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Abstract: Mapping water bodies with a high accuracy is necessary for water resource assessment, and
mapping them rapidly is necessary for flood monitoring. Poyang Lake is the largest freshwater lake
in China, and its wetland is one of the most important in the world. Poyang Lake is affected by floods
from the Yangtze River basin every year, and the fluctuation of the water area and water level directly
or indirectly affects the ecological environment of Poyang Lake. Synthetic Aperture Radar (SAR) is
particularly suitable for large-scale water body mapping, as SAR allows data acquisition regardless
of illumination and weather conditions. The two-satellite Sentinel-1 constellation, providing C-Band
SAR data, passes over the Poyang Lake about five times a month. With its high temporal-spatial
resolution, the Sentinel-1 SAR data can be used to accurately monitor the water body. After acquiring
all the Sentinel-1 (1A and 1B) SAR data, to ensure the consistency of data processing, we propose the
use of a Python and SeNtinel Application Platform (SNAP)-based engine (SARProcMod) to process
the data and construct a Poyang Lake Sentinel-1 SAR dataset with a 10 m resolution. To extract
water body information from Sentinel-1 SAR data, we propose an automatic classification engine
based on a modified U-Net convolutional neural network (WaterUNet), which classifies all data
using artificial sample datasets with a high validation accuracy. The results show that the maximum
and minimum water areas in our study area were 2714.08 km2 on 20 July 2020, and 634.44 km2 on
4 January 2020. Compared to the water level data from the Poyang gauging station, the water area
was highly correlated with the water level, with the correlation coefficient being up to 0.92 and the
R2 from quadratic polynomial fitting up to 0.88; thus, the resulting relationship results can be used to
estimate the water area or water level of Poyang Lake. According to the results, we can conclude that
Sentinel-1 SAR and WaterUNet are very suitable for water body monitoring as well as emergency
flood mapping.

Keywords: Poyang Lake; Sentinel-1; SAR; U-Net; water area; water level

1. Introduction

As part of the Earth’s hydrosphere, water resources are important resources for terres-
trial life and play an important role in nature and human society. Nevertheless, surface
water around the world is undergoing spatial and temporal changes caused by many
factors, such as land use/cover changes, climate changes, seasonal changes, and envi-
ronmental changes [1]. Meanwhile, the high-precision mapping of open water can also
provide useful information for flood monitoring, assessment, and disaster relief decision-
making [2], as well as for studying the relationship between the hydrological conditions
and the ecological environment. Therefore, it is necessary to monitor water body changes
in a timely manner and with accurate information [3].
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Remote sensing technology has become indispensable in monitoring changes in water
bodies due to its characteristics of high spatio-temporal coverage [4]. Even with well-
defined methods and with the readily available data from optical sensors for surface water
mapping applications [5], its use is hindered by clouds that obscure surface observations [6].
As an active sensor, Synthetic Aperture Radar (SAR) is particularly suitable for water
body mapping, as this tool allows data acquisition regardless of illumination and weather
conditions [7,8], and SAR data are also sensitive to water bodies due to the weak backscatter
from the water surface [8–10].

Over the past few decades, data from SAR operating at different wavelengths and
multi-mode image configurations have been used for water body mapping, includ-
ing ENVISAT-ASAR [8,9,11–14], RADARSAT/RADARSAT-2 [15–22], JERS-1/ALOS-
PALSAR/ALOS2 [23,24], and Chinese GF-3 [2]. Since the launch of Sentinel-1A on 3 April
2014, and Sentinel-1B on 25 April 2016, Sentinel-1 has become the main SAR data source for
water body mapping, due to its 5~7-day revisit cycle and its free data policy [7,25–31]. More-
over, various water body mapping methods have been developed for SAR data. As a result
of the radar’s unique response to water, water body mapping using intensity thresholding
methods on SAR images had been extensively used [21,22,30,32]. Some modified Otsu
thresholding [33] methods that can automatically select a threshold for surface water ex-
traction have also been proposed for extracting water body data [11,22,32,34]. Object-based
image analysis (OBIA) methods have also been proposed for extracting water body infor-
mation for SAR data, taking into account the shape and color information of the segmented
objects; however, OBIA methods are generally computationally expensive [8,16,35,36].
Meanwhile, the time-series Sentinel-1 water index (SWI) has also been used to extract water
surface areas from Sentinel-1 SAR data using the threshold method [37].

Sentinel-1 is a two-satellite constellation providing wide-swath C-Band SAR data,
with data being regularly acquired every 5 to 7 days over the same place, making large-area
water monitoring feasible [29]. The availability of repeated acquisitions is advantageous,
since multi-temporal observations allow the detection of trends in water bodies [10,12].
More and more researchers have used time-series wide-swath Sentinel-1 SAR data to extract
water surface data automatically or semi-automatically. On the premise of obtaining water
and non-water mask data, fully automatic algorithms (Bayesian based thresholding [27],
Support Vector Machine (SVM) [4], and Random Forest classification [5,38]) have been
developed to derive water probability and classify the extent of surface water using Sentinel
data [27]. For Sentinel-1 SAR data, some surface water automatic mapping methods
have been proposed for use in rapid flood mapping and event maps with increasing
resolution [25,26,28]. However, to monitor and analyze water body changes over a long
period of time, it has become popular to remote sensing big data from Sentinel-1 SAR.
Many studies have deployed algorithms on Google Earth Engine (GEE) to extract water
body over long periods of time [1,31,39,40], due to its data storage advantages and data
processing capabilities.

