Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan
Abstract
:1. Introduction
Theoretical Background
2. Materials and Methods
2.1. Study Area and Selection of Respondents
2.2. Survey Data Collection
2.3. Analytical Framework
2.3.1. Measurement of Equity
2.3.2. Horizontal Equity
2.3.3. Vertical Equity
- = cumulative percentage frequency w.r.t number of farmers corresponding to a particular landholding size in acres (Xi = 1, 2, 3, …, n)
- = cumulative frequency percentage w.r.t wheat gross margins (PKR/acre) corresponding to a particular farm size (acres) ( = 1, 2, 3, …, n)
- and = preceding observation of and , respectively
2.3.4. Impact of Different Sources of Irrigations on Plot-level Wheat Yields
- YWHEAT = wheat yield in kg/acre
- LABOR = hours of family and hired labor per acre
- SEED = seed rate, kg/acre
- FERTILIZER = quantity of fertilizer (urea, DAP, MOP, SOP, etc.) in kg/acre
- CHEMICALS = number of chemical applications (pesticides, herbicides, fungicides) per acre
- HYV = 1 if the farmer uses a high-yielding wheat variety
- FERTILITY = 1 if farmers reported the soil on wheat plots to be fertile
- BUYGWATER = 1 if the farmer purchases groundwater for irrigation
- CANALWTR = 1 if the farmer also has access to canal water for irrigation
2.3.5. Impact of Participation in Groundwater Markets on Farmers’ Income (Propensity Score Matching)
2.3.6. Measurement of Volume of Groundwater Extracted
3. Results and Discussion
3.1. Water Markets and Cropping Pattern
3.2. Access to Groundwater Irrigation
3.3. Equity Impacts of Water Markets
3.3.1. Horizontal Equity
3.3.2. Vertical Equity
3.3.3. Impact of Groundwater Markets on Wheat Yields and Water Productivity
3.3.4. Impact of Participation in Water Markets on Farmers’ Income
4. Conclusions
Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sc. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Subhadra, B. Water: Halt India’s groundwater loss. Nature 2015, 521, 289. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S. Improving food security and livelihood resilience through groundwater management in Pakistan. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 687–710. [Google Scholar]
- Mukherjee, A.; Saha, D.; Harvey, C.F.; Taylor, R.G.; Ahmed, K.M.; Bhanja, S.N. Groundwater systems of the Indian sub-continent. J. Hydrol. Reg. Stud. 2015, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S. Groundwater Governance in Pakistan: From Colossal Development to Neglected Management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Shah, T. The groundwater economy of South Asia: An assessment of size, significance and socio-ecological impacts. In The Agricultural Groundwater Revolution: Opportunities Threats to Development; Giordano, M., Villholth, K.G., Eds.; International Water Management Institute: Colombo, Srilanka, 2007; pp. 7–36. [Google Scholar]
- Khan, S.; Rana, T.; Gabriel, H.; Ullah, M.K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol. J. 2008, 16, 1635–1654. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Demirel, M.C.; Nawaz, N.; Khan, N. The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 2019, 27, 2485–2496. [Google Scholar]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Naschold, F. Microeconomic determinants of income inequality in rural Pakistan. J. Dev. Stud. 2009, 45, 746–768. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.S. Groundwater Markets in Pakistan: Participation and Productivity; International Food Policy Research Institutem: Washington, DC, USA, 1996; Volume 105. [Google Scholar]
