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Abstract: Understanding how to address today’s global challenges is critical to improving corporate
performance in terms of economic and environmental sustainability. In wastewater treatment systems,
such an approach implies integrating efficient treatment technologies with aspects of the circular econ-
omy. In this business field, energy costs represent a large share of operating costs. This work discusses
technological and management aspects leading to greater energy savings in Portuguese wastewater
treatment companies. A mixed methodology, involving qualitative and quantitative aspects, for
collecting and analysing data from wastewater treatment plants was used. The qualitative aspects
consisted of a narrative analysis of the information available on reports and websites for 11 wastewa-
ter management companies in Portugal (e.g., technologies, treated wastewater volumes and operating
costs) followed by a review of several international studies. The quantitative approach involved
calculating the specific energy consumption (kWh/m3), energy operating costs (EUR/m3) and energy
operating costs per population equivalent (EUR/inhabitants) using data from the literature and
from Portuguese companies collected from the SABI database. The results suggested that the most
environmentally and economically sustainable solution is algae-based technology which might allow
a reduction in energy operating costs between 0.05–0.41 EUR/m3 and 15.4–180.8 EUR/inhabitants
compared to activated sludge and other conventional methods. This technology, in addition to being
financially advantageous, provides the ability to eliminate the carbon footprint and the valorisation of
algae biomass, suggesting that this biotechnology is starting to position itself as a mandatory future
solution in the wastewater treatment sector.

Keywords: biotechnology; conventional wastewater technologies; economic sustainability; energy
saving; microalgae technologies; wastewater

1. Introduction

Energy is the main operating cost of wastewater treatment. The North American
Wastewater Treatment Plants (WWTPs) consume approximately 1–4% of the total energy
production, and in Europe, the consumption is approximately 1% [1,2]. A financed project
in the north of Portugal [3] identified the main energy consumers: the aeration equipment
associated with biological treatment (58%), inlet pumping (9%), deodorization (8%) and
sludge treatment equipment (6%). Assessing the efficiency of wastewater treatment plants
(WWTPs) is essential for water service companies’ survival and growth, as well as for
correcting management procedures. In a circular economy framework, management
involves the adoption of circular economy business models (CEBMs) that should lead to
more economic and environmentally efficient and sustainable technologies.
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Energy savings in WWTPs have been investigated in recent decades, but information
on their operating costs is still scarce in the literature [4]. The focus is being placed
on process optimization, rather than on cost-saving [2,5]. There is still a need for more
information regarding nutrient removal, polishing treatments and operational costs of
nature-based wastewater treatment technologies, as noted in studies [6–13]. Although
there is a wide variety of chemical and biological technologies for nutrient removal, these
processes normally entail high operational and investment costs that narrow profit margins.
Thus, studies that shed some light on the comparison between operational costs of several
wastewater technologies are critical for assessing the most efficient management of WWTPs.

Wastewater can be produced in different activities (e.g., domestic, urban, industrial,
runoff, agricultural and sanitary landfilling), which can result in different physical, chemical
and microbiological characteristics. Conventional WWTPs involve biological processes
(e.g., activated sludge, biological filters, stabilization ponds, constructed wetlands and
anaerobic digestion), chemical processes (e.g., chemical precipitation, electrochemistry and
ion exchange), physical processes (e.g., ultrafiltration and ion exchange) or a combination
of them. These conventional biological treatment processes need to address technical and
high-cost limitations for obtaining the necessary removal of organic matter and nutrients.
It is often necessary to include artificial aeration or chemical additions for improving
treatments, which leads to high energy consumption besides being ineffective for carbon
sequestration. By contrast, natural solutions based on constructed wetlands have proved to
be very effective in removing organics and nitrogen, but still require energy consumption
for effluent recirculation and evapotranspiration dependence [7,8].