Since the idea of deep learning was proposed by Geoffrey Hinton [41] in 2006, deep
learning has attracted more and more attention, and deep Convolutional Neural Network
(CNNs) has also shown advantages in the field of image semantic segmentation [42,43].
As commonly used models in deep learning, CNNs have become tremendously popu-
lar in recent years because CNNs can learn extremely complicated hierarchical features
from massive amounts of data [42], greatly reduce the number of parameters, enhance
the generalization ability, and realize the qualitative task of image recognition [44]. CNN
can learn high-level context features through a large number of neurons [45], and extract
features automatically, robustly in terms of image size and context among other aspects [46],
which overcomes many limitations of traditional classification methods. Fully Convolu-
tional Network (FCN) [47], SegNet [48], RefineNet [49], and U-Net [50], which include
encoding and decoding blocks to perform pixel-wise image segmentation, have become
the desired models for use in image segmentation tasks; in particular, FCN and U-Net
are widely used in remote sensing water body extraction [51–54], where the encoder is
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used to extract image features and reduce image dimensions, and the decoder is used to
restore the size and detail of the image [55]. In U-Net, the low-resolution information in
the encoding blocks (down-sampling, providing the basis for object category recognition)
and the high-resolution information in the decoding blocks (up-sampling, providing the
basis for accurate segmentation and positioning) are combined to provide detailed infor-
mation for image segmentation. In addition, skip–connection is used to fill in the low-level
information to improve the segmentation accuracy in U-Net. The compact structure of
the U-Net model (small size and fewer parameters) also makes it suitable for water body
extraction [46].

As the largest freshwater lake in China and its wetland as one of the most important in
the world, Poyang Lake is in the middle reaches of the Yangtze River and plays an important
role in the ecosystem of the Yangtze River watershed. It is a typical river-connected lake,
and the water body of the lake experiences a remarkable seasonal variation due to the
influence of the monsoon climate of the region. However, the Three Gorges Dam operation
has altered the seasonal inundation pattern of Poyang Lake and significantly reduced
the monthly inundation frequencies [56,57]. The fluctuation of the water body directly
or indirectly affects the ecological environment of Poyang Lake—e.g., the distribution
of vegetation communities [58,59] and the spatio-temporal variation in Siberian Crane
habitats [60]. Meanwhile, serious floods occasionally occur in the Poyang Lake—e.g., in
1998 and 2020. Thus, changes in the water body of Poyang Lake have always attracted the
attention of researchers [29,40,61,62].

Defining an accurate and reliable method for monitoring water body changes, studying
the relationship between water body surface area and water level, and studying wetland
environment changes using Sentinel-1 SAR data are a challenge. Monitoring models using
deep neural networks provide an ideal solution for monitoring water bodies. Here, in
order to explore the potential of the use of Sentinel-1 in water body mapping and to study
the relationship between the water area and water level for Poyang Lake, long-time-series
Sentinel-1 SAR data were collected to extract water body information using the U-Net deep
learning model. Water level data were also collected from Poyang gauging station. In this
study, our work included: (1) establishing a large-scale water classification method based
on the U-Net CNN model, (2) extracting Poyang Lake water body data from 2014 to 2021
and evaluating their accuracy, and (3) analyzing the inundation frequency distribution and
the relationship between the water level and the water area.

2. Materials and Methods
2.1. Study Area

The study area was Poyang Lake (115◦47′ E~116◦45′ E, 28◦22′ N~29◦15′ N), Jiangxi
province, China, in the lower Yangtze River Basin (Figure 1). Poyang Lake is the largest
freshwater lake in China and constitutes a major hydrological subsystem of the middle
Yangtze basin [29]. The climate is characterized as a sub-tropical, humid monsoon climate
with 1620 mm mean annual precipitation and an annual average temperature of about
17 ◦C [2,63]. Poyang Lake receives inflows from five rivers—namely, the Xiushui, Ganjiang,
Fuhe, Xinijiang, and Raohe [37].

Poyang Lake exhibits large inter-annual variations in its water level (Figure 2), which
reflects in changes of the water surface area. The water level rises during the wet season,
and the water surface expands. In the wet season, it is the largest freshwater body in China
and can cover up to 3500 km2 by the end of the season (April to September). In the dry
season (October to March), the water level drops and Poyang Lake becomes smaller than
1000 km2, with several small lakes remaining.
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Figure 1. Spatial location and extent of the study area of Poyang Lake in Jiangxi Province, People’s
Republic of China. (a) shows the administrative divisions of China, the green polygon in (b) shows
Jiangxi Province, and (c) shows Poyang Lake. The blue polygons in (b) show the swaths of Sentinel-1
SAR data and the red polygon in (c) shows the study area.
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Figure 2. The water level data and a statistic histogram for Poyang gauging stations in Poyang Lake
from October 2014 to March 2021 (Wusong water level datum). Some data are missing due to the
maintenance of the website. The red horizontal line represents the warning water level, 19.5 m. The
blue line is for the trend of water level, and the red dots are for water level records on 27 May 2020,
2 June 2020, and 8 June 2020. The green bars are for the count in each water level interval (64 bins).
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2.2. Data
2.2.1. The Sentinel-1 SAR Data

The rainy and cloudy weather in Poyang Lake results in limited high-quality cloud–
free optical images, such as from the non-commercial Landsat or Sentinel-2 platforms,
to provide enough data for dynamic monitoring of changes in water surface areas of
Poyang Lake [37,40]. Thus, to extract water body data for Poyang Lake and monitor the
dynamics in the study area over the past 7 years, 455 scenes of the level-1 Ground Range
Detected (GRD) Sentinel-1 C-band (5.405 GHz) SAR data from the Interferometric Wide
swath (IW) and VV/VH polarization mode were collected from October 2014, to March
2021 from Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on
18 April 2021). The blue polygons in Figure 1b show the swaths for these 455 scenes of SAR
data. After Sentinel-1 slice assembly, 455 scenes of Sentinel-1 SAR data formed 324 effective
observations due to the slice assembly of the two consecutive ‘slices’. In these 324 SAR
observations, there were 187 observations from Sentinel-1A and 137 from Sentinel-1B, with
nine observations operating in descending mode and 315 observations in ascending mode
(Figure 3).

The temporal distribution of the acquisition dates and the numbers for these 324 SAR
observations are shown in Table A1 and Figure 4. From Table A1, we can see that, as the
launch of Sentinel-1B on 25 April 2016, the observation times in one year increased and
could reach up to 60 times (in the years 2017, 2018, 2019, and 2020). However, due to the
commissioning phase of Sentinel-1A, there are not available data from January 2015 to
March 2015. From Figure 4, we can also see that (1) the minimum number of observation
times for all 75 months is 1 (April, May, and November 2015; June 2016), (2) the maximum
number of observation times is six (January 2017, May 2017, July 2018, August 2019, and
August 2020), and (3) there are five observations in most months.

