Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Warming and Drought Treatments
2.2. Seedling Growth and Mortality Rate
2.3. Data Analysis
3. Results
3.1. Experimental Warming and Drought Treatments
3.2. Seedling Height and Root Collar Diameter Response
3.3. Biomass and Mortality Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018; pp. 51–54. [Google Scholar]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate change and drought: A perspective on drought indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; pp. 1–2913. [Google Scholar]
- Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 2013, 27, 463–477. [Google Scholar] [CrossRef]
- Li, C. Some aspects of leaf water relations in four provenances of Eucalyptus Microtheca Seedlings. For. Ecol. Manag. 1998, 111, 303–308. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.; Estiarte, M.; Peñuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 2011, 13, 252–257. [Google Scholar] [CrossRef]
- Kim, H.; Jo, H.; Kim, G.J.; Kim, H.S.; Son, Y. Short-term physiological responses of Larix Kaempferi Seedlings Spring Warm. Drought Manip. For. Sci. Technol. 2021, 17, 197–205. [Google Scholar]
- Buermann, W.; Forkel, M.; O’sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V.; Jain, A.K.; Kato, E.; Kautz, M.; Lienert, S.; et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Andy Black, T.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [Green Version]
- Buermann, W.; Bikash, P.R.; Jung, M.; Burn, D.H.; Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 2013, 8, 024027. [Google Scholar] [CrossRef]
- Casper, B.; Forseth, I.; Kempenich, H.; Seltzer, S.; Xavier, K. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava. Funct. Ecol. 2001, 15, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.S.; Campioli, M.; Vitasse, Y.; De Boeck, H.J.; Van den Berge, J.; AbdElgawad, H.; Asard, H.; Piao, S.; Deckmyn, G.; Janssens, I.A. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl. Acad. Sci. USA 2014, 111, 7355–7360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhusal, N.; Lee, M.; Han, A.R.; Han, A.; Kim, H.S. Responses to drought stress in Prunus Sargentii Larix Kaempferi Seedlings Using Morphol. Physiol. Parameters. For. Ecol. Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.; Woodin, S.J. Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Funct. Ecol. 2002, 16, 4–17. [Google Scholar] [CrossRef]
- Shaver, G.R.; Jonasson, S. Response of Arctic ecosystems to climate change: Results of long-term field experiments in Sweden and Alaska. Polar Res. 1999, 18, 245–252. [Google Scholar] [CrossRef]
- Rustad, L.E. From transient to steady-state response of ecosystems to atmospheric CO2-enrichment and global climate change: Conceptual challenges and need for an integrated approach. Plant Ecol. 2006, 182, 43–62. [Google Scholar]
- Jo, H.; Chang, H.; An, J.; Cho, M.S.; Son, Y. Species specific physiological responses of Pinus Densiflora Larix Kaempferi Seedlings Open-Field Exp. Warm. Precip. Manip. For. Sci. Technol. 2019, 15, 44–50. [Google Scholar]
- Chang, H.; An, J.; Roh, Y.; Son, Y. Experimental warming and drought treatments reduce physiological activities and increase mortality of Pinus Koraiensis Seedlings. Plant Ecol. 2020, 221, 515–527. [Google Scholar] [CrossRef]
- Misson, L.; Degueldre, D.; Collin, C.; Rodriguez, R.; Rocheteau, A.; OURCIVAL, J.M.; Rambal, S. Phenological responses to extreme droughts in a Mediterranean forest. Glob. Chang. Biol. 2011, 17, 1036–1048. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [CrossRef] [Green Version]
- Korea Forest Service. Start Production of Cloned Larch Seedlings for Economic Forest Development. Available online: https://nifos.forest.go.kr/kfsweb/cop/bbs/selectBoardArticle.do;jsessionid=aIMJ8WfBNqtyuhk7ttW6wJsMpyuUB2jDi1CC7LPVOljdWlsq4gG3CpCJOqd9wEs7.frswas02_servlet_engine5?nttId=3145455&bbsId=BBSMSTR_1036&pageUnit=10&pageIndex=1&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchWrd=&ctgryLrcls=CTGRY150&ctgryMdcls=&ctgrySmcls=&ntcStartDt=&ntcEndDt=&mn=UKFR_03_03&orgId=kfri (accessed on 6 January 2021).
