Worldwide Research on Socio-Hydrology: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase I: Search Criteria of the Research Field
2.2. Phase II: Search and Documents Selection
2.3. Phase III: Software and Data Extraction
2.4. Phase IV: Analysis of Results and Trends
3. Results
3.1. Performance Analysis
3.1.1. Scientific Production Analysis
3.1.2. Contributions by Countries
3.1.3. Featured Authors
3.1.4. Highly Cited Documents
3.2. Science Mapping
3.2.1. Co-Occurrence Network of Author Keywords
3.2.2. Cited Authors Co-Citation Network
3.2.3. Co-Citation Cited Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONU. La Agenda 2030 y los Objetivos de Desarrollo Sostenible Una Oportunidad para América Latina y el Caribe; Organización de las Naciones Unidas (ONU): Santiago, Chile, 2018. [Google Scholar]
- Troy, T.J.; Pavao-Zuckerman, M.; Evans, T.P. Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resour. Res. 2015, 51, 4806–4814. [Google Scholar] [CrossRef]
- Shanono, N. Assessing the Impact of Human Behaviour on Reservoir System Performance Using Dynamic Co-Evolution. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2019. [Google Scholar]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Change 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H. Water in Crisis: Paths to Sustainable Water Use. Ecol. Appl. 1998, 8, 571–579. [Google Scholar] [CrossRef]
- UNESCO. Informe Mundial de las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos 2019. No Dejar a Nadie Atrás; UNESCO: Paris, France, 2019. [Google Scholar]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S.; et al. Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, C.A.; Meigh, J.R.; Giacomello, A.M. The Water Poverty Index: Development and application at the community scale. Nat. Resour. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Hale, R.L.; Armstrong, A.; Baker, M.A.; Bedingfield, S.; Betts, D.; Buahin, C.; Buchert, M.; Crowl, T.; Dupont, R.R.; Ehleringer, J.R.; et al. iSAW: Integrating Structure, Actors, and Water to study socio-hydro-ecological systems. Earth’s Futur. 2015, 3, 110–132. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, 046442. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: The Taiji–Tire model. Hydrol. Earth Syst. Sci. 2014, 18, 1289–1303. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Lall, U. Water and economic development: The role of variability and a framework for resilience. Nat. Resour. Forum 2006, 30, 306–317. [Google Scholar] [CrossRef]
- Brown, C.; Meeks, R.; Ghile, Y.; Hunu, K. Is water security necessary? An empirical analysis of the effects of climate hazards on national-level economic growth. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratna Reddy, V.; Syme, G.J. Social sciences and hydrology: An introduction. J. Hydrol. 2014, 518, 1–4. [Google Scholar] [CrossRef]
- Kumar, P.; Avtar, R.; Dasgupta, R.; Johnson, B.A.; Mukherjee, A.; Ahsan, M.N.; Nguyen, D.C.H.; Nguyen, H.Q.; Shaw, R.; Mishra, B.K. Socio-hydrology: A key approach for adaptation to water scarcity and achieving human well-being in large riverine islands. Prog. Disaster Sci. 2020, 8, 100134. [Google Scholar] [CrossRef]
- Altaweel, M.R.; Alessa, L.N.; Kliskey, A.D. Forecasting Resilience in Arctic Societies: Creating Tools for Assessing Social-Hydrological Systems 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1379–1389. [Google Scholar] [CrossRef]
- Falkenmark, M. Water and Mankind a Complex System of Mutual Interaction. Ambio 1977, 6, 3–9. [Google Scholar]
- Falkenmark, M. Main problems of water use and transfer of technology. GeoJournal 1979, 3, 435–443. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.A.; Wescoat, J.L.; Rodríguez-Iturbe, I. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earth’s Future 2014, 2, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Gober, P.; Wheater, H.S.; Kajikawa, Y. Reframing socio-hydrological research to include a social science perspective. J. Hydrol. 2018, 563, 76–83. [Google Scholar] [CrossRef]
