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Abstract: Capturing high frequency water surface dynamics via optical remote sensing is important for
understanding hydro-ecological processes over seasonally flooded wetlands. However, it is a difficult
task due to the presence of clouds on satellite images. This study proposed the MODerate-resolution
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) Minimum
Value Composite (MinVC) algorithm to generate daily water surface data at a 250-m resolution.
The algorithm selected pixelwise minimum values from the combined daily Terra and Aqua MODIS
NDVI data within a 15-day moving window. Consisting mainly of cloud and water surface information,
the MinVC NDVI data were segmented for water surfaces over the Poyang Lake, China (2000–2017)
by using an edge detection model. The water surface mapping result was strongly correlated with the
Landsat based result (R2 = 0.914, root mean square error, RMSE = 223.7 km2), the cloud free MODIS
image based result (R2 = 0.824, RMSE = 356.7 km2), the recent Landsat-MODIS image fusion based
result (R2 = 0.765, RMSE = 403 km2), and the hydrodynamic modeling result (R2 = 0.799). Compared
to the equivalent eight-day MOD13 NDVI based on the Constraint View-Angle Maximum Value
Composite (CV-MVC) algorithm, the daily MinVC NDVI highlighted water bodies by generating
spatially homogenous water surface information. Consequently, the algorithm provided spatially
and temporally continuous data for calculating water submersion times and trends in water surface
area, which contribute to a better understanding of hydro-ecological processes over seasonally
flooded wetlands. Within the framework of sensor intercalibration, the algorithm can be extended to
incorporate multiple sensor data for improved water surface mapping.
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1. Introduction

A water body is identifiable from satellite images due to its unique spectral features in a wide
range of electromagnetic spectrums [1–5]. In the visible and near-infrared (VNIR) bands, the spectral
reflectance of liquid water decreases with wavelength. Based on this principle, water surface
information has been extracted using various spectral indices, including the Normalized Difference
Vegetation Index (NDVI) [6], the Normalized Difference Water Index (NDWI) [7], and the Modified
NDWI (MNDWI) [8]. More spectral bands are combined for enhanced water surface signals, such as the
Automated Water Extraction Index (AWEI) [9] and the Open Water Likelihood (OWL) algorithm [10].
An increasing number of new algorithms are being developed for detailed and accurate water surface
mapping [11–14]. In contrast, Wolski et al. [15] recently stated that the single short-wave infrared
(SWIR) band also worked effectively.

The core idea of water surface mapping is to distinguish water from non-water objects. Due to
their fine spatial resolutions, the National Aeronautics and Space Administration (NASA) Landsat
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multi-spectral sensors, including Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI), have been widely used for
water surface mapping [16–25]. Other fine-resolution sensors, including the Chinese HJ-1A/B
sensors and the European Space Agency (ESA) Sentinel-2A/B sensors are also used [26,27]. Cloud
coverage is a major hindering factor for these sensors that have a relatively long revisit cycle. With
daily global observing abilities, the Terra/Aqua MODerate-resolution Imaging Spectroradiometer
(MODIS), the ENVISAT MEdium Resolution Imaging Spectrometer (MERIS), the Sentinel-3 Ocean
and Land Colour Instrument (OCLI), and the National Ocean and Atmosphere Administrator
(NOAA)/MetOp Advanced Very High Resolution Radiometer (AVHRR) sensors can collect more
cloud free images [28–32]. These coarser-resolution data have been combined with finer-resolution
data for detailed water surface mapping [33–37]. Despite this, cloud effects still exist, especially for
consecutive cloudy and rainy days, in particular, in wet seasons. Microwave remote sensing, active and
passive, provides a solution to cloud contamination issues. Synthetic Aperture Radar (SAR) images
have been used for water surface mapping over large inland lakes, for example, the Poyang Lake,
largest freshwater lake in China [38], the Dongting Lake, second largest freshwater lake in China [39],
and the Tonle Sap Lake, largest freshwater lake in southeast Asia [40]. Thanks to the Sentinel-1 SAR
images, capturing high frequency fine-resolution water surface dynamics has now become possible [41].
However, such data are lacking in past times, making it difficult for time series analyses. Although
the passive microwave radiometer data catch a signal indicating drought/wetness (commonly used
for global soil moisture retrieval), their spatial resolutions are generally too coarse for inland water
surface mapping.

MODIS VNIR bands data are widely used for water surface mapping. Efforts have been made
to generate cloud free or less cloud affected images from daily MODIS VNIR bands observations.
The simplest method is to screen for cloud free images from the MODIS data archive [42,43]. The derived
water surface area data are relatively accurate, yet the amount of useable data is reduced depending
on the screening criteria. As expected, more data are generally kept in dry seasons and less in wet
seasons. The advanced method is based on various compositing techniques, making use of cloud free
information from images in consecutive neighboring days. The commonly used composite data are
the MODIS 8-day or 16-day surface reflectance and NDVI products generated by using the Constraint
View-Angle Maximum Value Composite (CV-MVC) algorithm [44–48]. Such compositing techniques
produce cloud free data at equal time intervals. Although initially intended to highlight vegetation
information, these data own the ability to generate spatially and temporally continuous water surface
area data.

