Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the Energy Efficiency of Wastewater Treatment Plants through Co-digestion and Fuel Cell Systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Campana, P.E.; Mainardis, M.; Moretti, A.; Cottes, M. 100% renewable wastewater treatment plants: Techno-economic assement using a modelling and optimization approach. Energy Convers. Manage. 2021, 239, 114214. [Google Scholar] [CrossRef]
- Aqualitrans Project. Available online: http://www.inega.gal/informacion/proxectos_europeos/aqualitrans.html (accessed on 15 January 2022).
- Nogueira, R.; Brito, A.; Machado, A.; Janknecht, P.; Salas, J.; Vera, L.; Martel, G. Economic and environmental assessment of small and decentralized wastewater treatment systems. Desalin. Water Treat. 2009, 4, 16–21. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhu, Y.; Chen, J.; Huang, M.; Wang, P.; Wang, G.; Zou, W.; Zhou, G. Assessment of energy consumption of municipal wastewater treatment plants in China. J. Clean. Prod. 2019, 228, 399–404. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J. Appl. Phycol. 2014, 26, 1317–1329. [Google Scholar] [CrossRef]
- Białowiec, A.; Albuquerque, A.; Randerson, P.F. The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol. Eng. 2014, 67, 89–94. [Google Scholar] [CrossRef]
- Mesquita, C.; Albuquerque, A.; Amaral, L.; Nogueira, R. Effectiveness and Temporal Variation of a Full-Scale Horizontal Constructed Wetland in Reducing Nitrogen and Phosphorus from Domestic Wastewater. ChemEngineering 2018, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Sátiro, J.; Cunha, A.; Gomes, A.P.; Simões, R.; Albuquerque, A. Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. Appl. Sci. 2022, 12, 5799. [Google Scholar] [CrossRef]
- Viswanaathan, S.; Perumal, P.K.; Sundaram, S. Integrated Approach for Carbon Sequestration and Wastewater Treatment Using Algal–Bacterial Consortia: Opportunities and Challenges. Sustainability 2022, 14, 1075. [Google Scholar] [CrossRef]
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Alam, A.; Mehmood, M.A. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ. 2020, 704, 135303. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Ralph, P.J.; Craggs, R.J. Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Res. 2019, 47, 101850. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, M.D.C.; Perales, J.A. Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Reina, T.R.; Vilches, L.; Navarrete, B. Understanding the influence of the alkaline cation K + or Na + in the regeneration efficiency of a biogas upgrading unit. Int. J. Energy Res. 2019, 43, 1578–1585. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Sci. Total Environ. 2020, 765, 142753. [Google Scholar] [CrossRef] [PubMed]
- Calderon, C.; Colla, M.; Jossart, J.-M.; Hemelleers, N.; Martin, A.; Aveni, N.; Caferri, C. European Bioenergy Outlook 2019; Biogas: Brussels, Belgium, 2019. [Google Scholar]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.D.; Lonza, L. Review of technologies for bio methane production and assessment of EU transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Reina, T.; Rodríguez-Galán, M.; Navarrete, B.; Vilches, L.F. Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis. Sci. Total Environ. 2020, 758, 143645. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Reina, T.R.; Zhang, Z.; Vilches, L.F.; Navarrete, B. Understanding the effect of Ca and Mg ions from wastes in the solvent regeneration stage of a biogas upgrading unit. Sci. Total Environ. 2019, 691, 93–100. [Google Scholar] [CrossRef]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Fang, L.L.; Pérez, B.V.; Damgaard, A.; Plósz, B.G.; Rygaard, M. Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Water Res. 2016, 88, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Maga, D. Life cycle assessment of bio methane produced from microalgae grown in municipal wastewater. Biomass Convers. Bioref. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Kohlheb, N.; van Afferden, M.; Lara, E.; Arbib, Z.; Conthe, M.; Poitzsch, C.; Becker, M.Y. Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. J. Environ. Manage. 2020, 264, 110459. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Coutinho, L.; Brito, A.; Nogueira, R.; Machado, A.; Salas, J.; Póvoa, C. Cost-effectiveness analysis for sustainable wastewater engineering and water resources management: A case study at Minho-Lima river basins (Portugal). Desalin. Water Treat. 2009, 4, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, M.C.; Albuquerque, A.; Amaral, L.; Nogueira, R. Effect of vegetation on the performance of horizontal subsurface flow constructed wetlands with lightweight expanded clay aggregates. Int. J. Environ. Sci. Technol. 2013, 10, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.; Lisboa, I.; Eugénio, T. Economic Sustainability in Wastewater Treatment Companies: A Regional Analysis for the Iberian Peninsula. Appl. Sci. 2021, 11, 9876. [Google Scholar] [CrossRef]