- Madani, K.; Shafiee-Jood, M. Socio-Hydrology: A New Understanding to Unite or a New Science to Divide? Water 2020, 12, 1941. [Google Scholar] [CrossRef]
- Roobavannan, M.; van Emmerik, T.H.M.; Elshafei, Y.; Kandasamy, J.; Sanderson, M.R.; Vigneswaran, S.; Pande, S.; Sivapalan, M. Norms and values in sociohydrological models. Hydrol. Earth Syst. Sci. 2018, 22, 1337–1349. [Google Scholar] [CrossRef] [Green Version]
- Abadie, L.M.; Markandya, A.; Neumann, M.B. Accounting for Economic Factors in Socio-Hydrology: Optimization under Uncertainty and Climate Change. Water 2019, 11, 2073. [Google Scholar] [CrossRef] [Green Version]
- Sapountzaki, K.; Daskalakis, I. Transboundary resilience: The case of social-hydrological systems facing water scarcity or drought. J. Risk Res. 2016, 19, 829–846. [Google Scholar] [CrossRef]
- Foster, S.; Ait-Kadi, M. Integrated Water Resources Management (IWRM): How does groundwater fit in? Hydrogeol. J. 2012, 20, 415–418. [Google Scholar] [CrossRef]
- Re, V. Incorporating the social dimension into hydrogeochemical investigations for rural development: The Bir Al-Nas approach for socio-hydrogeology. Hydrogeol. J. 2015, 23, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Hynds, P.; Regan, S.; Andrade, L.; Mooney, S.; O’Malley, K.; DiPelino, S.; O’Dwyer, J. Muddy Waters: Refining the Way Forward for the “Sustainability Science” of Socio-Hydrogeology. Water 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Messerschmid, C. Feedback between societal change and hydrological response in Wadi Natuf, a karstic mountainous watershed in the occupied Palestinian Westbank. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; et al. Linked hydrologic and social systems that support resilience of traditional irrigation communities. Hydrol. Earth Syst. Sci. 2015, 19, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, E.; Berglund, E.; Goyal, R. The Impact of Demographic Factors, Beliefs, and Social Influences on Residential Water Consumption and Implications for Non-Price Policies in Urban India. Water 2017, 9, 844. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA. Water Resour. Res. 2017, 53, 6725–6743. [Google Scholar] [CrossRef]
- Ribeiro Neto, A.; Scott, C.A.; Lima, E.A.; Montenegro, S.M.G.L.; Cirilo, J.A. Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River basin—Brazil. Hydrol. Earth Syst. Sci. 2014, 18, 3449–3459. [Google Scholar] [CrossRef] [Green Version]
- Mark, B.G.; French, A.; Baraer, M.; Carey, M.; Bury, J.; Young, K.R.; Polk, M.H.; Wigmore, O.; Lagos, P.; Crumley, R.; et al. Glacier loss and hydro-social risks in the Peruvian Andes. Glob. Planet. Change 2017, 159, 61–76. [Google Scholar] [CrossRef]
- Garnero, G. La Historia Ambiental y las Investigaciones Sobre el Ciclo Hidrosocial: Aportes para el Abordaje de la Historia de los Ríos. Hist. Ambient. Latinoam. Caribeña Rev. Solcha 2018, 8, 91–120. [Google Scholar] [CrossRef]
- Ashmore, P. Towards a sociogeomorphology of rivers. Geomorphology 2015, 251, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G. Modelling the interaction between flooding events and economic growth. Proc. Int. Assoc. Hydrol. Sci. 2015, 369, 3–6. [Google Scholar] [CrossRef]