Driven by the need of high frequency water surface area data, more compositing methods have
been developed, specifically for water surface mapping. Fayne et al. [49] generate cloud free MODIS
images within a four-day moving window. The moving window strategy differs from the fixed 16-day
compositing period that is used for generating the MODIS 16-day product. Proud et al. [50] composite
the 15-min geostationary satellite images on a three-day basis, serving for rapid flood responses.
Recently, the MODIS Collection 006 daily surface reflectance product has been recommended for
capturing rapid land surface dynamics [51]. However, there is no evidence for its applicability in
hydrological studies. Daily water surface area data have also been derived using a post-processing
method [52]. Water surfaces are initially derived from cloud contaminated MODIS images, and the
cloud-affected results were then mosaicked and interpolated for a cloud free result on a specific
day. By using multiple remote sensing data and advanced compositing techniques, there is an
overall tendency to capture water surface dynamics at a daily timescale, which is comparable to
hydrodynamic modeling.

To deal with cloud effects on water surface mapping and derive temporally continuous water
surface area data, this study proposed a MODIS NDVI based Minimum Value Composite (MinVC)
algorithm by exploiting the combined daily 250-m Terra and Aqua MODIS VNIR bands reflectance
data. The daily MinVC NDVI consisted mainly of cloud free water pixels over water bodies and cloudy
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pixels over land surfaces. The cloud-water NDVI images were then segmented for water surfaces by
using an active contour model. The proposed method was applied to a seasonally flooded lake by
using all archived MODIS data as of 2017, and the derived result was compared to the Landsat based
result, the daily cloud free MODIS image based result, the Landsat-MODIS image fusion based result,
and the hydrodynamic modeling result. The compositing algorithm and the resulting daily water
surface area data are useful for hydro-ecological studies over seasonally flooded wetlands.

2. Method and Materials

2.1. Study Area

Poyang Lake (28◦22′–29◦45′N, 115◦47′–116◦45′E) is the largest freshwater lake in China and is well
known for its ecological significance [53]. The lake receives water from five major river systems within
the lake basin and discharges into the Yangtze River through its north outlet (Figure 1). Belonging to a
humid subtropical climate zone, the annual precipitation in this lake basin is 1635.9 mm, and the annual
mean surface air temperature was 17.5 ◦C for 1960–2010. Heavy rainfalls produce great surface discharges
to the lake during the wet season from April–June. Rainfall declines sharply from July–September and
remains relatively low from October–March. Jointly controlled by river discharges and interactions
with the Yangtze River, the lake’s inundation area experiences significant seasonal variations, with large
areas occurring in wet seasons and small areas in dry seasons. Water surface area can vary from less
than 1000 km2 in winter during the dry season to over 3000 km2 in summer during the wet season.
The climate condition benefits vegetation development in this shallow lake [54]. As a result, a unique
lake-vegetation system exists (Figure 1), posing a challenge for accurate lake surface mapping.

Remote Sens. 2020, 12, 700 3 of 22 

 

result, and the hydrodynamic modeling result. The compositing algorithm and the resulting daily 
water surface area data are useful for hydro-ecological studies over seasonally flooded wetlands. 

2. Method and Materials 

2.1 Study Area 

Poyang Lake (28°22′–29°45′N, 115°47′–116°45′E) is the largest freshwater lake in China and is well 
known for its ecological significance [53]. The lake receives water from five major river systems 
within the lake basin and discharges into the Yangtze River through its north outlet (Figure 1). 
Belonging to a humid subtropical climate zone, the annual precipitation in this lake basin is 1635.9 
mm, and the annual mean surface air temperature was 17.5 °C for 1960–2010. Heavy rainfalls produce 
great surface discharges to the lake during the wet season from April–June. Rainfall declines sharply 
from July–September and remains relatively low from October–March. Jointly controlled by river 
discharges and interactions with the Yangtze River, the lake’s inundation area experiences significant 
seasonal variations, with large areas occurring in wet seasons and small areas in dry seasons. Water 
surface area can vary from less than 1000 km2 in winter during the dry season to over 3000 km2 in 
summer during the wet season. The climate condition benefits vegetation development in this 
shallow lake [54]. As a result, a unique lake-vegetation system exists (Figure 1), posing a challenge 
for accurate lake surface mapping. 
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Figure 1. Location of the Poyang Lake. Landsat-8 Operational Land Imager (OLI) images show water
surfaces at the lake surface expanding (a) and shrinking (b) period. Vegetation is gradually inundated at
the lake surface expanding period and is regenerated at the lake surface shrinking period. The Landsat-8
OLI Normalized Difference Vegetation Index (NDVI) image (c) shows contrasting spectral behaviors
between the water surface and vegetation at a high water stage.
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2.2. MODIS NDVI MinVC Algorithm