In recent years, new microalgae-based technologies have been emerging for treat-
ing and reusing wastewater, involving one or more microalgae species or in consortium
with bacteria colonised in photobioreactors (PBRs). PBRs include tanks, channels and
lagoon/pond reactors. Microalgae consortiums are advantageous in removing organics,
nitrogen and phosphorous through biodegradation pathways, assimilation and plant up-
take, especially for a 1:5 microalgae: bacteria ratio [6] with fewer energy requirements
(there is no need for external oxygenation or external carbon addition, since algae produce
oxygen and bacteria produce the carbon needed for the consortium, acting also as a carbon
sequestering system) [10]. In addition, in the scope of CEBMs, these technologies allow
for added-value products from the valorisation of algae biomass (e.g., pigments, health
products, feeding products, biofertilizers, biogas and biodiesel) [7,11].

Thus, there is an increasing interest in algae-based technologies for wastewater treat-
ment, such as the high-rate algal pond (HRAP) systems [12], which can lead to a good
removal of organics and nutrients from wastewater and the production of algae biomass
that can be valorised. However, there are not many studies on HRAP operating costs
and their comparison with ones of conventional technologies, especially regarding the
population equivalent (p.e.) and volumes of treated wastewater. HRAPs are shallow ponds
(typically between 30cm and 50cm), where wastewater circulates through a low-power
paddle wheel, producing high algae biomass and nutrient removal in short retention times
(4 and 10 days) compared to conventional pond systems. Yet, a shallow depth operation
involves reducing the total volume of the pond, but it requires a greater investment and
increases operating costs because it requires a larger surface for a given effluent flow. Still,
there is potential to increase microalgae biomass production and nutrient removal from
wastewater while reducing capital costs. One way, highlighted in the literature, is the
change of the operational depth of the algal pond, shifting the amount and frequency
at which microalgae cells are exposed to optimal light [13], significantly increasing the
biomass productivity for 400 mm deep HRAPs in 134–200% compared to 200 mm deep
HRAPs. Thus, increasing the depth of the ponds could allow maintaining the quality of
wastewater treatment and may reduce operating and capital costs. HRAP systems also
appear to be more economically viable when combined with biofertilizer production rather
than biogas [14].
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The algal biomass can be used to produce carbon-neutral products, such as biofuel,
feed, biofertilizer and bioplastic integrated with biorefinery, circular bioeconomy and the
valorisation of organic waste biomass. Either selling the algal biomass as a product or
co-using it to improve the biofuel, combining algal treatment with wastewater treatment
would allow to lower the cost of WWTPs. The production of biofuel involves removing
CO2 and producing a high-purity CH4 stream (bio methane) that can replace traditional
natural gas [15,16]. Due to their benefits, biogas upgrade techniques for biomethane
production are increasingly being explored at the industrial level [17,18] and several studies
focus on making the process more accessible [19,20] and with less carbon released into
the atmosphere.

Studies using LCA concluded that HRAPs can help in reducing environmental im-
pacts and costs associated with wastewater treatment compared to conventional systems,
especially in small communities [21–23], i.e., for less than 10.000 inhabitants. For example,
Kohlheb et al. [24] used algal pond system construction and operation data for a bench-
marking comparison with an activated sludge-based sequencing batch system (SBR) with
comparable removal rates and similar inlet wastewater. They only focused on the actual
wastewater treatment aspects of these technologies, excluding sludge treatment from this
analysis, and based on a total life expectancy of 40 years. Therefore, it appears that using
HRAPs instead of conventional wastewater treatment technologies can increase the sus-
tainability and cost-effectiveness of wastewater treatment, especially if implemented in
small communities, warm climate regions and associated with biofertilizer production.