- Carrión, P.; Herrera, G.; Briones, J.; Sánchez, C.; Limón, J. Practical Adaptations of Ancestral Knowledge for Groundwater Artificial Recharge Management of Manglaralto Coastal Aquifer, Ecuador. WIT Trans. Ecol. Environ. 2018, 217, 375–386. [Google Scholar]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Thorpe, R.; Holt, R.; Macpherson, A.; Pittaway, L. Using knowledge within small and medium-sized firms: A systematic review of the evidence. Int. J. Manag. Rev. 2005, 7, 257–281. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Zhang, N. Sustainable supply chain management under big data: A bibliometric analysis. J. Enterp. Inf. Manag. 2020, 34. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of scientific production on organizational innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; del Río-Rama, M. Sustainable Water Resources Management: A Bibliometric Overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Caputo, A.; Marzi, G.; Pellegrini, M.M.; Rialti, R. Conflict management in family businesses. Int. J. Confl. Manag. 2018, 29, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Durán-Sánchez, A.; Álvarez-García, J.; de la Cruz del Río-Rama, M.; González-Vázquez, E. Literature Review of Wine Tourism Research: Bibliometric Analysis (1984–2014). In Wine and Tourism; Springer: Cham, Switzerland, 2016; pp. 257–273. [Google Scholar]
- Do Prado, J.W.; de Castro Alcântara, V.; de Melo Carvalho, F.; Vieira, K.C.; Machado, L.K.C.; Tonelli, D.F. Multivariate analysis of credit risk and bankruptcy research data: A bibliometric study involving different knowledge fields (1968–2014). Scientometrics 2016, 106, 1007–1029. [Google Scholar] [CrossRef]
- Noyons, E.C.M.; Moed, H.F.; Van Raan, A.F.J. Integrating research performance analysis and science mapping. Scientometrics 1999, 46, 591–604. [Google Scholar] [CrossRef]
- Qin, H.; Prasetyo, Y.; Bass, M.; Sanders, C.; Prentice, E.; Nguyen, Q. Seeing the Forest for the Trees: A Bibliometric Analysis of Environmental and Resource Sociology. Soc. Nat. Resour. 2020, 33, 1131–1148. [Google Scholar] [CrossRef]
- Maldonado-Erazo, C.P.; Álvarez-García, J.; Río-Rama, M.d.l.C.d.; Durán-Sánchez, A. Scientific Mapping on the Impact of Climate Change on Cultural and Natural Heritage: A Systematic Scientometric Analysis. Land 2021, 10, 76. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Del Río-Rama, M.; de la, C.; Álvarez-García, J.; García-Vélez, D.F. Mapping of scientific coverage on education for Entrepreneurship in Higher Education. J. Enterprising Communities People Places Glob. Econ. 2019, 13, 84–104. [Google Scholar] [CrossRef]
- Lopes, R.M.; Faria, D.J.G.; dos S., de; Fidalgo-Neto, A.A.; Mota, F.B. Facebook in educational research: A bibliometric analysis. Scientometrics 2017, 111, 1591–1621. [Google Scholar] [CrossRef]
- Abad-Segura, E.; de la Fuente, A.B.; González-Zamar, M.-D.; Belmonte-Ureña, L.J. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability 2020, 12, 5792. [Google Scholar] [CrossRef]
- López-Fernández, M.C.; Serrano-Bedia, A.M.; Pérez-Pérez, M. Entrepreneurship and Family Firm Research: A Bibliometric Analysis of An Emerging Field. J. Small Bus. Manag. 2016, 54, 622–639. [Google Scholar] [CrossRef]
- Kovács, A.; Van Looy, B.; Cassiman, B. Exploring the scope of open innovation: A bibliometric review of a decade of research. Scientometrics 2015, 104, 951–983. [Google Scholar] [CrossRef]
- Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 2017, 21, 3655–3670. [Google Scholar] [CrossRef] [Green Version]
- Nüsser, M.; Schmidt, S.; Dame, J. Irrigation and Development in the Upper Indus Basin: Characteristics and Recent Changes of a Socio-hydrological System in Central Ladakh, India. Mt. Res. Dev. 2012, 32, 51–61. [Google Scholar] [CrossRef]
- Sivakumar, B. Socio-hydrology: Not a new science, but a recycled and re-worded hydrosociology. Hydrol. Process. 2012, 26, 3788–3790. [Google Scholar] [CrossRef]
- Kandasamy, J.; Sounthararajah, D.; Sivabalan, P.; Chanan, A.; Vigneswaran, S.; Sivapalan, M. Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: A case study from Murrumbidgee River basin, Australia. Hydrol. Earth Syst. Sci. 2014, 18, 1027–1041. [Google Scholar] [CrossRef] [Green Version]
