Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. The Sentinel-1 SAR Data
2.2.2. Water Level
2.3. Methodology
2.4. Data Pre-Processing
2.5. Water Body Mapping Using WaterUNet
2.6. Classification Accuracy Evaluation
3. Results
3.1. The Variation in for Different Land Cover
3.2. Validation of the Model
3.3. Annual and Interannual Variation of Water Area
3.4. The Relationship between Water Level and Water Area
4. Discussion
4.1. Analysis of the Influence Factors
4.2. Comparisons with Other Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Date | Times |
---|---|---|
2014 | 2014/10/3 2014/10/8 2014/10/15 2014/10/20 2014/10/27 2014/11/1 2014/11/8 2014/11/13 2014/11/20 2014/11/25 2014/12/2 2014/12/7 2014/12/14 2014/12/19 2014/12/26 | 15 |
2015 | 2015/4/18 2015/5/24 2015/6/5 2015/6/12 2015/6/17 2015/6/29 2015/7/11 2015/7/23 2015/8/16 2015/8/28 2015/9/9 2015/9/21 2015/10/3 2015/10/15 2015/10/27 2015/11/20 2015/12/2 2015/12/14 2015/12/26 | 19 |
2016 | 2016/1/7 2016/1/19 2016/1/31 2016/2/12 2016/2/24 2016/3/7 2016/3/19 2016/3/31 2016/4/12 2016/4/24 2016/5/6 2016/5/18 2016/5/30 2016/6/11 2016/7/5 2016/7/17 2016/8/10 2016/8/22 2016/9/15 2016/9/27 2016/10/3 2016/10/9 2016/10/15 2016/10/21 2016/10/27 2016/11/2 2016/11/8 2016/11/14 2016/11/20 2016/11/26 2016/12/2 2016/12/8 2016/12/14 2016/12/20 2016/12/26 | 35 |
2017 | 2017/1/1 2017/1/7 2017/1/13 2017/1/19 2017/1/25 2017/1/31 2017/2/6 2017/2/12 2017/2/18 2017/2/24 2017/3/2 2017/3/8 2017/3/14 2017/3/20 2017/3/26 2017/4/1 2017/4/7 2017/4/13 2017/4/19 2017/4/25 2017/5/1 2017/5/7 2017/5/13 2017/5/19 2017/5/25 2017/5/31 2017/6/6 2017/6/12 2017/6/24 2017/6/30 2017/7/6 2017/7/12 2017/7/18 2017/7/24 2017/7/30 2017/8/5 2017/8/11 2017/8/17 2017/8/23 2017/8/29 2017/9/4 2017/9/10 2017/9/16 2017/9/28 2017/10/4 2017/10/10 2017/10/16 2017/10/22 2017/10/28 2017/11/3 2017/11/9 2017/11/15 2017/11/21 2017/11/27 2017/12/3 2017/12/9 2017/12/15 2017/12/21 2017/12/27 | 59 |
2018 | 2018/1/2 2018/1/8 2018/1/14 2018/1/20 2018/1/26 2018/2/1 2018/2/7 2018/2/13 2018/2/19 2018/2/25 2018/3/3 2018/3/9 2018/3/15 2018/3/21 2018/3/27 2018/4/2 2018/4/8 2018/4/14 2018/4/20 2018/4/26 2018/5/2 2018/5/8 2018/5/14 2018/5/26 2018/6/1 2018/6/7 2018/6/13 2018/6/19 2018/6/25 2018/7/1 2018/7/7 2018/7/13 2018/7/19 2018/7/25 2018/7/31 2018/8/6 2018/8/12 2018/8/18 2018/8/24 2018/8/30 2018/9/5 2018/9/11 2018/9/17 2018/9/23 2018/9/29 2018/10/5 2018/10/11 2018/10/17 2018/10/29 2018/11/4 2018/11/10 2018/11/16 2018/11/22 2018/11/28 2018/12/4 2018/12/10 2018/12/16 2018/12/22 2018/12/28 | 59 |
2019 | 2019/1/3 2019/1/9 2019/1/15 2019/1/21 2019/1/27 2019/2/2 2019/2/8 2019/2/14 2019/2/20 2019/2/26 2019/3/4 2019/3/10 2019/3/16 2019/3/22 2019/3/28 2019/4/3 2019/4/9 2019/4/15 2019/4/21 2019/4/27 2019/5/3 2019/5/9 2019/5/15 2019/5/21 2019/5/27 2019/6/2 2019/6/8 2019/6/14 2019/6/20 2019/6/26 2019/7/2 2019/7/8 2019/7/14 2019/7/20 2019/7/26 2019/8/1 2019/8/7 2019/8/13 2019/8/19 2019/8/25 2019/8/31 2019/9/6 2019/9/12 2019/9/18 2019/9/24 2019/9/30 2019/10/6 2019/10/12 2019/10/18 2019/10/24 2019/10/30 2019/11/5 2019/11/11 2019/11/17 2019/11/23 2019/11/29 2019/12/5 2019/12/11 2019/12/17 2019/12/23 2019/12/29 | 61 |
2020 | 2020/1/4 2020/1/10 2020/1/16 2020/1/22 2020/1/28 2020/2/3 2020/2/9 2020/2/15 2020/2/21 2020/2/27 2020/3/4 2020/3/10 2020/3/16 2020/3/22 2020/3/28 2020/4/3 2020/4/9 2020/4/15 2020/4/21 2020/4/27 2020/5/3 2020/5/9 2020/5/15 2020/5/21 2020/5/27 2020/6/2 2020/6/8 2020/6/14 2020/6/20 2020/6/26 2020/7/2 2020/7/8 2020/7/14 2020/7/20 2020/7/26 2020/8/1 2020/8/7 2020/8/13 2020/8/19 2020/8/25 2020/8/31 2020/9/6 2020/9/12 2020/9/18 2020/9/24 2020/9/30 2020/10/6 2020/10/12 2020/10/18 2020/10/24 2020/10/30 2020/11/5 2020/11/11 2020/11/17 2020/11/23 2020/11/29 2020/12/5 2020/12/11 2020/12/17 2020/12/23 2020/12/29 | 61 |
2021 | 2021/1/4 2021/1/10 2021/1/16 2021/1/22 2021/1/28 2021/2/3 2021/2/9 2021/2/15 2021/2/21 2021/2/27 2021/3/5 2021/3/11 2021/3/17 2021/3/23 2021/3/29 | 15 |
References
- Li, Y.; Niu, Z.; Xu, Z.; Yan, X. Construction of High Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives and GEE. Remote Sens. 2020, 12, 2413. [Google Scholar] [CrossRef]
- Shen, G.; Fu, W. Water Body Extraction using GF-3 PolSAR data—A Case Study in Poyang Lake. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4762–4765. [Google Scholar] [CrossRef]