- Rego, R. Performance Analysis of the Wastewater Treatment Plants Using a Metabolism Model. Master’s Thesis, IST, University of Lisbon, Lisbon, Portugal, 2012. [Google Scholar]
- Moreno, R.; Correia, M.; Martins, F. Energy and environmental performance of wastewater treatment plants: A statistical approach. Procedia 2017, 136, 296–301. [Google Scholar] [CrossRef]
- Turkmenler, H. Investigation of energy efficiency in Gebze Wastewater Treatment Plant. Int. J. Environ. Sci. Technol. 2019, 16, 6557–6564. [Google Scholar] [CrossRef]
- Siatou, A.; Manali, A.; Gikas, P. Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece. Water 2020, 12, 1204. [Google Scholar] [CrossRef]
- Longo, S.; Hospido, A.; Lema, J.; Mauricio-Iglesias, M. A systematic methodology for the robust quantification of energy efficiency at wastewater treatment plants featuring Data Envelopment Analysis. Water Res. 2018, 141, 317–328. [Google Scholar] [CrossRef]
- Cardoso, B.J.; Rodrigues, E.; Gaspar, A.R.; Gomes, A. Energy performance factors in wastewater treatment plants: A review. J. Clean. Prod. 2021, 322, 129107. [Google Scholar] [CrossRef]
- Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Stasinakis, A.; Lekkas, T.D. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 2014, 71, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Dzakpasu, M.; Yang, B.; Zhang, W.; Yang, Y.; Wang, X.C. A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment. Appl. Energy 2019, 236, 253–261. [Google Scholar] [CrossRef]
- Haslinger, J.; Lindtner, S.; Krampe, J. Operating costs and energy demand of wastewater treatment plants in Austria: Benchmarking results of the last 10 years. Water Sci. Technol. 2016, 74, 2620–2626. [Google Scholar] [CrossRef] [PubMed]
- Schopf, K.; Judex, J.; Schmid, B.; Kienberger, T. Modelling the bioenergy potential of municipal wastewater treatment plants. Water Sci. Technol. 2018, 77, 2613–2623. [Google Scholar] [CrossRef]
- Mills, N.; Pearce, P.; Farrow, J.; Thorpe, R.B.; Kirkby, N.F. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag. 2014, 34, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [Google Scholar] [CrossRef]
- Baena-Moreno, F.; Malico, I.; Marques, I. Promoting sustainability: Wastewater treatment plants as a source of bio methane in regions far from a high-pressure grid. the real portuguese case study. Sustainability 2021, 13, 8933. [Google Scholar] [CrossRef]
- Cornejo, P.K.; Zhang, Q.; Mihelcic, J.R. Quantifying benefits of resource recovery from sanitation provision in a developing world setting. J. Environ. Manag. 2013, 131, 7–15. [Google Scholar] [CrossRef]
- Yıldırım, M.; Topkaya, B. Assessing Environmental Impacts of Wastewater Treatment Alternatives for Small-Scale Communities. CLEAN Soil Air Water 2011, 40, 171–178. [Google Scholar] [CrossRef]
- Rozkošný, M.; Kriška, M.; Šálek, J.; Bodík, I.; Istenič, D. Natural Technologies of Wastewater Treatment; Global Water Partnership Central and Eastern Europe: Stockholm, Sweden, 2014. [Google Scholar]
- Dixon, A.; Simon, M.; Burkitt, T. Assessing the environmental impact of two options for small-scale wastewater treatment: Comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol. Eng. 2003, 20, 297–308. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Alfonsín, C.; Amores, M.J.; Aldea, X.; Marín, D.; Moreira, M.T.; Feijoo, G. Beyond the conventional life cycle inventory in wastewater treatment plants. Sci. Total Environ. 2016, 553, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Webber, M.; Zhou, C.; Zhang, W. Alternative water supply solutions: China’s South-to-North-water-diversion in Jinan. J. Environ. Manag. 2020, 276, 111337. [Google Scholar] [CrossRef] [PubMed]
Source | Technology | SEC (kWh/m3) |
---|---|---|
Garfi et al. [21] | HRAP | 0.25 |
Activated sludge | 1.26 | |
Arashiro et al. [14] | HRAP + biogas production | 0.06 |
HRAP + biofertilizer production | 0.08 | |
Activated sludge | 0.89 | |
Kohlheb et al. [24] | HRAP | 0.17–0.25 |
Activated sludge | 0.45 | |
Rego [28] 1) | Activated sludge | 0.68–0.98 |
Moreno et al. [29] 1) | Activated sludge aeration with turbines | 0.73 |
Activated sludge aeration with air bubble | 0.80 | |
Turkmenler [30] | Activated sludge | 0.38–0.43 |
Siatou et al. [31] | Activated sludge | 0.90 |
This study 1) | Activated sludge | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.; Albuquerque, A.; Lisboa, I.; Murray, P.; Ermis, H. Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. Water 2022, 14, 2042. https://doi.org/10.3390/w14132042
Santos E, Albuquerque A, Lisboa I, Murray P, Ermis H. Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. Water. 2022; 14(13):2042. https://doi.org/10.3390/w14132042
Chicago/Turabian StyleSantos, Eleonora, António Albuquerque, Inês Lisboa, Patrick Murray, and Hande Ermis. 2022. "Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal" Water 14, no. 13: 2042. https://doi.org/10.3390/w14132042
APA StyleSantos, E., Albuquerque, A., Lisboa, I., Murray, P., & Ermis, H. (2022). Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. Water, 14(13), 2042. https://doi.org/10.3390/w14132042