- Ponnambalam, K.; Mousavi, S.J. CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales. Water 2020, 12, 1699. [Google Scholar] [CrossRef]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Boelens, R.; Hoogesteger, J.; Swyngedouw, E.; Vos, J.; Wester, P. Hydrosocial territories: A political ecology perspective. Water Int. 2016, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.D.; de la Cruz Del Río Rama, M.; García, J.Á. Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. Eur. Res. Manag. Bus. Econ. 2017, 23, 8–15. [Google Scholar] [CrossRef] [Green Version]
- López-Illescas, C.; de Moya-Anegón, F.; Moed, H.F. Coverage and citation impact of oncological journals in the Web of Science and Scopus. J. Inf. 2008, 2, 304–316. [Google Scholar] [CrossRef]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Cortés-Sánchez, J.D. A bibliometric outlook of the most cited documents in business, management and accounting in Ibero-America. Eur. Res. Manag. Bus. Econ. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. Innovation and technology for sustainable mining activity: A worldwide research assessment. J. Clean. Prod. 2019, 221, 38–54. [Google Scholar] [CrossRef]
- Meseguer-Sánchez, V.; Abad-Segura, E.; Belmonte-Ureña, L.J.; Molina-Moreno, V. Examining the Research Evolution on the Socio-Economic and Environmental Dimensions on University Social Responsibility. Int. J. Environ. Res. Public Health 2020, 17, 4729. [Google Scholar] [CrossRef]
- Hallinger, P.; Nguyen, V.-T. Mapping the Landscape and Structure of Research on Education for Sustainable Development: A Bibliometric Review. Sustainability 2020, 12, 1947. [Google Scholar] [CrossRef] [Green Version]
- Dzikowski, P. A bibliometric analysis of born global firms. J. Bus. Res. 2018, 85, 281–294. [Google Scholar] [CrossRef]
- Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall Research: A Bibliometric Analysis and Future Trends. Geosciences 2020, 10, 403. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Inf. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Travis Waller, S. Reviewing the transport domain: An evolutionary bibliometrics and network analysis. Scientometrics 2017, 110, 843–865. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Benckendorff, P.; Zehrer, A. A Network Analysis of Tourism Research. Ann. Tour. Res. 2013, 43, 121–149. [Google Scholar] [CrossRef]
- Pico-Saltos, R.; Carrión-Mero, P.; Montalván-Burbano, N.; Garzás, J.; Redchuk, A. Research Trends in Career Success: A Bibliometric Review. Sustainability 2021, 13, 4625. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Inf. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Payán-Sánchez, B.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N.; Pérez-Valls, M. Open Innovation for Sustainability or Not: Literature Reviews of Global Research Trends. Sustainability 2021, 13, 1136. [Google Scholar] [CrossRef]
- Del Río-Rama, M.; Maldonado-Erazo, C.; Álvarez-García, J.; Durán-Sánchez, A. Cultural and Natural Resources in Tourism Island: Bibliometric Mapping. Sustainability 2020, 12, 724. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef] [PubMed]
- Nobanee, H.; Al Hamadi, F.Y.; Abdulaziz, F.A.; Abukarsh, L.S.; Alqahtani, A.F.; AlSubaey, S.K.; Alqahtani, S.M.; Almansoori, H.A. A Bibliometric Analysis of Sustainability and Risk Management. Sustainability 2021, 13, 3277. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Chandra, Y. Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis. PLoS ONE 2018, 13, e0190228. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Toril, J.; Ruiz-Real, J.; Haba-Osca, J.; de Pablo Valenciano, J. Forests’ First Decade: A Bibliometric Analysis Overview. Forests 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Mohorjy, A.M. Multidisciplinary Planning and Managing Of Water Reuse. J. Am. Water Resour. Assoc. 1989, 25, 433–442. [Google Scholar] [CrossRef]
- Turton, A.R.; Schreiner, B.; Leestemaker, J. Feminization as a critical component of the changing hydrosocial contract. Water Sci. Technol. 2001, 43, 155–163. [Google Scholar] [CrossRef]