- Singh, D.; Singh, R. Groundwater Markets and the Issues of Equty and Reliability to Water Access: A Case of Western Uttar Pradesh. Indian J. Agric. Econ. 2003, 58, 115–127. [Google Scholar]
- Kajisa, K.; Takeshi, S. Efficiency and equity in groundwater markets: The case of Madhya Pradesh, India. Environ. Dev. Econ. 2005, 10, 801–819. [Google Scholar] [CrossRef] [Green Version]
- Khanna, G. Improving agricultural efficiency amongst groundwater users: The case of sugarcane in North India. J. Public Int. Aff.-Princet. 2007, 18, 80. [Google Scholar]
- Srivastava, S.K.; Kumar, R.; Singh, R.P. Extent of Groundwater Extraction and Irrigation Efficiency on Farms under Different Water-market Regimes in Central Uttar Pradesh. Agric. Econ. Res. Rev. 2009, 22, 1–11. [Google Scholar]
- Wang, Z.; Huang, Q.; Giordano, M. The effect of private tubewells on income and income inequality in rural Pakistan. J. Hydrol. 2015, 527, 50–61. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; IWMI: Lahore, Pakistan, 2003; Volume 64. [Google Scholar]
- Mathur, V.K. How well do we know Pareto optimality? J. Econ. Educ. 1991, 22, 172–178. [Google Scholar] [CrossRef]
- Chong, H.; Sunding, D. Water markets and trading. Annu. Rev. Environ. Resour. 2006, 31, 239–264. [Google Scholar] [CrossRef] [Green Version]
- Just, R.E.; Hueth, D.L.; Schmitz, A. The welfare Economics of Public Policy: A Practical Approach to Project and Policy Evaluation; Edward Elgar Publishing: Cheltenham, UK, 2005. [Google Scholar]
- Morandi, L.B. Reallocating Western Water: Equity, Efficiency and the Role of Legislation, 1988; National Conference of State Legislatures: State College, PA, USA, 1988. [Google Scholar]
- Hartman, L.M.; Seastone, D. Water Transfers: Economic Efficiency and Alternative Institutions; Johns Hopkins Press: Baltimore, MD, USA, 1970; 127p. [Google Scholar]
- Howitt, R.E.; Moore, N.Y.; Smith, R.T. A Retrospective on California’s 1991 Emergency Drought Water Bank; California Department of Water Resources: Sacramento, CA, USA, 1992. [Google Scholar]
- Thobani, M. Meeting water needs in developing countries: Resolving issues in establishing tradable water rights. In Markets for Water; Springer: Berlin/Heidelberg, Germany, 1998; pp. 35–50. [Google Scholar]
- Razzaq, A.; Qing, P.; Naseer, M.A.u.R.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef]
- Razzaq, A.; Liu, H.; Zhou, Y.; Xiao, M.; Qing, P. The Competitiveness, Bargaining Power, and Contract Choice in Agricultural Water Markets in Pakistan: Implications for Price Discrimination and Environmental Sustainability. Front. Environ. Sci. 2022, 10, 670. [Google Scholar] [CrossRef]
- Narain, V. Warabandi as a sociotechnical system for canal water allocation: Opportunities and challenges for reform. Water Policy 2008, 10, 409–422. [Google Scholar] [CrossRef]
- Hodgson, S. Land and Water—The Rights Interface; Food & Agriculture Org.: Rome, Italy, 2004. [Google Scholar]
- Meinzen-Dick, R.; Bakker, M. Water rights and multiple water uses–framework and application to Kirindi Oya Irrigation System Sri Lanka. Irrig. Drain. Syst. 2001, 15, 129–148. [Google Scholar] [CrossRef]