- Cavallo, C.; Nones, M.; Papa, M.N.; Gargiulo, M.; Ruello, G. Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto Int. 2021. [Google Scholar] [CrossRef]
- Farhadi, H.; Esmaeily, A.; Najafzadeh, M. Flood monitoring by integration of Remote Sensing technique and Multi-Criteria Decision Making method. Comput. Geosci. 2022, 160, 105045. [Google Scholar] [CrossRef]
- Farhadi, H.; Najafzadeh, M. Flood Risk Mapping by Remote Sensing Data and Random Forest Technique. Water 2021, 13, 3115. [Google Scholar] [CrossRef]
- Markert, K.N.; Chishtie, F.; Anderson, E.R.; Saah, D.; Griffin, R.E. On the merging of optical and SAR satellite imagery for surface water mapping applications. Results Phys. 2018, 9, 275–277. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P. Flood Monitoring in Vegetated Areas Using Multitemporal Sentinel-1 Data: Impact of Time Series Features. Water 2019, 11, 1938. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Guo, H.; Liao, J. Object oriented method for detection of inundation extent using multi-polarized synthetic aperture radar image. J. Appl. Remote Sens. 2008, 2, 023512. [Google Scholar] [CrossRef]
- Liao, J.; Shen, G. Change Detection of Inundation Extent of Poyang Lake Wetland Using Multipolarized SAR Images. Remote Sens. Technol. Appl. 2008, 23, 373–377. [Google Scholar]
- Kryniecka, K.; Magnuszewski, A.; Radecki-Pawlik, A. Sentinel-1 Satellite Radar Images: A New Source of Information for Study of River Channel Dynamics on the Lower Vistula River, Poland. Remote Sens. 2022, 14, 1056. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Li, X.; Leng, P.; Zhou, F.; Li, S. A Novel Approach to Extract Water Body from ASAR Dual-Polarized Data. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 12099. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Wegmuller, U. Multi-temporal Synthetic Aperture Radar Metrics Applied to Map Open Water Bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [Google Scholar] [CrossRef]
- Andreoli, R.; Yesou, H.; Li, J.; Desnos, Y.L. Inland lake monitoring using low and medium resolution ENVISAT ASAR and optical data: Case study of Poyang Lake (Jiangxi, PR China). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 4578–4581. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, J. Water Area Extraction and Change Detection of the Poyang Lake Using SAR Data. Remote Sens. Land Resour. 2010, 87, 91–97. [Google Scholar]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Kuehn, S.; Benz, U.; Hurley, J. Efficient flood monitoring based on RADARSAT-1 images data and information fusion with object-oriented technology. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 2862–2864. [Google Scholar] [CrossRef]
- Nath, R.K.; Deb, S.K. Water-Body Area Extraction from High Resolution Satellite Images-An Introduction, Review, and Comparison. Int. J. Image Process. 2010, 3, 353–372. [Google Scholar]
- Xie, L.; Zhang, H.; Wang, C. Water-body types classification using Radarsat-2 fully polarimetric SAR data. In Proceedings of the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, Indonesia, 3–5 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, H.; Wang, C.; Chen, F. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 10–25. [Google Scholar] [CrossRef]
- Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational Surface Water Detection and Monitoring Using Radarsat 2. Remote Sens. 2016, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B.; Short, N.; Sanden, J.V.D.; Landry, R.; Raymond, D. A semi-automated tool for surface water mapping with RADARSAT-1. Can. J. Remote Sens. 2009, 35, 336–344. [Google Scholar] [CrossRef]
- Li, J.; Wang, S. An automatic method for mapping inland surface waterbodies with Radarsat-2 imagery. Int. J. Remote Sens. 2015, 36, 1367–1384. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Birkett, C.M. Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int. J. Remote Sens. 2010, 23, 1283–1302. [Google Scholar] [CrossRef]
- Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Devries, B.; Huang, C.; Jones, J.; Lang, M.; Creed, I. Automated extraction of inland surface water extent from Sentinel-1 data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 2259–2262. [Google Scholar] [CrossRef]