- Meissner, R.; Turton, A.R. The hydrosocial contract theory and the Lesotho Highlands Water Project. Water Policy 2003, 5, 115–126. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Norman, E.S.; Bakker, K.; Cook, C. Introduction to the Themed Section: Water Governance and the Politics of Scale. Water Altern. 2012, 5, 52–61. [Google Scholar]
- Di Baldassarre, G.; Nohrstedt, D.; Mård, J.; Burchardt, S.; Albin, C.; Bondesson, S.; Breinl, K.; Deegan, F.M.; Fuentes, D.; Lopez, M.G.; et al. An Integrative Research Framework to Unravel the Interplay of Natural Hazards and Vulnerabilities. Earth’s Future 2018, 6, 305–310. [Google Scholar] [CrossRef]
- Boelens, R.; Shah, E.; Bruins, B. Contested Knowledges: Large Dams and Mega-Hydraulic Development. Water 2019, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Musacchio, A.; Re, V.; Mas-Pla, J.; Sacchi, E. EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio 2020, 49, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Solla-Price, D.; John, D. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963. [Google Scholar]
- Arthur, M.B.; Rousseau, D.M. A Career Lexicon for the 21st Century. Acad. Manag. Perspect. 1996, 10, 28–39. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; Ortiz-Martínez, V.M.; García-Martínez, N.; de los Ríos, A.P.; Hernández-Fernández, F.J.; Quesada-Medina, J. Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Appl. Energy 2020, 264, 114753. [Google Scholar] [CrossRef]
- López-Muñoz, F.; Alamo, C.; Quintero-Gutiérrez, F.J.; García-García, P. A bibliometric study of international scientific productivity in attention-deficit hyperactivity disorder covering the period 1980–2005. Eur. Child Adolesc. Psychiatry 2008, 17, 381–391. [Google Scholar] [CrossRef]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Narangajavana, Y. Quality in Tourism Literature: A Bibliometric Review. Sustainability 2019, 11, 3859. [Google Scholar] [CrossRef] [Green Version]
- Boelens, R. Cultural politics and the hydrosocial cycle: Water, power and identity in the Andean highlands. Geoforum 2014, 57, 234–247. [Google Scholar] [CrossRef]
- Hoogesteger, J.; Boelens, R.; Baud, M. Territorial pluralism: Water users’ multi-scalar struggles against state ordering in Ecuador’s highlands. Water Int. 2016, 41, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M. Debates-Perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems”-Socio-hydrology. Water Resour. Res. 2015, 51, 4795–4805. [Google Scholar] [CrossRef]
- León-Castro, M.; Rodríguez-Insuasti, H.; Montalván-Burbano, N.; Victor, J.A. Bibliometrics and Science Mapping of Digital Marketing. In Marketing and Smart Technologies; Rocha, Á., Reis, J.L., Peter, M.K., Cayolla, R., Loureiro, S., Bogdanović, Z., Eds.; Springer: Singapore, 2021; pp. 95–107. [Google Scholar]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef] [Green Version]
- Swyngedouw, E. Technonatural revolutions: The scalar politics of Franco’s hydro-social dream for Spain, 1939–1975. Trans. Inst. Br. Geogr. 2007, 32, 9–28. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 2015, 51, 4770–4781. [Google Scholar] [CrossRef]
- Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G. Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking attitude and trust. J. Hydrol. 2014, 518, 71–82. [Google Scholar] [CrossRef]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- Meehan, K.M. Tool-power: Water infrastructure as wellsprings of state power. Geoforum 2014, 57, 215–224. [Google Scholar] [CrossRef]
- Vogel, R.M.; Lall, U.; Cai, X.; Rajagopalan, B.; Weiskel, P.K.; Hooper, R.P.; Matalas, N.C. Hydrology: The interdisciplinary science of water. Water Resour. Res. 2015, 51, 4409–4430. [Google Scholar] [CrossRef]