2.2.1. Using the Minimum NDVI to Highlight Water Surfaces

Water bodies generally have negative NDVI values. Although the negative values vary as a
result of differences in water turbidity and other mixtures, NDVI is an effective indicator of water
bodies [6,36,44,48,49,55–57]. In contrast, vegetation generally has positive NDVI values. The contrasting
NDVI behaviors form the basis for vegetation–water separation in the lake-vegetation system. Clouds
are common in humid areas, especially in wet seasons. In the VNIR bands, spectral responses of
thick clouds are generally flat, corresponding to NDVI values approaching zero. Attenuated by
thin clouds, signals reflected from the underlying surfaces are blurred and the contrast of the NDVI
image is reduced. Specifically, the NDVI value decreases over vegetation and increases over water
bodies. Given the close-to-zero cloud NDVI values, the sign of NDVI values will be kept for cloud
contaminated water and vegetation pixels.

Built-up areas, shadows, and snow may not have a large impact on water surface mapping in the
Poyang Lake area. Within the lake area, almost no pixels show spectral features of artificial structures
at the 250-m spatial scale due to sporadic villages and dense vegetation cover. The effects of shadows
and snow can also be neglected in this flat and low-latitude area. Therefore, MODIS images consist
mainly of water bodies, vegetation, and clouds (thick and thin) over the lake area. The exceptions
may include some mudflat and sand banks [11,53] during the water recession period when vegetation
has not yet regenerated. With an intermediate NDVI value between thick clouds and water bodies,
these wet elements might be mistaken as water bodies by using image segmentation methods [58].
Despite this, the NDVI minima more likely correspond to a water pixel because water bodies always
have lower NDVI values. Except for consecutive days of thick clouds, cloud free NDVI images can be
generated by using the Minimum Value Composite (MinVC) algorithm (Table 1). In wet seasons with
more cloudy days, a longer compositing period might increase the possibility of generating totally
cloud free NDVI. The effects of cloud shadow are similar to cloud effects and can also be reduced by
the MinVC algorithm.

Table 1. Expected compositing results of the NDVI Minimum Value Composite (MinVC) algorithm.

Type Image Contents in the Compositing Period Compositing Results

1 all water pixels (all clear) water pixel; NDVI < 0
2 thick cloud and water pixels water pixel; NDVI < 0
3 vegetation and water pixels (all clear) water pixel; NDVI < 0
4 thick cloud, vegetation, and water pixels water pixel; NDVI < 0
5 thin cloud and water pixels increased NDVI value; NDVI < 0
6 all thick cloud pixels (all cloudy) thick cloud pixel; NDVI ≈ 0
7 all vegetation pixels (all clear) vegetation pixel; NDVI > 0
8 thin cloud and vegetation pixels reduced NDVI value; NDVI > 0
9 thick cloud and vegetation pixels thick cloud pixel; NDVI ≈ 0

2.2.2. MODIS Observations and the 16-day NDVI Product

MODIS is the key instrument onboard Terra and Aqua satellites that have operated successfully
since their launches in December 1999 and May 2002. The complementary a.m. and p.m. satellites
provide twice-daily global daytime observations at 250-m, 500-m, and 1-km resolutions. MODIS data
in the VNIR bands have been well calibrated, corrected for atmospheric effects, and released as 250-m
surface (SUR) reflectance products (Terra: MOD09Q1 and Aqua: MYD09Q1, the latest Collection 061
version used in this study, hereinafter referred to as MOD09). NDVI data are calculated by using the
red band (620–670 nm) and the near-infrared band (841–876 nm) reflectance data, and composited
into a 16-day product with the CV-MVC algorithm [59]. The product is released as MOD13Q1 (Terra)
and MYD13Q1 (Aqua), intended to highlight vegetation information. In each year, MOD13Q1 starts
from DOY001–353 (DOY means Day of Year), and MYD13Q1 from DOY008–361. A combination
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of MOD13Q1 and MYD13Q1 produces an equivalent 8-day NDVI dataset (hereinafter referred to
as MOD13). In this study, all MOD13 data (the latest Collection 006 version) were used as of 2017.
The dataset has masked out some water bodies by assigning a defaulted NDVI value of −0.3.

2.2.3. Generating the MinVC NDVI Data

Daily NDVI data were first calculated by using the 250-m MOD09Q1 (2000–2017) and MYD09Q1
(2002–2017) surface reflectance data in the red band (620–670 nm) and the near-infrared band
(841–876 nm). Then, the pixelwise minimum NDVI values were determined by using the combined
Terra and Aqua MODIS NDVI data within a 15-day moving window. The 15-day compositing period
inherited all advantages of the 16-day compositing period used to produce the MOD13 NDVI product.
The odd number meant the same days (i.e., one week) before and after a target day. More specifically,
the ith-day MinVC NDVI image was created by using the daily MODIS NDVI images within the day
i-7 and day i+7. Before the Aqua era, note that only Terra data were used. Different from the MODIS
NDVI CV-MVC algorithm, this algorithm generated temporally continuous NDVI data. For example,
the composite data at DOY1, 2010, also made use of MODIS NDVI data from DOY359–365, 2009.