Sentinel-1A
187 (57.7%)

Sentinel-1B
137 (42.3%)

Ascending
315 (97.2%)

Descending
9 (2.8%)

Figure 3. The number and percentage of the observations for different satellites and overpasses.

https://scihub.copernicus.eu/
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Figure 4. The temporal distribution and number of Sentinel-1 SAR observations per month between
2014 and 2021.

2.2.2. Water Level

In this study, the daily water level data (Figure 2) monitored at Poyang gauging station
(Figure 1c) were collected from the website of the Hydrological Bureau of Jiangxi Province
(http://www.jxssw.gov.cn/, accessed on 1 July 2021). The time period selected was from
2014 to 2021, which coincides with the time range of the Sentinel-1 SAR data. The water
level was automatically measured using pressure transducers or noncontact transducers
based on the reference of elevation systems of Wusong water-level datum [64]. Figure 2
shows the interannual and seasonal fluctuation of the water level from Poyang gauging
station. The lake’s water level fluctuated regularly from 2014 to 2021, reaching the annual
highest water level in the wet season in July every year. There is a secondary water level
peak in March or April each year before the highest water level. Furthermore, the highest
water level occurred on 12 July 2020, at 22.73 m, when Poyang Lake was suffering from
the most severe flood in the study period. The warning water level for Poyang Station is
19.5 m, and the water level exceeded the warning level five times, in 2015, 2016, 2017, 2019,
and 2020. The lowest water level occurred on 27 November 2019, at 12.58 m. From Figure 2,
we can also see that 50% of the water level values are lower than 15 m.

2.3. Methodology

The flowchart of this study is shown in Figure 5. This flowchart contains four steps:
SAR image pre-processing (SARProcMod), water extraction using U-Net (WaterUNet),
an accuracy assessment, and an analysis of the relationship between the water level and
water area. The first step generates long-time-series Sentinel-1 SAR σ0 images by using the
SARProcMod model. Then, in the second step, a modified U-Net based water mapping
model (WaterUNet) is proposed. To evaluate the performance of WaterUNet, some arti-
ficial samples are chosen for the confusion matrix and F1 score. Finally, we analyze the
interannual and seasonal variation for the water body, as well as the relationship between
the water area and the water level from Poyang gauging station.

http://www.jxssw.gov.cn/
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Figure 5. The flowchart showing the overall methods used in this study.

2.4. Data Pre-Processing

The European Space Agency (ESA) has developed the open-source software–SNAP
(version: 8.0.0, https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1, accessed on
2 September 2021)—for Sentinel satellite data, which also provides the Python interface
(SNAPPY) for secondary development. In order to batch process the 455 scenes of Sentinel-1
SAR data, we developed a processing module (SARProcMod) based on SNAPPY and
Python to process all the data, which supports products of type SLC and GRD. Figure 6
shows the flowchart of how to pre-process the Sentinel-1 SAR data. Finally, the 10 m-
resolution Sentinel-1 SAR dataset was produced for water extraction.

Sentinel-1 IW 

GRD SAR Data

CalibrationSpeckle filterMultilook

Terrain correction SubsetSigma naught

Apply orbit file
SNAP

SNAPPY

Python

Study Area 

Extent

10m Sentinel-1 Dataset

Thermal noise 

removal
Slice assembly

Figure 6. The flowchart for the SARProcMod for Sentinel-1 SAR pre-processing engine.

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1
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The workflow included nine steps. First, thermal noise removal was applied to all
Sentinel-1 SAR data. Second, slice assembly was performed on the two consecutive slices.
Third, the orbit files were applied to all Sentinel-1 SAR data to update the orbit state vectors
in the abstract metadata. Fourth, radiometric calibration was applied to all Sentinel-1
SAR data to output radar backscatter bands (σ0). Fifth, a Refined Lee filter was utilized
to remove speckle noises. Sixth, multi-looking was applied to make the pixels square.
Seventh, radar backscatter bands were orthorectified using the Range Doppler Terrain
Correction algorithm with SRTM DEM data (with a spatial resolution of 1 s). Eighth, the
backscatter coefficient (in dB) was acquired from the orthorectified radar backscatter band
by the equation 10× log10

(
σ0). Ninth, all the Sentinel-1 SAR data were clipped according

to the extent of the study area. All the clipped images were processed by thresholding off
values higher than 99.9% and lower than 0.01% from the histogram to remove the pixels
with abnormal σ0. Then, the images were scaled to [0, 1] according the equation below:

Imagenew =
Imageori −minV
maxV −minV

(1)

where the Imageori and Imagenew refer to the SAR images before and after the scale and
maxV and minV refer to values corresponding to the 99.99% value and 0.01% value in each
polarization channel for the image.

2.5. Water Body Mapping Using WaterUNet

Since valid pre-trained U-Net cannot be migrated to SAR imagery, we modified the
classic U-Net to extract water body using SAR data. The flowchart of our U-Net-based
water extraction method is illustrated in Figure 7. There were two parts to this method: the
encoding part (left part of Figure 7), which provides the basis for object category recognition,
and the decoding part (right part in Figure 7), which provides the basis for accurate seg-
mentation and positioning. Here, each convolution block had the same workflow, a 3 × 3
convolution layer with padding, a batch normalization layer, an activation layer (ReLU
activator), and one more. The decoder was mainly composed of a deconvolution structure,
a convolution block, and a concatenation. Finally, the deconvolution structure upsampled
the feature map to achieve pixel-level classification. The gray arrows from left to right refer
to the skip-connection, which can be used to fill in the low-level information to improve
the segmentation accuracy. The loss function used in WaterUNet was binary_crossentropy,
the learning algorithm was Adam, and the accuracy evaluation function was accuracy. All
the algorithms are provided in the Google Tensorflow framework [65].

The samples used to train the model were pixel-level, meaning that each pixel in
the sample was labeled with an attribute value (1 for water and 0 for non-water). Due to
the medium resolution of the Sentinel-1 SAR images, the backscatter coefficient thresh-
old segmentation method and direct visual interpretation method were used to initially
classify the images; then, the GIS tools were used to post-process the misclassification
and fragmentation patches in the results through manual discrimination to ensure a good
internal connectivity, complete boundaries, and correct types of feature categories as far as
possible [43].