- Huang, W.; Devries, B.; Huang, C.; Lang, M.; Jones, J.; Creed, I.; Carroll, M. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Yesou, H.; Huber, C.; Haouet, S.; Lai, X.; Huang, S.; de Fraipont, P.; Desnos, Y.L. Exploiting Sentinel 1 time series to monitor the largest fresh water bodies in PR China, the Poyang Lake. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 3882–3885. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Liang, D.; Tian, B.; Yang, A. Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan. Sustainability 2020, 12, 5784. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on Sentinel-1 data and multiple convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102400. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Kan, P.; Silbernagel, J.; Jin, J. Application of Image Segmentation in Surface Water Extraction of Freshwater Lakes using Radar Data. ISPRS Int. J. Geo-Inf. 2020, 9, 424. [Google Scholar] [CrossRef]
- Alfredsen, K.; Sæther, B. An object-oriented application framework for building water resource information and planning tools applied to the design of a flood analysis system. Environ. Model. Softw. 2000, 15, 215–224. [Google Scholar] [CrossRef]
- Dronova, I. Object-Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic Monitoring of the Largest Freshwater Lake in China Using a New Water Index Derived from High Spatiotemporal Resolution Sentinel-1A Data. Remote Sens. 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wang, J.; Pei, J.; Qin, Y.; Zhang, L.; Wang, Y. High Spatiotemporal Resolution Mapping of Surface Water in the Southwest Poyang Lake and Its Responses to Climate Oscillations. Sensors 2020, 20, 4872. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liao, J.; Shen, G. A Deep Learning Model with Capsules Embedded for High Resolution Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 214–223. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, J.; Shen, G. Mapping Large-Scale Mangroves along the Maritime Silk Road from 1990 to 2015 Using a Novel Deep Learning Model and Landsat Data. Remote Sens. 2021, 13, 245. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.; Jin, Y. Deep learning as applied in SAR target recognition and terrain classification. J. Radars 2017, 6, 136–148. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Wang, C.; Wang, Y.; Xu, L. Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model. Remote Sens. 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Sui, H.; Huang, W.; Xu, C.; An, K. Water Body Extraction From Very High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based Conditional Random Field Model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 618–622. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5168–5177. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef] [Green Version]
- Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface Water Mapping by Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4909–4918. [Google Scholar] [CrossRef]
- Li, L.; Yan, Z.; Shen, Q.; Cheng, G.; Gao, L.; Zhang, B. Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks. Remote Sens. 2019, 11, 1162. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Martinis, S. A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sens. 2019, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Huang, X.; Li, H.; Ni, L.; Wang, X.; Chen, C.; Liu, Z. Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network. J. Geo-Inf. Sci. 2020, 22, 2010–2022. [Google Scholar] [CrossRef]
- Wang, G.; Wu, M.; Wei, X.; Song, H. Water Identification from High-Resolution Remote Sensing Images Based on Multidimensional Densely Connected Convolutional Neural Networks. Remote Sens. 2020, 12, 795. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y. Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on China’s Largest Freshwater Lake. Remote Sens. 2017, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sheng, Y.; Gleason, C.J.; Wada, Y. Downstream Yangtze River levels impacted by Three Gorges Dam. Environ. Res. Lett. 2013, 8, 044012. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, J.; Jiang, Y.; Wang, H. Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang Lake National Nature Reserve, China. Ecol. Inform. 2012, 11, 65–75. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Q.; Li, M.; Li, Y.; Xu, X.; Jiang, J. A study of the relationship between wetland vegetation communities and water regimes using a combined remote sensing and hydraulic modeling approach. Hydrol. Res. 2016, 47, 278–292. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Hu, B.; Qi, S.; Zhang, Q.; Ning, P. Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sens. 2021, 13, 140. [Google Scholar] [CrossRef]