In addition to the baseline algorithm, MinVC NDVI variants were generated by using a different
compositing period or data source. First, a shorter 7-day moving window was used. The 15-day
and 7-day periods were compared with respect to their performances on cloud removal. Second,
the top-of-atmosphere (TOA), instead of SUR reflectance, was used. In this case, the MOD02QKM
(Terra) and MYD02QKM (Aqua) products (the latest Collection 061 version) were used. The data were
initially calibrated to TOA reflectance, and then followed the processing steps for SUR reflectance
data. The two data sources were compared to investigate atmospheric effects on the MinVC NDVI
data. In sum, the MinVC NDVI data had four variants, including the 15-day SUR reflectance based
(baseline), the 7-day SUR reflectance based, the 15-day TOA reflectance based, and the 7-day TOA
reflectance based. In this study, we focused on the baseline MinVC NDVI data, because the MOD13
NDVI product was generated by using SUR reflectance data with a similar compositing period.

2.3. Water Surface Mapping

An active contour model (“snake detector”) was used to segment the daily MinVC NDVI images.
Active contour models are developed within the framework of energy minimization. Generally,
these models include an energy function and a terminal function [60]. The energy function is composed
of two parts, an internal one to control the smoothness of the curve (evolving boundary) and an external
one to attract the curve towards the desired boundary. The external energy can be provided by but
not limited to the image gradient. Chen and Vese [61] propose an active contour model based on the
Mumford–Shah segmentation technique and the level-set method. The model has an energy function

F(c1, c2, C) = µ× L(C) +
∫

inside(C)

∣∣∣u0(x, y) − c1
∣∣∣2dxdy +

∫
outside(C)

∣∣∣u0(x, y) − c2
∣∣∣2dxdy (1)

where C is the evolving boundary, L is the length of C, inside(C) and outside(C) are the areas inside
and outside C, with mean image values of c1 and c2, and u0 is the image value at coordinate (x, y).
Minimizing Equation (1) generates the desired boundary C0.

The model does not necessarily depend on image gradient, works well for noisy images, and is
less dependent on the position of initial conditions [61]. These features are positive for water surface
mapping over shallow lakes, for example, the Poyang Lake. First, these lakes possess varying degrees
of water turbidity, especially near river estuaries. The heterogeneous and noisy lake surfaces can be
discerned by using this model. Second, the lake bottomland is topographically complicated, and the
transition between water and land phases is frequent as a result of hydrological variability in the
Poyang Lake. The model can deal with such topological changes in the lake surface by using identical
initial conditions. In this study, the model was applied to the daily MinVC NDVI and the MOD13
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NDVI. To implement the model, 40×40 uniformly distributed circles at a radius of 1.5 km were used
as initial conditions. These processing steps were completed on the MATLAB R2015a (MathWorks
Inc.) platform.

2.4. Water Surface Data Comparison and Validation

Water surface area data derived from MinVC NDVI were comprehensively evaluated. First,
the composting algorithms were evaluated for their effectiveness to highlight water surface information
(7-day vs. 15-day; SUR vs. TOA reflectance) (see Section 3.1). Second, the MinVC NDVI based result
was validated by reference to the 30-m Landsat based result (NDWI threshold method), which was used
as ground truth (see Figure 5 in Section 3.2). Within an image area including a land-water boundary,
the NDWI histogram was analyzed to determine a single threshold value for land-water separation.
Third, the MinVC NDVI based result was compared to the daily MIKE21 hydrodynamic modeling
result [62–65] (see Figure 6 in Section 3.2). To drive the MIKE21 model, runoff data were obtained from
gauged stations, and runoffs from the ungauged area were calculated by using a linear extrapolation
of the gauged runoffs [63]. The total runoffs were specified as the upstream boundary conditions at
the outlets of the five catchments (defined by the five major rivers in Figure 1). Daily water stages at
the Hukou hydrological station (near the lake outlet) were used to define the downstream boundary
condition. Values of other parameters followed those used in [64]. Due to the limitation of input data,
the model was only implemented from 2000–2012. For hydrodynamic simulation, the whole lake
area was divided as 20450 triangular elements, ranging from 0.007–0.605 km2. Those elements with
water depth >0.4 m were counted as inundated, and the areas of inundated elements were summed as
total water surface area [64]. The modeling result has been validated by using gauged water stage
and river runoff data [64] and has been recently used for investigating lake surface dynamics [65].
Fourth, the MinVC NDVI based result was compared to other MODIS based results, including the
cloud free MODIS NDVI based result (using the NDVI based thresholding method), the MOD13 NDVI
based result (using the same active contour model), and the 30-m Landsat-MOD13 NDVI fusion based
result [37,66] (see Section 3.3). For all comparisons, the coefficient of determination (R2), root mean
square error (RMSE), regression slope, and intercept were used as statistical metrics. To sum up, Table 2
shows the list of all water surface area data.