Considering the resolution of the image, patches were firstly cropped to a 64 × 64 size
using a sliding window in order to better capture the spatial features of water bodies for the
model (Figure 8). To better learn the features of water bodies in SAR images and considering
the sample class imbalance, samples with a water body ratio of 25% to 75% were selected as
sample sets. The diversity and variability of the sample data were increased through data
enhancement, including data rotation by 90◦, 180◦, and 270◦. A total of 11,220 patches were
obtained and used to build a more accurate water dataset. A total of 80% of the samples in
the dataset were used for training and 20% were used for validation.
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Figure 7. The WaterUNet structure for water extraction (total params: 7,771,585; trainable params:
7,765,697; non-trainable params: 5888) The numbers in the green box are for the input dimension of
the convolution block and the numbers in the blue box are for the output dimension.

Figure 8. Examples of training data and validation data. Blue: water; green: other land types.

2.6. Classification Accuracy Evaluation

In this study, we used the confusion matrix (Table 1) and F1 score to assess the
performance of our method. The confusion matrix [66] is a very popular measure used
to solve classification problems. Confusion matrices represent counts from predicted and
actual values. The output “TN” stands for True Negative, which shows the number of
negative examples that were classified accurately. Similarly, “TP” stands for True Positive,
which indicates the number of positive examples that were classified accurately. The term
“FP” shows False Positive value—i.e., the number of actual negative examples classified as
positive—while “FN” means a False Negative value, which is the number of actual positive
examples classified as negative [66].
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Table 1. Confusion matrix used for binary classification.

Predicted

Non-Water Water

Actual
Non-water TN FP

Water FN TP

The metrics most frequently used while performing classification are accuracy, pre-
cision, recall, Cohen’s Kappa coefficient, and F1 score. The accuracy of an algorithm is
represented as the ratio of correctly classified samples (TP + TN) to the total number of
samples (TP + TN + FP + FN) [67].

Accuracy =
TN + TP

TN + FP + FN + TP
(2)

The precision of an algorithm is represented as the ratio of samples correctly classified
as positive (TP) to the total samples predicted to be positive (TP + FP) [67].

Precision =
TP

TP + FP
(3)

The recall metric is defined as the ratio of samples correctly classified as positive (TP)
divided by the total samples actual positive (TP + FN). Recall is also called as sensitivity [67]:

Recall =
TP

TP + FN
(4)

Cohen’s Kappa coefficient (k) [68] is a statistic that assesses the level of agreement
between two classifiers on a classification problem. Cohen’s Kappa coefficient can range
from −1 to +1, where a value of 1 means that the agreement between the classifiers is
perfect and a value of 0 indicates that any agreement is expected to be the result of random
chance [68]. It is calculated by:

k =
Accuracy− Pe

1− Pe
(5)

where Pe is the probability of random agreement and calculated by:

Pe =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

(TP + TN + FP + FN)2 (6)

The F1 score is the harmonic mean of precision and recall, where an F1 score reaches
its best value at 1 and worst at 0. It is more objective than overall accuracy in our binary
classification case because a water body mostly covers a small portion of the image under
evaluation [43,52]:

F1 score =
2× (Precision× Recall)

Precision + Recall
(7)

3. Results

3.1. The Variation in σ0 for Different Land Cover

After pre-processing all the Sentinel-1 SAR data, the series SAR images were utilized
to investigate the multi-temporal backscatter coefficient properties (e.g., mean and standard
deviation) for persistent water area (PW), permanent non-water area (NW), and seasonal
water area (SW). Here, we selected all the Sentinel-1 SAR data for the years 2016 and 2017.
The statistical results of σ0 for each class are shown in Figure 9.

From Figure 9, we can see that the backscatter for the permanent water area is weaker
but more stable than that for the non-water area, and the backscatter coefficients under VH
polarization (around −29 dB) are lower than those under VV polarization (around −23 dB)
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and much more concentrated, with a smaller variance (Figure 9b). For the seasonal water
area, the backscatter is lower when the area is submerged by water. However, when the
water body retreats, the backscatter becomes stronger. Therefore, there are two periods
of strong backscatter in these two years, especially from August 2016 to April 2017. For
the non-water area, the backscatter is strong and much more concentrated, with a smaller
variance (Figure 9b). Similarly, the backscatter coefficients under VH polarization (around
−15 dB) for the non-water area are lower than those under VV polarization (around−9 dB).
We can also see that there is no overlap between the backscatter coefficients under different
land covers and different levels of polarization, especially between water bodies and other
types of land cover. Therefore, long-time-series Sentinel-1 SAR data can be used for water
body extraction [31].
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Figure 9. The temporal variations in radar backscatter coefficient from Sentinel-1 SAR data for
different land cover types and polarization. PW is for persistent water area, SW is for seasonal water
area, and NW is for non-water area.
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3.2. Validation of the Model

WaterUNet was implemented under a Google Tensorflow framework and deployed
on a Debian Linux workstation, with two Intel(R) Xeon(R) Gold 6134 CPUs and NVIDIA
Quadro P5000 GPU. Due to the compact structure of WaterUNet (small size and fewer
parameters), the training process achieved an almost optimal performance after 10 epochs
with a high accuracy and small loss. The accuracy–loss curves of the training process are
shown in Figure 10, where the accuracy curve was used to measure the performance of
the model, while the loss curve was used to further optimize the model [43]. During the
training process, the loss and accuracy values obtained for training samples were 0.98 and
0.03, while they were 0.98 and 0.03 for validation samples, which proved the validity of the
WaterUNet’s network structure.
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Figure 10. Accuracy–loss curves for WaterUNet with a batch size of 128.

Then, the performance of WaterUNet was evaluated using the testing samples and
the samples manually and randomly selected from the two scenes of SAR data acquired
on 11 July 2015, and 21 April 2019. The confusion matrix and corresponding classification
accuracy parameters are as shown in Table 2.

Table 2. Accuracy assessment for WaterUNet classification results.