- Sun, F.; Ma, R.; Liu, C.; He, B. Comparison of the Hydrological Dynamics of Poyang Lake in the Wet and Dry Seasons. Remote Sens. 2021, 13, 985. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Qi, S. Analysis of the Relationship between Water Level and Natural Water Surface in Poyang Lake. Resour. Environ. Yangtze Basin 2016, 25, 95–102. [Google Scholar] [CrossRef]
- Li, R.; Liu, J. Wetland vegetation biomass estimation and mapping from Landsat ETM data: A case study of Poyang Lake. J. Geogr. Sci. 2002, 12, 35–41. [Google Scholar]
- Ning, L.; Zhou, Y.; Cheng, C.; Ye, S.; Shen, S. Using a Complex Network to Analyze the Effects of the Three Gorges Dam on Water Level Fluctuation in Poyang Lake. ISPRS Int. J. Geo-Inf. 2019, 8, 470. [Google Scholar] [CrossRef] [Green Version]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 1 November 2016; pp. 265–283. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Singh, P.; Singh, N.; Singh, K.K.; Singh, A. Diagnosing of disease using machine learning. In Machine Learning and the Internet of Medical Things in Healthcare; Singh, K.K., Elhoseny, M., Singh, A., Elngar, A.A., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 89–111. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study. Remote Sens. 2016, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentinel-1 User Handbook, 2013; unpublished work.
- Wollstadt, S.; Prats, P.; Bachmann, M.; Mittermayer, J.; Scheiber, R. Scalloping Correction in TOPS Imaging Mode SAR Data. IEEE Geosci. Remote Sens. Lett. 2012, 9, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Emery, W.; Camps, A. Chapter 5—Radar. In Introduction to Satellite Remote Sensing; Emery, W., Camps, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–453. [Google Scholar] [CrossRef]
- Reschke, J.; Bartsch, A.; Schlaffer, S.; Schepaschenko, D. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 2012, 4, 2923–2943. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial–temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake. J. Hydrol. 2015, 523, 14–23. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Wu, G.; Zhao, X. Compositing the Minimum NDVI for Daily Water Surface Mapping. Remote Sens. 2020, 12, 700. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, R.; Yésou, Y.; Li, J.; Desnos, Y.L.; Huang, S.; De Fraipont, P. Poyang Hu (Jiangxi Province, P. R. of China) Area Variations between January 2004 and June 2006 Using ENVISAT Low and Medium Resolution Time Series. Geogr. Inf. Sci. 2007, 13, 24–35. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Zhang, Q.; Ye, X.; Zhang, D.; Bai, P. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake. J. Hydrol. 2018, 561, 711–723. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Li, R.; Tian, L.; Murch, B. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake. Remote Sens. Environ. 2011, 115, 2729–2741. [Google Scholar] [CrossRef]
- Zheng, S.; Cheng, H.; Tang, M.; Xu, W.; Liu, E.; Gao, S.; Best, J.; Jiang, Y.; Zhou, Q. Sand mining impact on Poyang Lake: A case study based on high-resolution bathymetry and sub-bottom data. J. Oceanol. Limnol. 2022. [Google Scholar] [CrossRef]
Predicted | |||
---|---|---|---|
Non-Water | Water | ||
Actual | Non-water | TN | FP |
Water | FN | TP |
Validation Dataset | Kappa Coefficient | Accuracy | Precision | F1 Score |
---|---|---|---|---|
Testing samples | 0.96 | 0.98 | 0.98 | 0.98 |
11 July 2015 | 0.98 | 0.99 | 1.0 | 0.99 |
21 April 2019 | 0.97 | 0.98 | 0.99 | 0.98 |
Average | 0.97 | 0.98 | 0.99 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Fu, W.; Guo, H.; Liao, J. Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake. Water 2022, 14, 1902. https://doi.org/10.3390/w14121902
Shen G, Fu W, Guo H, Liao J. Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake. Water. 2022; 14(12):1902. https://doi.org/10.3390/w14121902
Chicago/Turabian StyleShen, Guozhuang, Wenxue Fu, Huadong Guo, and Jingjuan Liao. 2022. "Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake" Water 14, no. 12: 1902. https://doi.org/10.3390/w14121902