Table 2. List of water surface area data.

No. Data Source Spatio-Temporal Resolution Temporal Coverage

1 MODIS MinVC NDVI (4 variants) daily, 250 m 2000–2017
2 Landsat 5-8 NDWI 92 scenes, 30 m 2003–2016
3 Hydrodynamic modeling daily, 0.007–0.605 km2 grid 2000–2012
4 cloud free MODIS NDVI ~6-day uneven, 250 m 2000–2017
5 MOD13 NDVI equivalent 8-day, 250 m 2000–2017
6 Landsat-MOD13 NDVI equivalent 8-day, 30 m 2000–2016

2.5. Calculation of Water Submersion Time and Trend in Water Surface Area

The spatial distribution and temporal evolution of water surfaces were analyzed by using the
MinVC NDVI based water surface area data. In each year from 2000–2017, daily water masks were
generated by assigning the value 1 for water surfaces and the value 0 for non-water surfaces. Spatially,
the annual maps of water submersion time (or inundation frequency) were produced by averaging
daily water surfaces within each year [38,42,53]. The values of water submersion time may vary from
0%–100%. The map of annual mean water submersion time (2000–2017) was calculated by averaging
the 18-year maps. Temporally, time series water surface area data were presented, and the temporal
trends were calculated. The differences among multiple water surface area data and the potential
causal factors were investigated. To sum up, Figure 2 shows the flowchart of this study.
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3. Results

3.1. MinVC NDVI Performance on Highlighting Water Surfaces

The MinVC NDVI highlighted water surfaces by suppressing cloud effects. Figure 3 shows MOD13
NDVI and four MinVC NDVI composites (7-day and 15-day; TOA and SUR) in DOY001, 2003 (dry
season) and DOY177, 2003 (wet season). MOD13 NDVI showed more details on vegetation distribution
over land in both seasons. Over water surfaces, some pixels were assigned the defaulted NDVI value
(–0.3) and others even showed a typical vegetation spectral feature (Figure 3a,f), which might have an
impact on water surface mapping. By contrast, the four NDVI composites had close-to-zero values
over land and negative values over water. Both land and water areas had spatially homogenous
NDVI values. The 15-day MinVC NDVI had more negative NDVI values and exhibited water surfaces
than the 7-day MinVC NDVI. The latter might still be obscured by clouds, especially in wet seasons
(Figure 3g,i). By using more than doubled MODIS images, the 15-day MinVC NDVI reduced the risk
being affected by clouds. No marked differences were observed between the TOA and SUR reflectance
based NDVI composites, except that the latter had overall lower values. As expected, large negative
NDVI values were observed occasionally for the latter due to inaccurate atmospheric correction.

The compositing period and data source had an impact on water surface mapping results. Figure 4
shows concurrent MODIS NDVI and four MinVC NDVI composites at DOY175, 2016, (wet season)
and DOY351, 2016 (dry season), when cloud free Landsat images are available within the composting
period (indicating the availability of cloud free MODIS images). With at least one cloud free MODIS
image, the 7-day and 15-day NDVI composites generated similar lake surface area data in the wet
season. The conclusion was true for both the TOA reflectance based and the SUR reflectance based
NDVI composites. In the dry season, the 15-day MinVC NDVI generated larger water surface area
data than the 7-day counterpart. Compared to the Landsat based result, the baseline algorithm (15-day
SUR reflectance) might underestimate water surface areas in wet seasons and perform better in dry
seasons. In addition, the cloud free MODIS NDVI based result also underestimated lake surface areas
relative to the Landsat based result, which might be due to scaling issues. It seemed that TOA NDVI
outperformed SUR NDVI for lake surface mapping, especially in wet seasons.
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Figure 4. Comparison of concurrent Landsat Normalized Difference Water Index (NDWI) (a,g), cloud
free MODerate-resolution Imaging Spectroradiometer (MODIS) NDVI (b,h), MinVC NDVI based on
7-day TOA reflectance data (c,i), MinVC NDVI based on 15-day TOA reflectance data (d,j), MinVC
NDVI based on 7-day surface reflectance data (e,k), and MinVC NDVI based on 15-day surface
reflectance data (f,l). The upper row shows data in the wet season (DOY175, 2016), and the lower row
shows data in the dry season (DOY351, 2016). The corresponding water surface area data are added.
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3.2. Accuracy of MinVC NDVI Based Water Surface Area Data