Validation
Dataset

Kappa
Coefficient Accuracy Precision F1 Score

Testing samples 0.96 0.98 0.98 0.98
11 July 2015 0.98 0.99 1.0 0.99

21 April 2019 0.97 0.98 0.99 0.98
Average 0.97 0.98 0.99 0.98

From Table 2, it can be seen that the Kappa coefficient, accuracy, precision, and F1-
scores for WaterUNet are 0.97, 0.98, 0.99, and 0.98, respectively, indicating the superior
classification accuracy of the proposed method. Based on the validation of the effective-
ness of WaterUNet, we applied the trained model for all the data in the 10 m Sentinel-1
SAR dataset.

3.3. Annual and Interannual Variation of Water Area

After pre-processing all the Sentinel-1 SAR data, we used the trained WaterUNet to
extract water body data and then obtained the water body distribution maps of Poyang
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Lake corresponding to all 324 SAR observations. Poyang Lake, as previously stated, has
distinct wet and dry seasons. During the wet season, each small lake is connected to the
main lake and water covers most of the study area. Due to the severe flood that took place
in Poyang Lake basin on 20 July 2020, the water area reached its highest level for the past
6 years (2714.08 km2), covering 96.4% of the study area (Figure 11a). The water surface
shrank throughout the dry season, and the small lakes were cut off from the main lake. On
4 January 2020, the water area reached its lowest value in the past 6 years (634.44 km2),
covering 22.5% of the study area (Figure 11b).

(a) (b)

Figure 11. The maximum and minimum water area from 2014 to 2021. Blue is for water and green is
for non-water. (a) maximum water area on 20 July 2020; (b) minimum water area on 4 January 2020.

After obtaining the water body distribution maps corresponding to all 324 SAR ob-
servations, Equation (8) was used to calculate the inundation frequency (IF) for Poyang
Lake. The spatial distribution of the IF factor can be used to reflect the spatial–temporal
distribution features of water bodies. The longer the water body lasts, the greater the IF
will be. The larger the water body extent is, the greater the IF will be.

Inundation f requency =
Water Observation Times
Total Observation Times

× 100% (8)

Figure 12 shows the IF distribution map corresponding to all the SAR data for our
study area. From Figure 12, we can see that most of the study area is covered by seasonal
water body area (areas with green color), becoming inundated by water and turning into
mudflats and grasslands. The second larger part of the study area is a perennial water
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area (areas with blue color, and an IF greater than 0.75) that is covered by water almost all
year round. The IF for some of the perennial water area is close to 1.0, meaning that these
areas are always covered by water all year round. Some study areas are non-water areas
(areas that are bright green with an IF close to 0.0), such as the small islands in Poyang
Lake. According to the shape of perennial water bodies, water tanks and water transfer
channels that link tanks inside the lake system can be identified. The spatial distributions of
IF also highlight the different storage areas according to the duration of the water presence
and their geographical location within the hydrological system. Some of the study area is
mudflats (areas with orange color and an IF between 0.5 and 0.75). The lower the terrain
is, the more likely it is to be flooded, and the IF distribution also reflects the topography
of the lake basin [69]. Figure 12 shows that the IF generally varied along the gradient of
the elevation, exhibiting maximum values within the deep flow channels and permanently
flooded sub-lakes [59].

Figure 12. The inundation frequency distribution map of Poyang Lake generated from all the 324 SAR
observations during 2014–2021.

We conducted an annual statistical evaluation to study the yearly variation in the IF. In
the years 2014 and 2021, the SAR data were acquired in the dry season, resulting in a lower
IF for the study area. Conversely, in the year 2015, most of the SAR data were acquired in
the wet season, resulting in a higher IF for the study area. Since the data for 2014, 2015, and
2021 are not available throughout the year, the IF distribution maps for these years are not
so meaningful. Thus, here we focus on the analysis of the IF from 2016 to 2020 (Figure 13).



Water 2022, 14, 1902 15 of 26

From Figure 13, we can see that the IF values in 2020 are generally the highest, followed by
those in 2016, 2017, 2019, and 2018, which is consistent with the order of the duration of a
high water level. Due to the longer duration of the water level higher than 15 m, most of
the IF values in 2020 are higher than 0.2.

Figure 13. The IF distribution maps for different years from 2014 to 2021. The numbers in the brackets
are for the observation times in that year.

The monthly statistics from the IF were obtained to study the interannual variation
in the IF. Figure 14 shows the IF distribution maps for our study area in different months.
The missing SAR data in January, February, and March 2015 did not influence the IF in
these months. From Figure 14, we can see that, as Poyang Lake entered the wet season in
April, the monthly IF of the study area increased until October. As Poyang Lake entered
the dry season, the monthly IF began to decrease, which lasted until March of the next
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year. The central area of the lake (orange area in Figure 14 for September) suffered the most
pronounced cyclical change, cycling back and forth between inundation and un-inundation.

Figure 14. The IF distribution maps for different months from 2014 to 2021. The numbers in the
brackets are the observation times for that month across all years.

3.4. The Relationship between Water Level and Water Area

Figure 15 shows the interannual and seasonal fluctuations in the water area obtained
using WaterUNet and the histogram for Poyang Lake from October 2014 to March 2021.
Similar to the water level, the water area also fluctuated regularly from 2014 to 2021. The
similar fluctuation pattern of the water area can indirectly prove that a 5~7-day revisit cycle
is sufficient for monitoring water body changes for Poyang Lake. Figure 15 also shows that
the highest water area occurred in July every year as the water level reached the highest
level. Under the combined action of Yangtze River flood and the five upstream rivers flood,
the water level of Poyang Lake was always at a high water level, resulting in the longest
duration when the water area was higher than 2500 km2. Although the water level in 2020
was higher than that in 2016, the water area in 2020 was not larger because the water level
had exceeded the warning level and was also affected by the scope of the study area.

