237 | |
2.5 | 2 | 1.43 ± 0.95c | 2.03 ± 0.08c | 0.11 ± 0.01e | 28.1 ± 6.43e | 35.4 ± 3.85e | 0 |
4 | 1.47 ± 0.89b | 2.85 ± 0.07bc | 0.16 ± 0.00d | 70.08 ± 14.80de | 91.66 ± 8.76a | 149 | |
6 | 1.51 ± 0.92b | 3.49 ± 0.08ab | 0.18 ± 0.01c | 87.18 ± 18.48cd | 88.72 ± 10.48b | 210 | |
8 | 1.56 ± 1.02a | 3.60 ± 0.08ab | 0.24 ± 0.01b | 132.80 ± 29.27a | 86.56 ± 6.26d | 373 | |
10 | 1.62 ± 1.06a | 3.75 ± 0.09a | 0.25 ± 0.01a | 122.15 ± 27.63b | 88.22 ± 7.35c | 335 | |
3 | 2 | 1.85 ± 1.25d | 1.65 ± 0.06d | 0.11 ± 0.01e | 27.69 ± 5.50e | 32.44 ± 2.37d | 0 |
4 | 1.89 ± 1.08c | 3.30 ± 0.05c | 0.18 ± 0.01d | 83.82 ± 16.80d | 74.49 ± 6.85c | 203 | |
6 | 1.93 ± 1.07b | 4.20 ± 0.06b | 0.23 ± 0.01c | 90.99 ± 18.16bc | 31.75 ± 3.12d | 229 | |
8 | 1.98 ± 1.07ab | 4.43 ± 0.05ab | 0.25 ± 0.01b | 147.21 ± 32.35b | 147.65 ± 19.87b | 432 | |
10 | 2.03 ± 1.23a | 4.61 ± 0.05a | 0.29 ± 0.01a | 160.36 ± 31.67a | 165.39 ± 22.66a | 479 |
Grass Covers | Rainfall Intensities | Slope Length | RR | RRD | U | SLR | SC | |
---|---|---|---|---|---|---|---|---|
grass covers | 1 | |||||||
rainfall intensities | 1 | |||||||
Slope length | 1 | |||||||
RR | −0.150 | 0.928 ** | 0.132 | 1 | ||||
RRD | 0.088 | 0.190 | 0.901 ** | 0.276 | 1 | |||
U | −0.444 ** | 0.005 | 0.818 ** | 0.233 | 0.767 ** | 1 | ||
SLR | −0.380 * | 0.554 ** | 0.466 ** | 0.724 ** | 0.489 ** | 0.685 ** | 1 | |
SC | −0.438 ** | 0.415 ** | 0.445 ** | 0.591 ** | 0.457 ** | 0.701 ** | 0.927 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Xiao, P.; Yu, X.; Hao, S.; Jia, G.; Yang, C. A Field Study for the Effects of Grass Cover, Rainfall Intensity and Slope Length on Soil Erosion in the Loess Plateau, China. Water 2022, 14, 2142. https://doi.org/10.3390/w14142142
He Z, Xiao P, Yu X, Hao S, Jia G, Yang C. A Field Study for the Effects of Grass Cover, Rainfall Intensity and Slope Length on Soil Erosion in the Loess Plateau, China. Water. 2022; 14(14):2142. https://doi.org/10.3390/w14142142
Chicago/Turabian StyleHe, Zimiao, Peiqing Xiao, Xinxiao Yu, Shilong Hao, Guodong Jia, and Chunxia Yang. 2022. "A Field Study for the Effects of Grass Cover, Rainfall Intensity and Slope Length on Soil Erosion in the Loess Plateau, China" Water 14, no. 14: 2142. https://doi.org/10.3390/w14142142
APA StyleHe, Z., Xiao, P., Yu, X., Hao, S., Jia, G., & Yang, C. (2022). A Field Study for the Effects of Grass Cover, Rainfall Intensity and Slope Length on Soil Erosion in the Loess Plateau, China. Water, 14(14), 2142. https://doi.org/10.3390/w14142142