The objective of this research is to discuss the technological and management aspects
leading to greater energy savings in WWTPs. Based on data on energy costs collected from
the literature, WWTPs’ websites and SABI financial reports, a mixed methodology was used,
which is one of the novelties of the work. The qualitative aspects consisted of a narrative
analysis of the information about technologies, treated volumes and operating costs, while
the quantitative approach involved calculating the specific energy consumption (kWh/m3),
energy operating costs (EUR/m3) and energy operating costs per population equivalent
(EUR/inhabitants). The energy cost of activated sludge-based technologies and HRAP
technology from 11 Portuguese WWTPs and other international studies were compared.
The most common biological processes for domestic or urban wastewater treatment in
Portugal is activated sludge, followed by biological filters, stabilization ponds, anaerobic
digestion (UASB) and constructed wetlands [25–27], which are operated by 45 companies.
There are no HRAP processes operating in Portugal for wastewater treatment, and one of
the other novelties of the work is to show the advantages of having such a system operating
in the country. This study also calculated the energy cost savings by applying a savings
ratio to the energy costs of activated sludge-based technologies calculated with data from
previous literature.

2. Material and Methods

A mixed methodology, involving qualitative and quantitative aspects, for collecting
and analysing data from wastewater treatment plants was used.

Data on activated sludge WWTPs’ characteristics and their expenses and operational
costs for 2020 were collected from online reports of 11 Portuguese management companies
and the SABI database (https://login.bvdinfo.com/R0/sabineo accessed on 11 May 2022).
The sample of WWTPs was scattered across the mainland: 3 in the north, 2 in the centre,
2 in Alentejo, 3 in Lisbon and 1 in Algarve. Data on HRAP systems and other activated
sludge systems, as well as their operating costs, were collected from international studies
for volumes of treated wastewater in the range of values found in the 11 Portuguese
companies, as presented in Table 1 of the Results section.

https://login.bvdinfo.com/R0/sabineo
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Table 1. Specific energy consumption (SEC) for activated sludge and HRAP technologies.

Source Technology SEC (kWh/m3)

Garfi et al. [21] HRAP 0.25
Activated sludge 1.26

Arashiro et al. [14] HRAP + biogas production 0.06
HRAP + biofertilizer production 0.08

Activated sludge 0.89

Kohlheb et al. [24] HRAP 0.17–0.25
Activated sludge 0.45

Rego [28] 1) Activated sludge 0.68–0.98

Moreno et al. [29] 1) Activated sludge aeration with turbines 0.73
Activated sludge aeration with air bubble 0.80

Turkmenler [30] Activated sludge 0.38–0.43

Siatou et al. [31] Activated sludge 0.90

This study 1) Activated sludge 0.57
1) Portuguese studies.

Operation and maintenance (O&M) costs comprised labour, electricity, purchase of
chemical products (i.e., consumables), sludge disposal and ordinary and extraordinary
maintenance (e.g., equipment replacement). However, only the energy costs were analysed
in this work. From the data on yearly or daily energy consumption (EC, kWh) and yearly or
daily volumes of treated wastewater (V, m3), the values of specific energy consumption per
volume of treated wastewater (SEC, kWh/m3) were computed through Equation (1). The
specific energy operating cost (SEOC, EUR/m3) was computed from the energy operating
cost (EOC, EUR) and volume of the treated wastewater using Equation (2) and the specific
energy operating cost per p.e. (EUR/inhabitants) from Equation (3).

SECi =
∑n

i=1 ECi

∑n
i=1 Vi

(1)

where SECi: specific energy consumption per volume of treated wastewater in system
i (kWh/m3); ECi: energy consumption in system i (kWh); and Vi: volume of treated
wastewater in system i (m3).

SEOCi =
∑n

i=1 EOCi

∑n
i=1 Vi

(2)

where SEOCi: specific energy operating cost per volume of treated wastewater in system
i (EUR/m3); EOCi: energy operating cost in system i (EUR); and Vi: volume of treated
wastewater in system i (m3).

SEOCPi =
∑n

i=1 EOCi

∑n
i=1 p.e.i

(3)

where SEOCPi: specific energy operating cost per p.e. in system i (EUR/inhabitants);
EOCi: energy operating cost in system i (EUR); and p.e.i: equivalent population in system i
(inhabitants).

Results found for activated sludge in the 11 Portuguese WWTPs were compared with
results found in the literature for similar WWTPs as well as for HRAPs.

Figure 1 shows the methodologic procedure followed in this study.
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Figure 1. Schematic representation for the methodology.