- Bhandari, H.; Pandey, S. Economics of groundwater irrigation in Nepal: Some farm-level evidences. J. Agric. Appl. Econ. 2006, 38, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Scheffran, J.; Schneider, U.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Naseer, M.A.u.R.; Ashfaq, M.; Abid, M.; Razzaq, A.; Hassan, S. Current status and key trends in agricultural land holding and distribution in Punjab, Pakistan: Implications for food security. J. Agric. Stud. 2016, 4, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Asghar, S.; Sasaki, N.; Jourdain, D.; Tsusaka, T.W. Levels of technical, allocative, and groundwater use efficiency and the factors affecting the allocative efficiency of wheat farmers in Pakistan. Sustainability 2018, 10, 1619. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef] [Green Version]
- Naseer, M.A.u.R.; Ashfaq, M.; Razzaq, A.; Ali, Q. Comparison of water use efficiency, profitability and consumer preferences of different rice varieties in Punjab, Pakistan. Paddy Water Environ. 2020, 18, 273–282. [Google Scholar] [CrossRef]
- Razzaq, A.; Rehman, A.; Qureshi, A.H.; Javed, I.; Saqib, R.; Iqbal, M.N. An Economic Analysis of High Efficiency Irrigation Systems in Punjab, Pakistan. Sarhad J. Agric. 2018, 34, 818–826. [Google Scholar] [CrossRef]
- Naseer, M.A.u.R.; Ashfaq, M.; Hassan, S.; Abbas, A.; Razzaq, A.; Mehdi, M.; Ariyawardana, A.; Anwar, M. Critical Issues at the Upstream Level in Sustainable Supply Chain Management of Agri-Food Industries: Evidence from Pakistan’s Citrus Industry. Sustainability 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Elahi, E.; Zhang, H.; Lirong, X.; Khalid, Z.; Xu, H. Understanding cognitive and socio-psychological factors determining farmers’ intentions to use improved grassland: Implications of land use policy for sustainable pasture production. Land Use Policy 2021, 102, 105250. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2021, 102255. [Google Scholar] [CrossRef]
- Ashfaq, M.; Razzaq, A.; Haq, S.U.; Muhammad, G. Economic analysis of dairy animal diseases in Punjab: A case study of Faisalabad district. J. Anim. Plant Sci. 2015, 25, 1482–1495. [Google Scholar]
- Ashfaq, M.; Razzaq, A.; Hassan, S.; Haq, S.U. Factors affecting the economic losses due to livestock diseases: A case study of district Faisalabad. Pak. J. Agr. Sci. 2015, 52, 515–520. [Google Scholar]
- Edwards, C.J.W. The effects of changing size upon level of farm fragmentation: A Somerest case study. J. Agric. Econ. 1980, 29, 144–154. [Google Scholar] [CrossRef]
- Theil, H. Economic and Information Theory; North Holland Publishing Co.: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Haughton, J.; Khandker, S.R. Handbook on Poverty+ Inequality; World Bank Publications: Washington, DC, USA, 2009. [Google Scholar]
- Gao, X.; Sitharam, M.; Roitberg, A.E. Bounds on the Jensen gap, and implications for mean-concentrated distributions. arXiv 2017, arXiv:1712.05267. [Google Scholar]
- Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and water conservation technologies: A buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agric. Econ. 2011, 42, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Abdulai, A. The adoption of genetically modified cotton and poverty reduction in Pakistan. J. Agric. Econ. 2010, 61, 175–192. [Google Scholar] [CrossRef]