After obtaining both the water area and water level data, we chose 284 pairs of water area
and water level data acquired on the same day and analyzed the relationship between them
(Figure 16). Firstly, we calculated the correlation coefficient between the water area and water
level, which was up to 0.92, showing a good correlation between them. Then, the quadratic
polynomial fitting equation was obtained as y = −21.796x2 + 975.334x− 8150.724, and the
fitting R2 reached 0.88. The quadratic polynomial can sufficiently express the relationship
between the water level and water area; thus, the expression can be used to estimate the
water area or water level of Poyang Lake when the water level or water area data are
invalid. From Figure 16, we can also see that, when the water level reaches over 20 m, the
water area does not increase significantly due to the dikes around Poyang Lake [62] and
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the limitation of the extent of the study area. As shown in Figure 1, Poyang gauging station
is located on the east bank of Poyang Lake, so the relationship can be improved by using
the water level from the gauging station located in the central part of Poyang Lake.
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Figure 15. The water area series obtained from Sentinel-1 SAR data using WaterUNet for Poyang
Lake from 2014 to 2021 and its histogram. The black dots are for the water area, and the blue line is
for the trend of water area. The green bars are for the count in each water area interval (64 bins).
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Figure 16. The relationship between the water level and water area for Poyang Lake. The red line is
for the fitted curve, with “y” for the water area and “x” for the water level.

4. Discussion
4.1. Analysis of the Influence Factors

Although the test accuracy of WaterUNet is satisfactory, there are still some factors
that influence its classification accuracy. Firstly, all the Sentinel-1 SAR data used in this
work were used in Interferometric Wide Swath (IW) Mode [70], which allows a large
swath width (250 km) and can cover Poyang Lake with one or two consecutive scenes.
The IW mode images three sub-swaths using Terrain Observation with Progressive Scans
SAR (TOPSAR) [70], and Poyang Lake is in the middle and far sub-swaths. Although
the TOPSAR technique ensures homogeneous image quality throughout the swath, the
backscatters near the edge of the sub-swaths are different and more pronounced in the VH
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polarization images (the blue box in Figure 17b), which can be observed in most data and
may lead to the misclassification of water bodies (Figure 17). In addition, the scalloping
effects in the Sentinel-1 TOPSAR SAR data will also affect the backscatter in radiometric
quality in the order of 1-2 dB, especially in VH polarization (the ripples are shown in the
yellow and green boxes in Figure 17b) [71,72].

(a) (b) (c)

Figure 17. The influences of subswath and scalloping effects on water extraction, taking the data
acquired on 14 July 2020, as examples. The blue box in (b) shows the enhanced subswath edge, while
the green and yellow box show the scalloping effect. The corresponding area in (c) shows water
misclassified as non-water, with blue for water and green for non-water. (a) Sentinel-1 SAR data in
VH/VV/(VH + VV); (b) Sentinel-1 SAR data in VH; (c) classification result.

Another known problem in the use of SAR data for water body mapping is the floats
and sediments. When the upstream flood flows into Poyang Lake, the floats or sedi-
ments will cause a change in the water surface’s backscatter, especially in VH polarization.
Figure 18 shows the Sentinel-1 SAR data acquired on 27 May 2020; 2 June 2020; and 8 June
2020, at the water levels of 14.6 m, 16.0 m, and 16.9 m. From 27 May 2020, the water
level began to rise dramatically (red dots in Figure 2) due to the flow caused by upstream
precipitation, which brought many floats and sediments, resulting in the change of the
backscattering from specular reflection to Bragg scattering. Consequently, in the data
acquired on 2 June, there were large areas where the backscatter was different from that of
water surface due to the floats and sediments, leading to the misclassification of areas as
non-water and resulting the omission of water bodies (Figure 18b). In addition, the boats
on the lake will also lead to omission due to the strong backscatter caused by the hull’s
metal material (Figure 17b).

Reschke et al. [73] mentioned the restraining factor of weather conditions (rain and
wind) in C-band ENVISAT ASAR data. Wind-induced waves also affect backscatter for
C-band Sentinel-1 SAR data [31] and cause the misclassification of water bodies. Figure 19
shows the SAR data acquired on 15 February 2020, when it was raining or snowing with a
level 5 north wind around the lake (https://lishi.tianqi.com/, accessed on 12 December
2021), Ducang County, and Poyang County, maybe with stronger wind over the lake surface.
The stronger wind caused waves on the lake surface, which strengthens the backscatter
from the water surface by altering the backscattering from specular reflection to Bragg
scattering [31] and cause misclassification.

https://lishi.tianqi.com/
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(a) (b) (c)

Figure 18. The influences of floats and sediments on water extraction. The upper figures are for the
Sentinel-1 SAR data displayed in VH/VV/(VH + VV) and the lower figures are for the classification
results, with blue for water and green for non-water. (a) 27 May 2020, water level of 14.6 m; (b) 2 June
2020, water level of 16.0 m; (c) 8 June 2020, water level of 16.9 m.

Input data transformation has been recognized as an impactful pre-processing task
when using machine learning algorithms such as ANN models. Accordingly, the remote
sensing data of this study were transformed using the histogram threshold scaler and
the maximum–minimum scaler approach. Ghorbanian et al. [74] proved the capability
of the Adam learning algorithm in handling untransformed input data, which were also
employed in WaterUNet.

Although these factors affect the classification accuracy, WaterUNet still extracts water
body data with a high accuracy, which also proves the robustness of WaterUNet.

4.2. Comparisons with Other Studies

As the largest freshwater lake in China, Poyang Lake has been paid more and more
attention, especially its water body changes. In previous studies, optical remote sensing
data such as MODIS data and Landsat data were the primary data sources for mapping
Poyang Lake water body [61,75–77], mainly due to the free policy and long-term availability
of these data. With the temporal resolution of 16 days, only 8 cloud–free Landsat TM/ETM+
data were used to retrieve the water body for Poyang Lake from November 1999 to October
2000, mainly due to the influences of clouds [75]. Similarly, the influences of clouds resulted
in only 466 cloud–free MODIS products available to investigate the spatial–temporal
distribution of inundation in Poyang Lake during 2000–2011 [76]. Meanwhile, SAR data
were used to study water body mapping methods [2,13,78], and there were few long-term
water body mapping based on SAR data due to its high price. In the past few years,
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Sentinel-1 SAR cloud–free data have become another data source for Poyang Lake water
body mapping as the high spatial–temporal resolution [1,32,37]. All available Sentinel-1
SAR data in GEE [1], 71 Sentinel-1A data (41 observations, 12 days temporal resolution) [37]
and 15 Sentinel-1A SAR data (12 days temporal resolution) were used for Poyang Lake
water body mapping or flooding monitoring [32]. Here, we collected 455 available Sentinel-
1A/B SAR data (324 observations) for Poyang Lake water body mapping and constructed a
consecutive high spatial (10 m resolution) and temporal (6 days temporal resolution) water
body dataset, which can reflect the water body changes well especially in the flood season.