3. Results and Discussion

The main operating costs of the 11 Portuguese WWTPs were wages and electricity,
representing 48.32% and 48.43% of total costs (Figure 2), respectively, for treated wastewater
flowrates ranging 8392–496,618 m3/d and p.e. between 11,659 and 593,451 inhabitants.
Gandiglio et al. [1] also found that electricity accounted for approximately 25–50% of
operating costs. For populations between approximately 11.660 and 23.470 inhabitants, the
personal costs were higher than the energy costs, reaching an equilibrium between these
two costs for populations of approximately 57.170 inhabitants. However, for populations
greater than 57.170 inhabitants, the results were inconsistent, as both higher values for
electricity costs and higher values for personnel costs appeared with no correlation with
population or volume growth. This inconsistency is related to the technologies used for
wastewater treatment in the WWTPs of the 11 companies, with higher energy costs where
more pumping equipment, turbines and compressors were used.
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Nearly 11% of the treated wastewater was reused for no potable applications, namely, for
garden watering, irrigation and washing floors and equipment. According to Longo et al. [32],
aeration in activated sludge systems consumes 0.18–0.8 kWh/m3 which represents 40%
and 75% of the total energy consumed in large and small plants [33,34].

Approximately 7.3% of the energy produced by the Portuguese WWTPs was through,
namely, biogas conversion with conventional technologies, which release carbon into the
atmosphere. This suggests a great dependence on energy from external sources. The
SEOCi values in the 11 Portuguese WWTPs ranged between 0.11 and 0.87 EUR/m3

(0.28 EUR/m3 on average), which corresponded, in terms or energy consumption, to
SECi values of 0.33–0.83 Kwh/m3 in 2020 (0.57 EUR/m3) on average. The average SEOCP
was 73.7 EUR/inhabitants. Kohlheb et al. [24] found SEOCs for activated sludge ranging
0.17–0.26 EUR/m3 and 0.13–0.18 EUR/m3 for HRAPs. Rego [28] reported an interval
between 0.14 and 0.19 EUR/m3 (activated sludge) for volumes ranging 2010–11,878 m3/d.

Table 1 presents results on SECi for activated sludge and HRAPs found in international
studies, as well as the values calculated for the 11 Portuguese WWTPs. Another two studies
on Portuguese WWTPs using activated sludge systems were found. However, the values
were reported for 2012 [28] and 2015 [29], respectively. Populations ranged from 11,342 to
64,414 p.e. [28] and from 2000 to > 50,000 inhabitants [29]. These values were in the same
range as those in the present study. Only three studies were found for HRAP systems with
energy consumption data [14,24]. The studies of Garfi et al. [21] and Arashiro et al. [14]
considered p.e. < 10,000 inhabitants and a daily flowrate of 2000 m3/d.

The results in Table 1 show that the average SEC for activated sludge in this study
(0.57 kWh/m3) was below the values found in other Portuguese studies (0.68–0.98 kWh/m3)
in 2012 [28] and 2015 [29], but within the range of values found in international studies
(0.38–1.26 kWh/m3).

This suggested the success of the managers of Portuguese WWTPs in reducing energy
costs. Yet, there was no statistical correlation between SEC (kWh/m3) and population
size (p.e. in inhabitants) and between SEOC (EUR/m3) and the volume of wastewater
(m3) for the 11 Portuguese WWTPs, which seems to indicate that the type of technology
used, particularly if it was based on pumping systems, turbines or compressors, had more
weight on energy consumption than the population served or the volume treated. Thus,
measures to reduce costs and increase energy efficiency should, first, focus on these types
of technologies.

In Figure 3, the lower correlation between the SEC and population for the 11 wastew-
ater management companies in the years 2018, 2019 and 2020, whose variations were
explained using equipment with different energy consumptions, can be seen.