- Kassie, M.; Shiferaw, B.; Muricho, G. Agricultural technology, crop income, and poverty alleviation in Uganda. World Dev. 2011, 39, 1784–1795. [Google Scholar] [CrossRef]
- Thoemmes, F. Propensity score matching in SPSS. arXiv 2012, arXiv:1201.6385. [Google Scholar]
- Heckman, J.; Ichimura, H.; Smith, J.; Todd, P. Characterizing selection bias using experimental data. Econometrica 1998, 66, 1017–1098. [Google Scholar] [CrossRef]
- Smith, J.A.; Todd, P.E. Does matching overcome LaLonde’s critique of nonexperimental estimators? J. Econom. 2005, 125, 305–353. [Google Scholar] [CrossRef] [Green Version]
- Eyhorn, F.; Mäder, P.; Ramakrishnan, M. The Impact of Organic Cotton Farming on the Livelihoods of Smallholders. Evidence from the Maikaal BioRe Poject in Central India; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2005. [Google Scholar]
- Watto, M.A.; Mugera, A.W. Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan. Asian Econ. J. 2014, 28, 301–322. [Google Scholar] [CrossRef]
- Manjunatha, A.; Speelman, S.; Chandrakanth, G.; Huylenbroeck, V. Can Groundwater Markets Promote Efficiency in Agricultural Production. In Proceedings of the 13th Biennial Conference of the International Association for the Study of the Commons (IASC), Hyderabad, India, 10–14 January 2011; pp. 10–14. [Google Scholar]
- Manjunatha, A.V.; Speelman, S.; Chandrakanth, M.G.; Van Huylenbroeck, G. Impact of groundwater markets in India on water use efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 2924–2929. [Google Scholar] [CrossRef]
- Sarkar, A. Equity in access to irrigation water: A comparative analysis of tube-well irrigation system and conjunctive irrigation system. In Problems Perspectives and Challenges in Agricultural Water Management; Kumar, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 1–18. [Google Scholar]
- Cao, X.; Wu, P.; Wang, Y.; Zhao, X. Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use. Hydrol. Earth Syst. Sci. 2014, 18, 3165–3178. [Google Scholar] [CrossRef] [Green Version]
- Palanisami, K.P. Water Market: Evolution of Tradable Water Rights in Irrigation Sectors, Tamil Nadu. India; Water Technology Centre, Tamil Nadu Agricultural University: Coimbatore, India, 1994. [Google Scholar]
Particulars | Buyers | Sellers | Self-Users | Overall |
---|---|---|---|---|
Number of farmers | 120 | 120 | 120 | 360 |
Average farm size (acres) | 2.36 | 6.58 | 17.86 | 8.93 |
Net sown area (acres) | 283.13 | 789.75 | 2143.00 | 3215.88 |
Gross cropped area (acres) | 480.38 | 1305.00 | 2504.05 | 4289.43 |
Cropping intensity (%) | 169.67 | 165.24 | 116.85 | 133.38 |
Crop share in the gross cropped area (%) | ||||
Wheat | 35.16 | 43.72 | 45.74 | 43.94 |
Rice | 7.60 | 8.58 | 9.71 | 9.13 |
Cotton | 2.91 | 4.10 | 8.47 | 6.52 |
Citrus | 2.08 | 6.17 | 10.60 | 8.30 |
Maize | 3.12 | 6.13 | 9.46 | 7.74 |
Potato | 4.58 | 6.74 | 5.87 | 5.99 |
Fodder: Kharif † | 28.42 | 15.06 | 5.93 | 11.23 |
Rabi† | 6.51 | 4.20 | 1.19 | 2.70 |
Sugarcane | 2.50 | 1.92 | 1.59 | 1.79 |
Others | 7.13 | 3.39 | 1.44 | 2.67 |
Farm Category | Water Buyers | Water Sellers | Self-Users | Overall | ||||
---|---|---|---|---|---|---|---|---|
HH † (%) | Farm Area | HH (%) | Farm Area | HH (%) | Farm Area | HH (%) | Farm Area | |
Marginal (0–2.5 acres) | 100 | 163.88 (100) | 0.00 | 0.00 (0.00) | 0.00 | 0.00 (0.00) | 100 | 163.88 (100) |