The baseline MinVC NDVI based water surface area data were in good agreement with both the
30-m Landsat based result (R2 = 0.914, Figure 5) and the daily hydrodynamic modeling result (R2 = 0.799,
Figure 6). The former elucidated the absolute accuracy (RMSE = 223.7 km2) and the latter elucidated
the temporal consistency of the derived water surface area data. Our result might underestimate water
surface area in wet seasons (corresponding to large water surfaces in Figure 5) and slightly overestimate
water surface area in dry seasons (corresponding to small water surfaces in Figure 5). The MIKE21
hydrodynamic model had known artifacts (e.g., coarse grid size; topography data not updated) in
modeling water regimes over topographically flat lake bottoms (e.g., small lakes in the western lake
areas). These were part of the reasons why large discrepancies were observed between the MinVC
NDVI based and the MIKE21 based water surface area data (RMSE = 560.7 km2, Figure 6).Remote Sens. 2020, 12, 700 10 of 22 
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3.3. Performance of MODIS Based Water Surface Area Data

The baseline MinVC NDVI based water surface area data were comparable to other MODIS based
results (Figure 7). As previously illustrated in Figure 4, the SUR reflectance based MinVC NDVI might
generate smaller water surface area data than the TOA reflectance based MinVC NDVI, especially
in wet seasons (Figure 7a). Despite this, the two results were in good agreement with each other
(R2 = 0.833). Compared to the cloud free MODIS NDVI based result, our result might overestimate
water surface areas in dry seasons and underestimate water surface areas in wet seasons (Figure 7b).
The two results were also highly consistent with each other (R2 = 0.824). For NDVI composite product,
MOD13 NDVI generated overall larger water surface area data relative to the MinVC NDVI, especially
for small water surfaces (Figure 7c). Integrated with information from Landsat data, the MOD13 NDVI
was more powerful in water surface delineation. As a result, the Landsat-MOD13 NDVI generated a
more consistent result with the MinVC NDVI (Figure 7d). The former had a systematical positive bias
value of ~211.7 km2, and the regression slope value was very close to 1.
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The baseline MinVC NDVI based result might overestimate water surface areas in dry seasons,
in particular in rapid water surface expansion and recession periods. A comparison of the MinVC
NDVI based and the cloud free MODIS NDVI based results (Figure 8) showed that positive differences
(MinVC relative to cloud free) were large (up to 400 km2) in March and April (normally corresponding
to rapid water surface expansion period) and in October and November (normally corresponding to
rapid water surface recession period). Negative differences were observed in June–August, which
might be caused by incomplete cloud removal due to permanent cloud coverage in wet seasons.Remote Sens. 2020, 12, 700 12 of 22 
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3.4. Spatial Patterns of Lake Water Surface

The baseline MinVC NDVI based result provided temporally continuous water surface area data,
based on which the evolution of the flood/drought event can be investigated. Figure 9 illustrates
monthly water surface distribution for the Poyang Lake in 2010, a known typical flooding year. In April,
the lake surface expanded rapidly to a large area and stayed until the end of September. The long-lasting
large water surfaces made the year 2010 as the most severe flooding year in the recent decade. It is
well known that transitions between flooding and drought events are common in the Poyang Lake.
Figure 10 illustrates monthly water surface distribution in the next year, the most severe drought year
in the recent decade. The lake surface remained at a small area until the end of May. With a relatively
large area in June (still smaller than the lake area in June 2010), the water surface began to shrink until
the end of year. During the drought year, the small isolated lakes in the western lake area were almost
dried, which might have caused significant ecological consequences. In contrast, these lakes can be
observed during the flooding year, especially from October–December, 2010 (Figure 9). An average of
these daily water surface maps corresponded to an overall description of water submersion time in the
Poyang Lake (Figure 11).

Dry and wet years were determined from the annual maps of water submersion time (Figure 12).
The most severe drought event in 2011 was characterized by extremely short water submersion time
all over the lake area except for some isolated reservoirs (Figure 12l). The known drought events in
2006 and 2013 were also manifested on the water submersion maps (Figure 12g,n), yet with lesser
strength. Jointly controlled by meteorological (e.g., precipitation) and hydrological (inflow and outflow)
conditions, smaller water surfaces may occur in some but not all months. Therefore, the maps might
not show a markedly short water submersion time (e.g., 2006). Nevertheless, the wet years (2010,
2012, and 2016) were generally associated with long submersion time (Figure 12k,m,q). It seemed
that the 2010 flooding event was the most severe in the recent decade, followed by the 2016 and the
2012 flooding events. Note that the results in 2000–2002 were less reliable because Aqua MODIS
images were not included for NDVI compositing until July 2002. Similar results have been reported
in [38,67,68].
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3.5. Temporal Variations in Lake Water Surface Area

Temporally continuous NDVI generated opposite trends in water surface area to the unevenly
distributed cloud free NDVI. Within a common period in 2003–2016, water surface area increased by
9.3 km2

·a−1 as derived using the MODIS MinVC NDVI (daily resolution), and increased by 8.2 km2
·a−1

as derived using the Landsat-MOD13 NDVI (8-day resolution) (Figure 13). Large water surfaces in
the recent wet years (2010, 2012, and 2016) might have reversed the declining trends in water surface
area during the early 2000s. In contrast, the cloud free NDVI still revealed a declining trend at a rate
of 8.2 km2