- NIFoS. Research Report on Korea Forest Research Institute. National Institute of Forest Science. 2012. Economic Tree Species4; NIFos: Seoul, Korea, 2012; p. 16. [Google Scholar]
- An, J.; Chang, H.; Park, M.J.; Han, S.H.; Hwang, J.; Cho, M.S.; Son, Y. Effect of Experimental Warming on Physiological and Growth Responses of Larix Kaempferi Seedlings. J. Clim. Change Res. 2016, 7, 77–84. [Google Scholar] [CrossRef]
- Kwon, B.; Cho, M.S.; Yang, A.R.; Chang, H.; An, J.; Son, Y. The early growth performances of Pinus Densiflora Larix Kaempferi Seedlings Open-Field Exp. Warm. Precip. Manip. J. Korean Soc. For. Sci. 2020, 109, 31–40. [Google Scholar]
- Fisichelli, N.; Wright, A.; Rice, K.; Mau, A.; Buschena, C.; Reich, P.B. First-year seedlings and climate change: Species-specific responses of 15 North American tree species. Oikos 2014, 123, 1331–1340. [Google Scholar] [CrossRef]
- Haase, D.L. Understanding forest seedling quality: Measurements and interpretation. Tree Plant. Notes 2008, 52, 24–30. [Google Scholar]
- Climate Information Portal. Available online: http://www.climate.go.kr/home/CCS/contents/33_2_areapoint_basic.php (accessed on 14 October 2020).
- Gilbert, G.S.; Harms, K.E.; Hamill, D.N.; Hubbell, S.P. Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea Whitei Seedlings Panamá. Oecologia 2001, 127, 509–516. [Google Scholar] [CrossRef]
- Cho, M.S.; Hwang, J.; Yang, A.R.; Han, S.; Son, Y. Seed germination and seedling survival rate of Pinus Densiflora Abies Holophylla Open-Field Exp. Warm. Using Infrared Lamp. J. Korean Soc. For. Sci. 2014, 103, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Yang, L.; Guo, J. Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies Fabri East. Tibet. Plateau. J. Plant Growth Regul. 2013, 32, 298–306. [Google Scholar] [CrossRef]
- Geange, S.R.; Holloway-Phillips, M.M.; Briceño, V.F.; Nicotra, A.B. Aciphylla Glacialis Mortality, Growth Frost Resist. A Field Warm. Exp. Aust. J. Bot. 2020, 67, 599–609. [Google Scholar] [CrossRef]
- Lin, R.; Wang, X.; Luo, Y.; Du, W.; Guo, H.; Yin, D. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum Aestivum L.). Chemosphere 2007, 69, 89–98. [Google Scholar] [CrossRef]
- Correia, B.; Hancock, R.D.; Amaral, J.; Gomez-Cadenas, A.; Valledor, L.; Pinto, G. Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front. Plant Sci. 2018, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Alexander, H.M.; Mihail, J.D. Seedling disease in an annual legume: Consequences for seedling mortality, plant size, and population seed production. Oecologia 2000, 122, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.; Pintó-Marijuan, M.; Neves, L.; Brossa, R.; Dias, M.C.; Costa, A.; Castro, B.B.; Araújo, C.; Santos, C.; Chaves, M.M.; et al. Water stress and recovery in the performance of two Eucalyptus globulus clones: Physiological and biochemical profiles. Physiol. Plant. 2014, 150, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Aina, R.; Labra, M.; Fumagalli, P.; Vannini, C.; Marsoni, M.; Cucchi, U.; Bracale, M.; Sgorbati, S.; Citterio, S. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza Sativa L. Roots. Environ. Exp. Bot. 2007, 59, 381–392. [Google Scholar] [CrossRef]
- Von Zglinicki, T.; Edwall, C.; Ostlund, E.; Lind, B.; Nordberg, M.; Ringertz, N.; Wroblewski, J. Very low cadmium concentrations stimulate DNA synthesis and cell growth. J. Cell Sci. 1992, 103, 1073–1081. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 1997, 144, 247–261. [Google Scholar] [CrossRef]
- Agathokleous, E.; Feng, Z.; Peñuelas, J. Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Sci. Total Environ. 2020, 726, 138637. [Google Scholar] [CrossRef]