Small (2–2.5 acres) | 30.25 | 112.25 (23.54) | 40.34 | 216.5 (45.41) | 29.41 | 148 (31.04) | 100 | 476.75 (100) |
Large (>5 acres) | 0.63 | 7.00 (0.27) | 45.57 | 573.25 (22.26) | 53.8 | 1995 (77.47) | 100 | 2575.25 (100) |
Particulars | Irrigation (Numbers) | CV (%) | Yield (40 kg/acre) | CV (%) |
---|---|---|---|---|
(a) Water buyers | 3.64 | 14.59 | 1465 | 14.90 |
(b) Water sellers | 4.09 a | 8.97 | 1680 a | 9.65 |
(c) Self-users | 4.27 b | 13.82 | 1551 b | 16.04 |
(b and c) Tube well owners | 4.18 c | 11.91 | 1615 c | 13.57 |
Overall | 4.00 | 14.20 | 1565 | 14.69 |
Water Markets | Constant | Elasticity (Regression Coefficient) | R2 |
---|---|---|---|
Buyers | 3.600 | −0.014 | 0.001 |
Sellers | 3.859 | −0.070 *** | 0.054 |
Self−users | 3.694 | −0.021 | 0.008 |
All farms | 3.631 | 0.013 | 0.004 |
Inequity Measures | Buyers (1) | Sellers (2) | Self-Users (3) | Tube Well Owners (2 and 3) | Overall (4) |
---|---|---|---|---|---|
Gini coefficient | 0.187 | 0.109 | 0.171 | 0.141 | 0.157 |
Mean log deviation (MLD) | 0.085 | 0.025 | 0.147 | 0.086 | 0.086 |
Coefficient of variation (CV) | 0.335 | 0.203 | 0.313 | 0.262 | 0.287 |
Explanatory Variable | Coefficient | Standard Error | t-Static | Variable Mean |
---|---|---|---|---|
Labor | 0.002 | 0.005 | 0.391 | 44.48 |
Seed | 0.137 *** | 0.046 | 2.979 | 51.88 |
Fertilizer | 0.026 *** | 0.008 | 3.469 | 119.63 |
Chemicals | 0.359 | 0.43 | 0.834 | 1.20 |
HYV | 1.343 ** | 0.523 | 2.568 | 0.53 |
Fertility | 1.311 *** | 0.499 | 2.628 | 0.62 |
BUYGWATER | 2.235 *** | 0.673 | 3.321 | 0.33 |
CANALWTR | 7.388 *** | 0.658 | 11.232 | 0.44 |
Constant | 22.771 *** | 2.473 | 9.207 | |
Adjusted R2 | 0.492 | |||
Number of observations | 360 |
Water Markets | Water Use (m3/ac) | Crop Yield (kg/ac) | Water Productivity (kg/m3) |
---|---|---|---|
Buyers | 2656.55 | 1465.00 | 0.55 |
Sellers | 4237.06 | 1679.98 | 0.40 |
Self-user | 3816.67 | 1551.17 | 0.40 |
Overall | 3533.79 | 1565.38 | 0.44 |
PSM Method | ATE | ATT | |
---|---|---|---|
Wheat yield (kg/acre) | Kernel | 120.56 | 153.05 (38.53) *** |
One-to-one | 116.60 | 150.24 (57.07) *** | |
Nearest neighbor | 105.13 | 150.24 (47.71) *** | |
Crop income (PKR/acre) | Kernel | 3611.84 | 4869.91 (1451.07) *** |
One-to-one | 3478.96 | 4503.39 (1822.23) *** | |
Nearest neighbor | 3076.65 | 4503.39 (1554.70) *** | |
Indicators of covariate balancing before and after matching | |||
Indicators | Before matching | After matching | |
Pseudo R2 | 0.179 | 0.055 | |
p-value of likelihood ratio | 0.000 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaq, A.; Xiao, M.; Zhou, Y.; Liu, H.; Abbas, A.; Liang, W.; Naseer, M.A.u.R. Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan. Water 2022, 14, 1832. https://doi.org/10.3390/w14121832
Razzaq A, Xiao M, Zhou Y, Liu H, Abbas A, Liang W, Naseer MAuR. Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan. Water. 2022; 14(12):1832. https://doi.org/10.3390/w14121832
Chicago/Turabian StyleRazzaq, Amar, Meizhen Xiao, Yewang Zhou, Hancheng Liu, Azhar Abbas, Wanqi Liang, and Muhammad Asad ur Rehman Naseer. 2022. "Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan" Water 14, no. 12: 1832. https://doi.org/10.3390/w14121832
APA StyleRazzaq, A., Xiao, M., Zhou, Y., Liu, H., Abbas, A., Liang, W., & Naseer, M. A. u. R. (2022). Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan. Water, 14(12), 1832. https://doi.org/10.3390/w14121832