(a) (b)

Figure 19. The influence of wind-induced waves on water extraction. (a) is for the Sentinel-1
SAR data acquired on 15 February 2020, and displayed in VH/VV/(VV + VH), and (b) is for the
classification result, with blue used for water and green for non-water. (a) Sentinel-1 SAR data;
(b) classification result.

The high spatial-temporal water body dataset in China (HSWDC) was constructed
based on Sentinel-1 SAR data and GEE platform, which provided the monthly water
dynamics of Poyang Lake [1]. HSWDC was construed using the backscatter threshold
segmentation method, where pixels with σVV ≤ −15 dB and σVH ≤ −23 dB were regarded
as water body, and a high classification accuracy (overall accuracy: 0.93, Kappa coefficient:
0.86) was achieved. Sentinel-1A water index (SWI) and the SWI threshold classification
method were used to map Poyang Lake water body with the threshold of 0.2, and the overall
accuracy and Kappa coefficient were 96.52%, 0.8981; 96.16%, 0.9102 for Poyang Lake in
27 September 2016 and 9 September 2015 [37]. However, the overall accuracy for OSTU and
bimodal threshold segmentation (BTS) methods in [32] were 0.698 and 0.766, respectively.
Thus, the threshold segmentation methods are efficient enough to map water body and
easily deployed in GEE platform but depend only on the variance without considering the
human prior knowledge [32] and the spatial relations between the pixel and its neighbors.
The overall accuracy for HRNet, DenseNet121, SegNet, ResNet101, and DeepLab v3+ were
0.970 (highest precision and efficiency), 0967, 0.969, 0.966, and 0.956, which demonstrated
that the CNNs appear to significantly outperform the traditional methods [32]. WaterUNet,
based on U-Net, can take into account the human prior knowledge, the spatial relations [54]
and learn high–level context features and then improve water body mapping. WaterUNet
has the same structure as the conventional U-Net, but with 50% of convolution kernels for
each layer and the reduced number of model parameters. The results show that WaterUNet
can map water body with high accuracy (overall accuracy: 0.98, Kappa coefficient: 0.97)
and a good generalization ability. Recent studies have also optimized the CNN-based water
body mapping models to improve the accuracy [46,51,54]. The drawbacks of CNN-based
models are the need for a large number of training samples and its time-consuming quality
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during the training process. However, when the model is trained, it will take a short time
to make predictions from new images [32].

Some studies have also provided IF maps in their works, and most of these maps
were generated from MODIS, Landsat optical data [61,75–77], ENVISAT ASAR data [13],
ENVISAT Low and Medium Resolution data [78], or the simulation of hydrodynamic
models [59]. Although the data sources are different, the IF from different studies have
similar temporal-spatial distribution trend, with IF generally varying along the gradient of
the elevation, exhibiting maximum values within the deep flow channels and permanently
flooded sub-lakes. In addition, many more details are presented in the the proposed
10 m resolution IF distribution map. Some researchers have also studied the relationship
between the water area and water level of Poyang Lake. The relationship during 2000–2020
was provided in [61] as water level = 0.003× water area + 5.494 with R2 = 0.926, where
the water level data were from DAHITI [79]. The relationship during 2000–2015 was
provided in [62] as water area = 231.01 × water level − 722.04 (water level < 15.0 m)
and water area = 38.493× water level + 2387.9 (water level ≥ 15.0 m), where the water
level data were from Xingzi gauging station. The differences among these IF distribution
maps and these relationships may be caused by the study periods, data sources, and
the bathymetry of Poyang Lake [80]. The bathymetric changes in Poyang Lake were
attributed to the combined effect of human activities (e.g., sand dredging [62,80–82], levee
construction [62,81], and the impoundment of the Three-Gorges Dam [81]) and weather
events (the excessive precipitation resulting in the increased bottom elevation [81] caused
by the sediments).

5. Conclusions

Timely water monitoring, especially flood dynamic monitoring, is very important for
water resource regulation, disaster assessment, and disaster mitigation. Due to its high
temporal-spatial resolution, Sentinel-1 SAR is very suitable for detecting water as well as
emergency flood mapping. As the largest freshwater lake in China, Poyang Lake’s water
area variation can reveal the occurrence of flooding in the upstream area of its lake basin
and the Yangtze River. In order to monitor the change in the water area, we collected
455 scenes of Sentinel-1 SAR data from 2014 to 2021.

In this study, we provide a multi-temporal water body extraction framework for
Sentinel-1 SAR data, and the SNAPPY and Google Tensorflow frameworks used in the
proposed framework make it easy to implement and transfer at the code level. The data
clipping method enhances the proposed framework. Basically, this framework relies on
the scattering characteristics of water bodies, and the stability of water body scattering
also ensures that it is applicable in other lakes. The preliminary result shows that the
WaterUNet model realized accurate water extraction, with an F1 score of up to 0.99. The
water area variation trend shows that Poyang Lake enters a flood period in July. In 2015,
2016, 2017, 2019, and 2020, the water areas in the study area were over 2500 km2, and they
reached 2714.08 km2 in 2020. The IF distribution map for the Sentinel-1 SAR data clearly
shows the seasonal water area, perennial water area, and non-water area, as well as the
water tanks and water transfer channels in Poyang Lake. The IF distribution maps for
different years and months show the interannual and annual variation in the water area.
The IF distribution map for 2020 shows that a severe flood occurred in July, and the IF
distribution maps for different months show the obvious wet season that occurs from April
to September. The quadratic polynomial fitting results show that there is a good correlation
between the water level from Poyang gauging station and the water area, with an R2 of up
to 0.88, which can be used to estimate the water area or the water level of Poyang Lake.