·a−1. The uneven temporal distribution of cloud free MODIS images, more in dry seasons
and less in wet seasons (Figure 14a), might account for the opposite trends. Although long-lasting
large water surfaces might have occurred in recent wet years, the number of totally cloud free images
decreased as a result of continuous cloudy and rainy days. Figure 14b shows that the cloud free NDVI
based water surface area data followed a Gumbel distribution (R2 = 0.919) with a most likely water
surface area of 865.5 km2.
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4. Discussion

4.1. Added Value of the MinVC NDVI for Water Surface Mapping

Cloudy and rainy days lead to less cloud free images in wet seasons when water surfaces are,
in the meantime, undergoing rapid expansion. High frequency lake surface data are needed in response
to this contradiction. In addition, temporally continuous data are required to generate a reliable trend
in water surface area. Fortunately, SAR images (e.g., Sentinel-1 at a 10-m resolution) are now capable
of high frequency and high-resolution water surface mapping, although limited data are available for
tracking long-term water surface area changes (e.g., dating back to 1980s) compared to optical remote
sensing data. The passive microwave radiometers and geostationary sensors offer candidate data for
all-sky or high frequency water surface monitoring; however, their spatial resolutions are insufficient
for most inland water bodies [3,50]. MODIS sensors onboard Terra and Aqua satellites well balance
the requirements of spatial and temporal resolutions, and play an important role in water surface
mapping. There is a general tendency to exploit the entire MODIS data archive, from both Terra and
Aqua, for added information in change detection studies [49,51]. These data are important for tracking
rapidly changing natural processes at daily scales, including water surface changes. In this context,
this study proposes a simple yet effective method for daily water surface mapping.

The NDVI MinVC algorithm suppresses cloud effects by using complementary cloud free or
thin cloud covered information on bi-monthly Terra and Aqua MODIS images. There are at least
30 Terra and Aqua MODIS images within the 15-day moving window, and the number increases
toward high-latitude regions, increasing the probability to generate totally cloud free NDVI images.
In addition to cloud removal, the algorithm can deal with other issues that complicate water surface
mapping. Two of them are sun glint and water turbidity, both leading to increased NDVI values of
water pixels. Generally caused by transient hydrological (e.g., large river runoff as a result of heavy
rainfall) and meteorological (e.g., strong wind) events, these effects can be reduced by selecting the
NDVI minima. The algorithm even improves the effective spatial resolution of water surface maps.
Because MODIS is a whiskbroom scanner, the 250-m resolution in nadir-viewing direction can be
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reduced to over 1-km across track and 500-m along track. Fortunately, our algorithm inclines to select
nadir-viewing water pixels instead of land-water mixed pixels that generally have larger NDVI values.

4.2. Causes of Differences among Multiple Lake Surface Data

The 30-m Landsat images can accurately delineate water surfaces at the days of image acquisition.
At a 250-m resolution, the cloud free MODIS NDVI generates high frequency (relative to Landsat,
~6-day effective temporal interval, unevenly distributed) lake surface information. Concurrent daily
Terra and Aqua images further corroborate the derived water surface area data, which serve as a solid
basis for algorithm validation. By reference to the cloud free NDVI, the MinVC NDVI overestimates
water surface areas for small lake surfaces and underestimates water surface areas for large lake
surfaces. By selecting minimum NDVI values, the NDVI MinVC algorithm is inclined to include
more wet pixels in dry seasons. Generally, multiple scenes of cloud free or thin cloud covered images
are available in dry seasons. The algorithm tends to reserve more pixels in the second half of the
compositing period (if any) at the water rising stage, while reserving more pixels in the first half
of the composition period (if any) at the water recession stage. This situation is more serious at
rapid water rising and recession stages. Although lake surface areas tend to be overestimated in
the transitional periods, the temporal pattern might be kept by using the NDVI MinVC algorithm.
In this circumstance, the 15-day moving window functions like a filter that selects the maximum value
in the 15-day compositing period. Because of the 15-day compositing period, the maximum phase
difference between our result and the actual lake surface change can be one week in advance (having
cloud free image with the largest lake surface) or one week lagging behind (having cloud free image
with the smallest lake surface). The accurate phase difference, however, varies depending on the
availability of cloud free MODIS images. Meanwhile, the occurrence of wet sand and mudflat (both
showing negative NDVI values) can be confused with water surfaces at the water recession stage when
vegetation has not yet regenerated. In wet seasons, however, residual cloud effects might contribute
to the underestimation of lake surface areas. Given the good consistency between the MinVC NDVI
based and the Landsat-MOD13 NDVI based results (Figures 7d and 13a,b), the issues of overestimation
and underestimation are likely shared by image compositing based methods.