HRAP systems displayed lower energy consumptions, ranging 0.06–0.25 kWh/m3.
Cardoso et al. [33], analysing energy consumption data from 19 countries, did not find a
direct relationship between SECi values and the volume of treated wastewater. The load
factor, dilution factor, age of the WWTP, location and technological performance could
impact energy consumption more than the treated volume. Low load factors led to a low
energy performance [35], and when it reached 100%, SECi decreased [35]. Longo et al. [32]
observed low SECi values associated with very low dilution factors. Haslinger et al. [36]
highlighted the impact of technology on energy consumption by concluding that WWTPs
with aerobic sludge stabilization showed higher SECi values than the ones with mesophilic
sludge digestion. Moreover, Turkmenler [30] argues that energy consumption depends on
the concentration of pollutants in the incoming water.

To evaluate the decrease in SEC in recent years (2018 to 2020), the minimum, maximum
and average energy costs by year were calculated for the 11 WWTPs using activated sludge
data (Figure 4.).
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In recent years, the energy consumption decreased due to changes in O&M procedures,
such as the optimization of power and operating times of pumps, turbines and compressors,
the introduction of online monitoring systems connected to solar panels, the introduction
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of sludge anaerobic digestion with biogas production, in addition to energy production in
the WWTP spaces with the introduction of solar panels and mini wind turbines. However,
on average, it was higher than expected (0.62 kwh/m3 in 2018, 0.60 kwh/m3 in 2019
and 0.57 kwh/m3 in 2020). In Portugal, the most used methods for energy production
in WWTPs are the conversion of biogas produced in digesters for sludge treatment [19]
in electricity and heat in combined heat and power (CHP) systems [37–40]. Still, the fact
that the WWTPs needed to stop the production of energy from biogas in the cogeneration
unit to start the biogas upgrade appeared to strongly impact the profitability of the project.
Yet, this was expected, bearing in mind that electricity is much more expensive. Cornejo
et al. [41] reported SEC for UASB with two maturation ponds with water reuse and energy
recovery of approximately 1.51 kWh/m3.

Besides energy, other relevant costs in the WWTPs were related to total investment,
labour and O&M. However, the former could be partially covered by government incentives
(e.g., investment subsidies). The other two costs (labour and O&M) are not easy to reduce,
as they affect the daily operations of biomethane plants [39]. It seems clear that, under such
constraints of the baseline scenario, profitability is yet to be achieved.

During recent decades, natural technologies (also known as nature-based technologies,
such as constructed wetlands and algae-based systems) for wastewater treatment have
gained interest as an attractive alternative to conventional treatment systems in small com-
munities [7–9,42–44]. Natural treatment technologies use modified natural self-treatment
processes that occur in soil, water and wetland environments, thus, requiring lower energy
consumption, simplicity of operations and lower investments compared to conventional
systems [44]. The specific area requirement for conventionally activated sludge, constructed
wetlands and HRAPs is 0.6 m2/inhabitants, 3.5 m2/inhabitants and 6 m2/inhabitants, re-
spectively [14]. Constructed wetland systems appear to be more adequate when there is a
land restriction, since they have a smaller footprint compared to HARPs (3.5 m2/inhabitants
vs. 6 m2/inhabitants).

Kohlheb et al. [24] concluded that pond treatment technology is more energy-efficient
than activated sludge-based SBR and requires only 22% of energy consumption. Further-
more, they concluded that HRAP systems are more economically advantageous (EUR0.18/m3

for HRAP and 0.26EUR/m3 for activated sludge-based SBR). Regarding SECi, values
ranged from 0.04 to 0.10 kWh/m3 (HRAP with “Low Energy Algae Raceway”) and
0.45 kWh/m3 (SBR). By contrast, activated sludge SBR systems require approximately
74% of the consumed energy for aeration. Lorenzo-Toja et al. [45] reported specific energy
operating costs for the stabilization of ponds to be approximately 1 kWh/m3.