Due to the large amount of Sentinel-1 SAR data, data pre-processing takes a long
time. Thus, in the future, we will try to transfer our framework to the GEE platform to
reduce the pre-processing time for the Sentinel-1 SAR data and provide rapid emergency
response services.
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Appendix A

Table A1. The observation date and times for different years in this study.

Year Date Times

2014 2014/10/3 2014/10/8 2014/10/15 2014/10/20 2014/10/27 2014/11/1 2014/11/8 2014/11/13 2014/11/20
2014/11/25 2014/12/2 2014/12/7 2014/12/14 2014/12/19 2014/12/26

15

2015 2015/4/18 2015/5/24 2015/6/5 2015/6/12 2015/6/17 2015/6/29 2015/7/11 2015/7/23 2015/8/16 2015/8/28
2015/9/9 2015/9/21 2015/10/3 2015/10/15 2015/10/27 2015/11/20 2015/12/2 2015/12/14 2015/12/26

19

2016 2016/1/7 2016/1/19 2016/1/31 2016/2/12 2016/2/24 2016/3/7 2016/3/19 2016/3/31 2016/4/12 2016/4/24
2016/5/6 2016/5/18 2016/5/30 2016/6/11 2016/7/5 2016/7/17 2016/8/10 2016/8/22 2016/9/15 2016/9/27
2016/10/3 2016/10/9 2016/10/15 2016/10/21 2016/10/27 2016/11/2 2016/11/8 2016/11/14 2016/11/20
2016/11/26 2016/12/2 2016/12/8 2016/12/14 2016/12/20 2016/12/26

35

2017 2017/1/1 2017/1/7 2017/1/13 2017/1/19 2017/1/25 2017/1/31 2017/2/6 2017/2/12 2017/2/18 2017/2/24
2017/3/2 2017/3/8 2017/3/14 2017/3/20 2017/3/26 2017/4/1 2017/4/7 2017/4/13 2017/4/19 2017/4/25
2017/5/1 2017/5/7 2017/5/13 2017/5/19 2017/5/25 2017/5/31 2017/6/6 2017/6/12 2017/6/24 2017/6/30
2017/7/6 2017/7/12 2017/7/18 2017/7/24 2017/7/30 2017/8/5 2017/8/11 2017/8/17 2017/8/23 2017/8/29
2017/9/4 2017/9/10 2017/9/16 2017/9/28 2017/10/4 2017/10/10 2017/10/16 2017/10/22 2017/10/28
2017/11/3 2017/11/9 2017/11/15 2017/11/21 2017/11/27 2017/12/3 2017/12/9 2017/12/15 2017/12/21
2017/12/27

59

2018 2018/1/2 2018/1/8 2018/1/14 2018/1/20 2018/1/26 2018/2/1 2018/2/7 2018/2/13 2018/2/19 2018/2/25
2018/3/3 2018/3/9 2018/3/15 2018/3/21 2018/3/27 2018/4/2 2018/4/8 2018/4/14 2018/4/20 2018/4/26
2018/5/2 2018/5/8 2018/5/14 2018/5/26 2018/6/1 2018/6/7 2018/6/13 2018/6/19 2018/6/25 2018/7/1
2018/7/7 2018/7/13 2018/7/19 2018/7/25 2018/7/31 2018/8/6 2018/8/12 2018/8/18 2018/8/24 2018/8/30
2018/9/5 2018/9/11 2018/9/17 2018/9/23 2018/9/29 2018/10/5 2018/10/11 2018/10/17 2018/10/29 2018/11/4
2018/11/10 2018/11/16 2018/11/22 2018/11/28 2018/12/4 2018/12/10 2018/12/16 2018/12/22 2018/12/28

59

2019 2019/1/3 2019/1/9 2019/1/15 2019/1/21 2019/1/27 2019/2/2 2019/2/8 2019/2/14 2019/2/20 2019/2/26
2019/3/4 2019/3/10 2019/3/16 2019/3/22 2019/3/28 2019/4/3 2019/4/9 2019/4/15 2019/4/21 2019/4/27
2019/5/3 2019/5/9 2019/5/15 2019/5/21 2019/5/27 2019/6/2 2019/6/8 2019/6/14 2019/6/20 2019/6/26
2019/7/2 2019/7/8 2019/7/14 2019/7/20 2019/7/26 2019/8/1 2019/8/7 2019/8/13 2019/8/19 2019/8/25
2019/8/31 2019/9/6 2019/9/12 2019/9/18 2019/9/24 2019/9/30 2019/10/6 2019/10/12 2019/10/18 2019/10/24
2019/10/30 2019/11/5 2019/11/11 2019/11/17 2019/11/23 2019/11/29 2019/12/5 2019/12/11 2019/12/17
2019/12/23 2019/12/29

61

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
http://www.jxssw.gov.cn/
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Table A1. Cont.

Year Date Times

2020 2020/1/4 2020/1/10 2020/1/16 2020/1/22 2020/1/28 2020/2/3 2020/2/9 2020/2/15 2020/2/21 2020/2/27
2020/3/4 2020/3/10 2020/3/16 2020/3/22 2020/3/28 2020/4/3 2020/4/9 2020/4/15 2020/4/21 2020/4/27
2020/5/3 2020/5/9 2020/5/15 2020/5/21 2020/5/27 2020/6/2 2020/6/8 2020/6/14 2020/6/20 2020/6/26
2020/7/2 2020/7/8 2020/7/14 2020/7/20 2020/7/26 2020/8/1 2020/8/7 2020/8/13 2020/8/19 2020/8/25
2020/8/31 2020/9/6 2020/9/12 2020/9/18 2020/9/24 2020/9/30 2020/10/6 2020/10/12 2020/10/18 2020/10/24
2020/10/30 2020/11/5 2020/11/11 2020/11/17 2020/11/23 2020/11/29 2020/12/5 2020/12/11 2020/12/17
2020/12/23 2020/12/29

61

2021 2021/1/4 2021/1/10 2021/1/16 2021/1/22 2021/1/28 2021/2/3 2021/2/9 2021/2/15 2021/2/21 2021/2/27
2021/3/5 2021/3/11 2021/3/17 2021/3/23 2021/3/29

15
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