- Savenije, H.H.G.; Hoekstra, A.Y.; Van Der Zaag, P. Evolving water science in the Anthropocene. J. Hydrol. Earth Syst. Sci. 2014, 18, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.N. Acting, predicting and intervening in a socio-hydrological world. Hydrol. Earth Syst. Sci. 2014, 18, 927–952. [Google Scholar] [CrossRef] [Green Version]
- Hanisch, B.; Wald, A. A Bibliometric View on the Use of Contingency Theory in Project Management Research. Proj. Manag. J. 2012, 43, 4–23. [Google Scholar] [CrossRef]
- Jeong, D.; Koo, Y. Analysis of Trend and Convergence for Science and Technology using the VOSviewer. Int. J. Contents 2016, 12, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Woyessa, Y.E.; Welderufael, W.A. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks. Adv. Geosci. 2012, 29, 31–40. [Google Scholar]
- Perreault, T. What kind of governance for what kind of equity? Towards a theorization of justice in water governance. Water Int. 2014, 39, 233–245. [Google Scholar] [CrossRef]
- Fernandez, S.; Bouleau, G.; Treyer, S. Bringing politics back into water planning scenarios in Europe. J. Hydrol. 2014, 518, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.J.; Sangwan, N.; Sung, K.; Chen, X.; Merwade, V. Incorporating institutions and collective action into a sociohydrological model of flood resilience. Water Resour. Res. 2017, 53, 1336–1353. [Google Scholar] [CrossRef]
- Falkenmark, M. Water resilience and human life support—Global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Millington, N. Producing water scarcity in São Paulo, Brazil: The 2014–2015 water crisis and the binding politics of infrastructure. Polit. Geogr. 2018, 65, 26–34. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N. Participatory Process for Local Development: Sustainability of Water Resources in Rural Communities: Case Manglaralto-Santa Elena, Ecuador. In Handbook of Sustainability Science and Research; Springer: Cham, Switzerland, 2018; pp. 663–676. [Google Scholar]
- Herrera, G.; Briones, J.; Carrión, P. Prácticas de gestión para una comunidad sostenible y su incidencia en el desarrollo, Manglaralto-Santa Elena, Ecuador. In Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, and Infrastructure for Sustainable Cities and Communities”, Montego Bay, Jamaica, 24–26 July 2019. [Google Scholar]
- Dewulf, A.; Karpouzoglou, T.; Warner, J.; Wesselink, A.; Mao, F.; Vos, J.; Tamas, P.; Groot, A.E.; Heijmans, A.; Ahmed, F.; et al. The power to define resilience in social–hydrological systems: Toward a power-sensitive resilience framework. WIREs Water 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Karpouzoglou, T.; Dang Tri, V.P.; Ahmed, F.; Warner, J.; Hoang, L.; Nguyen, T.B.; Dewulf, A. Unearthing the ripple effects of power and resilience in large river deltas. Environ. Sci. Policy 2019, 98, 1–10. [Google Scholar] [CrossRef]
- Eslamian, S.; Reyhani, M.N.; Syme, G. Building socio-hydrological resilience: From theory to practice. J. Hydrol. 2019, 575, 930–932. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Yakir, D.; Osem, Y. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. Glob. Change Biol. 2017, 23, 2801–2817. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.W.; Westbrook, C.J. Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management. Hydrol. Process. 2015, 29, 3905–3924. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, L.H.; Carpenter, S.R.; Folke, C.; Olsson, P.; Peterson, G. Water RATs (Resilience, Adaptability, and Transformability) in Lake and Wetland Social-Ecological Systems. Ecol. Soc. 2006, 11, 1–10. [Google Scholar] [CrossRef]
- Bozza, A.; Asprone, D.; Fabbrocino, F. Urban Resilience: A Civil Engineering Perspective. Sustainability 2017, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Cariolet, J.-M.; Vuillet, M.; Diab, Y. Mapping urban resilience to disasters—A review. Sustain. Cities Soc. 2019, 51, 101746. [Google Scholar] [CrossRef]