The higher O&M costs in activated sludge and HRAP scenarios are mainly due to
the higher energy consumption. Indeed, energy consumption is a major contributor to
the O&M costs in WWTPs using activated sludge. Yet, it is currently difficult to econom-
ically outperform these technologies, as they can cost between 0.11 and 0.87 EUR/m3

(0.28 EUR/m3 on average). Garfi et al. [21] found an average SEOC of 0.79 EUR/m3 (acti-
vated sludge), 0.40 EUR/m3 (constructed wetlands) and 0.42 EUR/m3 (HRAP), which gave
SEOCHRAP/SEOCactivated sludge = 0.532. Applying this ratio to the range of SEOCi found
in this study delivered a result of energy costs ranging 0.059–0.46 EUR/m3 (0.15 EUR/m3

on average) if HRAP was to be used in our sample of 11 WWTPs. In other words, the
WWTPs would benefit from a cost reduction of 0.05-0.41EUR/m3. Using p.e. values and
the ratio found in Garfi et al.’s [21] work, SEOCPHRAP/SEOCP activated sludge equalled
0.303, and the hypothetical SEOCi for implementing HRAP systems in Portugal would
cost between 6.7 and 78.8 EUR/inhabitants (22.4 EUR/inhabitants on average), i.e., a cost
reduction between 15.4 and 180.8 EUR/inhabitants.

According to Kohlheb et al. [24], HRPA systems present environmental advantages, since
the CO2 sequestration with algal biomass is approximately 146.27 × 10−3 kg CO2 equiv./m3,
whilst for activated sludge SBR systems, CO2 sequestration is 458.27 × 10−3 kg CO2 equiv./m3.
In fact, the environmental impacts of conventional effluent treatment methods (activated
sludge scenario) are estimated to be 2–5 times greater than those of nature-based technolo-
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gies (constructed wetlands and HRAP scenarios). This is mainly due to the high energy
consumption and use of chemicals in WWTPs using activated sludge. Similar results were
obtained from previous studies that compared the potential environmental impacts of
activated sludge and constructed wetland systems [31,32,36]. As there are many WWTPs
with several treatment technologies, along with many algae species (each with different
treatment efficiencies), it was not possible to carry out a feasibility study for WWTPs
using microalgae. Therefore, more specific details on WWTPs are needed, namely, for
comparing algal growth. Another limitation of this research was the lack of a database
with energy costs for each WWTP and for the effluent treatment technology used. As a
result, the calculations need more refinement, and some were based on the methodology of
Garfi et al. [21].

At a time when sustainability is on the agenda and water governance is a European
and global issue, especially in Mediterranean countries where drought periods are longer, it
is urgent to find solutions to face the scarcity of water. In the framework of the Sustainable
Development Goals, wastewater management entities, although they may benefit from gov-
ernment subsidies, ideally should achieve profit while not compromising the achievement
of social and environmental sustainability. Furthermore, in the current growing context of
the circular economy, the CEBM is gaining increasing proselytes by providing management
practices that are simultaneously sustainable at the economic and environmental levels.
Thus, we are currently witnessing a paradigm shift in wastewater treatment for these types
of companies. The highest operating costs were those with labour and energy, within this
framework. Studies that allow for a reduction in energy costs are of particular importance.
In fact, the current trend is to look for alternative water supply solutions that sometimes
involve the reuse of wastewater [46].

4. Conclusions

According to the results obtained in this study, HRAP-based technologies might be
a good technological alternative solution for wastewater treatment, especially for small
communities. Besides their efficiency in removing pollutants, they can generate added-
value products from algae biomass valorisation and can represent energy cost savings of
0.05–0.41 EUR/m3, 15.4 EUR/inhabitants and 180.8 EUR/inhabitants. Furthermore, this
technology, in addition to being financially advantageous, makes it possible to eliminate the
carbon footprint by saving approximately 45 kg CO2 eq/inhabitants a year, suggesting that
biotechnology is starting to position itself as a mandatory future solution in the wastewater
treatment sector. Due to energy costs not being dependent on wastewater volume but
rather on factors such as the load, dilution, technology, infrastructure age and location,
future research paths should include an economic analysis of full-scale systems using data
obtained during long-term monitoring.
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