- Wiegant, F.; Poot, S.d.; Boers-Trilles, V.; Schreij, A. Hormesis and cellular quality control: A possible explanation for the molecular mechanisms that underlie the benefits of mild stress. Dose-Response 2013, 11, 413–430. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, R.I.; Kline, M.P.; Bimston, D.N.; Cotto, J.J. The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem. 1997, 32, 17–29. [Google Scholar]
- Amm, I.; Sommer, T.; Wolf, D.H. Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Chen-xi, S.; He-li, Z.; Qi, H.; Qing-zhou, Z.; Xing-lin, S. Compensatory ability and defense mechanism of Chinese cabbage under high temperature stress. Chin. J. Agrometeorol. 2018, 39, 119. [Google Scholar]
- Zhou, X.; Wang, G.; Liang, Z.; Han, R. Effects of drought stress and rehydration on physiological characteristics and glycyrrhizin accumulation of Glycyrrhiza uralensis fisch. Seedling. Acta Agric. Boreali-Occident. Sin. 2011, 20, 64–70. [Google Scholar]
- Dong, S.; Jiang, Y.; Dong, Y.; Wang, L.; Wang, W.; Ma, Z.; Yan, C.; Ma, C.; Liu, L. A study on soybean responses to drought stress and rehydration. Saudi J. Biol. Sci. 2019, 26, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Kleunen, M.v.; Fischer, M.; Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 2001, 94, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Showalter, A.M.; Ungar, I.A. Effects of intraspecific competition on growth and photosynthesis of Atriplex Prostrata. Aquat. Bot. 2005, 83, 187–192. [Google Scholar] [CrossRef]
- Drake, D.R.; Ungar, I.A. Effects of salinity, nitrogen, and population density on the survival, growth, and reproduction of Atriplex Triangularis (Chenopodiaceae). Am. J. Bot. 1989, 76, 1125–1135. [Google Scholar] [CrossRef]
- Horner, G.J.; Baker, P.J.; Mac Nally, R.; Cunningham, S.C.; Thomson, J.R.; Hamilton, F. Mortality of developing floodplain forests subjected to a drying climate and water extraction. Glob. Chang. Biol. 2009, 15, 2176–2186. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Pallardy, S. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 2002, 68, 270–334. [Google Scholar] [CrossRef]
- Levitt, J. Response of plants to environmental stresses: Chilling, freezing, and high temperature stresses. Physiol. Ecol. A Ser. Monogr. Texts Treatises 1980, 1, 23–64. [Google Scholar]
- Ladjal, M.; Epron, D.; Ducrey, M. Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings. Tree Physiol. 2000, 20, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Mexal, J.G.; South, D.B. Bareroot seedling culture. For. Regen. Man. 1991, 89–115. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Rivero, R.M.; Martínez, V.; Gómez-Cadenas, A.; Arbona, V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 2016, 16, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehschuh, R.; Ruehr, N.K. Unrevealing water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. BioRxiv 2021. [Google Scholar] [CrossRef]
- Edenius, L.; Danell, K.; Bergström, R. Impact of herbivory and competition on compensatory growth in woody plants: Winter browsing by moose on Scots pine. Oikos 1993, 66, 286–292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jo, H.; Kim, G.-J.; Kim, H.-S.; Son, Y. Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings. Water 2022, 14, 1962. https://doi.org/10.3390/w14121962
Kim H, Jo H, Kim G-J, Kim H-S, Son Y. Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings. Water. 2022; 14(12):1962. https://doi.org/10.3390/w14121962
Chicago/Turabian StyleKim, Hyeonji, Heejae Jo, Gwang-Jung Kim, Hyung-Sub Kim, and Yowhan Son. 2022. "Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings" Water 14, no. 12: 1962. https://doi.org/10.3390/w14121962