Various factors may determine the differences among multiple water surface area data. Intended
to highlight vegetation information, the MOD13 NDVI seems to reduce NDVI contrast over the lake
area. Therefore, it generates overall larger lake surface areas compared to the MinVC NDVI by using
the same active contour model. Nevertheless, the Landsat-MOD13 fusion technique decomposes the
original MOD13 NDVI using the Landsat NDVI, which largely improves the ability of MOD13 NDVI
for water surface mapping. The MIKE21 model also generates overall larger water surface areas than
the MinVC NDVI. Tan et al. [37] showed the poor performance of MIKE21 to model water inundation
in topographically flat lake areas. Zhang et al. [65] also found that the modeling results overestimated
water surface areas that were determined from cloud free MODIS images, which is in agreement with
our conclusion. The differences might also be caused by topographical changes in the Poyang Lake.
Topography data collected in 1998 were used to drive the model, which cannot reveal the effects of
changing topography on lake surface areas in recent decades [62]. Specifically, sand mining near the
north lake outlet has been reported to increase the lake’s discharge to the Yangtze River and probably
caused the decline in lake surface areas, particularly in dry seasons [69].

4.3. Improvements of Current NDVI MinVC Algorithm

Long compositing period (i.e., 15-day) has an impact on water surface mapping. Currently,
the baseline algorithm uses no prior knowledge and assumes a relaxed uniform compositing period.
The main objective is to derive cloud free NDVI images in wet seasons as much as possible. However,
the treatment also exacerbates the situation of lake surface area overestimation in dry seasons. To reduce
such effects, MODIS cloud mask data can be used to determine time-varying compositing periods.
It is safe to assume that the compositing period is inversely proportional to the overall cloud amount.
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More specifically, no cloud coverage (totally cloud free) means a daily compositing period, and larger
cloud amount corresponds to a longer compositing period. Because the mean temporal interval of
cloud free MODIS images is ~six days, such time-varying compositing periods are reasonable and
are expected to perform better than the fixed 15-day compositing period. With regard to data source,
TOA instead of surface reflectance is recommended for NDVI MinVC composting, although minor
differences are observed between results derived from the two composites.

A combination of multiple remote sensing data enhances the possibility of cloud free NDVI data.
Within a day, satellite images acquired at a different time from Terra and Aqua MODIS images (10:30
and 13:30 Local Time) can provide complementary cloud free information. Such sensors include, but are
not limited to, the ENVISAT MERIS (10:00 Local Time, 2002-2012), the Sentinel-3 OLCI (10:00 Local
Time, 2016-present), and the NOAA/MetOp AVHRR (overpassing times varying dependent on orbital
drift, 1970s-present). Prior to the MODIS era, the AVHRR data can be used alone to generate MinVC
NDVI. Several contemporary a.m. and p.m. orbiting AVHRR sensors may overpass the earth surface
at different times, especially when considering the orbital drift issues for earlier sensors. By applying
the MinVC algorithm to those dense NDVI images, cloud effects can be further reduced. Due to
different spectral response functions (relative spectral responses), however, the inter-sensor NDVI
differences should be adjusted in advance before any compositing. In most cases, a linear equation is
qualified for a reliable spectral adjustment [70–72]. Within the framework of NDVI intercalibration,
moderate-resolution and high-resolution images can be combined for water surface mapping. Note
that the proposed algorithm can be accommodated to other indices that are sensitive to water surfaces.

High-resolution satellite images are required for improved water surface mapping. The relevant
sensors include the NASA Landsat series sensors, the ESA Sentinel-2 Multispectral Imager (MSI),
and the Chinese HJ/GF series sensors. These sensors data can be employed in at least two aspects.
First, a synergy of high-resolution images (e.g., Landsat-8 OLI and Sentinel-2 MSI as in [73,74]) provide
an improved reference dataset for validation purposes. Second, high-resolution satellite images can
be integrated with the MinVC NDVI to derive long-term high-resolution water surface area data
(e.g., [36,37]). These data are expected to benefit monitoring small lakes with an area even in the order
of several MODIS pixels [66].

5. Conclusions

This study proposed a simple MODIS NDVI based MinVC algorithm to generate daily water
surface area data over seasonally flooded wetlands by using the combined daily 250-m Terra and Aqua
MODIS NDVI images. The baseline algorithm first created daily Minimum Value Composite NDVI
by selecting pixelwise NDVI minima within a 15-day moving window. Consisting mainly of water
pixels over water and cloud pixels over land, the daily MinVC NDVI data were then segmented for
water surfaces from the cloud background. The derived water surface result compared well with
the Landsat based, the cloud free MODIS image based, the hydrodynamic modeling based, and the
Landat-MOD13 image fusion based results, and outperformed the MOD13 NDVI based result. Our
result provided high frequency and reliable descriptions of water surface dynamics in both space and
time. The proposed algorithm has the potential to make full use of fragmented cloud free information
from the entire MODIS VNIR data archive for water surface mapping of seasonally flooded wetlands.
Within the framework of satellite intercalibration, the algorithm can integrate multiple satellite senor
data, both moderate-resolution and high-resolution, for improved water surface mapping.
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