- Elshafei, Y.; Coletti, J.Z.; Sivapalan, M.; Hipsey, M.R. A model of the socio-hydrologic dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system. Water Resour. Res. 2015, 51, 6442–6471. [Google Scholar] [CrossRef]
- Pouladi, P.; Afshar, A.; Molajou, A.; Afshar, M.H. Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrol. Sci. J. 2020, 65, 1249–1261. [Google Scholar] [CrossRef]
- Wheater, H.S.; Gober, P. Water security and the science agenda. Water Resour. Res. 2015, 51, 5406–5424. [Google Scholar] [CrossRef]
- Srinivasan, V.; Konar, M.; Sivapalan, M. A dynamic framework for water security. Water Secur. 2017, 1, 12–20. [Google Scholar] [CrossRef]
- Schmidt, J.J. Historicising the hydrosocial cycle. Water Altern. 2014, 7, 220–234. [Google Scholar]
- Gober, P.; Wheater, H.S. Debates-Perspectives on socio-hydrology: Modeling flood risk as a public policy problem. Water Resour. Res. 2015, 51, 4782–4788. [Google Scholar] [CrossRef]
- Linton, J. Modern water and its discontents: A history of hydrosocial renewal. Wiley Interdiscip. Rev. Water 2014, 1, 111–120. [Google Scholar] [CrossRef]
- Meehan, K. Disciplining De Facto Development: Water Theft and Hydrosocial Order in Tijuana. Environ. Plan. D Soc. Space 2013, 31, 319–336. [Google Scholar] [CrossRef]
- Pilkington, A.; Meredith, J. The evolution of the intellectual structure of operations management-1980–2006: A citation/co-citation analysis. J. Oper. Manag. 2009, 27, 185–202. [Google Scholar] [CrossRef]
- Samiee, S.; Chabowski, B.R. Knowledge structure in international marketing: A multi-method bibliometric analysis. J. Acad. Mark. Sci. 2012, 40, 364–386. [Google Scholar] [CrossRef]
- Coombes, P.H.; Nicholson, J.D. Business models and their relationship with marketing: A systematic literature review. Ind. Mark. Manag. 2013, 42, 656–664. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H.S. Socio-hydrology and the science–policy interface: A case study of the Saskatchewan River basin. Hydrol. Earth Syst. Sci. 2014, 18, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V. Reimagining the past—Use of counterfactual trajectories in socio-hydrological modelling: The case of Chennai, India. Hydrol. Earth Syst. Sci. 2015, 19, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Pande, S.; Savenije, H.H.G. A sociohydrological model for smallholder farmers in Maharashtra, India. Water Resour. Res. 2016, 52, 1923–1947. [Google Scholar] [CrossRef]
- Gober, P.; White, D.D.; Quay, R.; Sampson, D.A.; Kirkwood, C.W. Socio-hydrology modelling for an uncertain future, with examples from the USA and Canada. Geol. Soc. Lond. Spec. Publ. 2017, 408, 183–199. [Google Scholar] [CrossRef]
- Srinivasan, V.; Sanderson, M.; Garcia, M.; Konar, M.; Blöschl, G.; Sivapalan, M. Prediction in a socio-hydrological world. Hydrol. Sci. J. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boelens, R.; Hoogesteger, J.; Rodriguez de Francisco, J.C. Commoditizing Water Territories: The Clash between Andean Water Rights Cultures and Payment for Environmental Services Policies. Capital. Nat. Social. 2014, 25, 84–102. [Google Scholar] [CrossRef]
- Boelens, R.; Perreault, T.; Jeroen, V. Introduction: Hydrosocial De-Patterning and Re-Composition. In Water Justice; Cambridge University Press: Cambridge, UK, 2018; pp. 108–114. [Google Scholar]
- Budds, J. Securing the market: Water security and the internal contradictions of Chile’s Water Code. Geoforum 2020, 113, 165–175. [Google Scholar] [CrossRef]
- Linton, J. The right to bring waters into being. In Water Politics; Routledge: Milton, UK, 2019; pp. 54–67. [Google Scholar]
- Swyngedouw, E. “Not A Drop of Water...”: State, Modernity and the Production of Nature in Spain, 1898–2010. Environ. Hist. 2014, 20, 67–92. [Google Scholar] [CrossRef]
- Swyngedouw, E.; Boelens, R. “… And Not a Single Injustice Remains”: Hydro-Territorial Colonization and Techno-Political Transformations in Spain. In Water Justice; Cambridge University Press: Cambridge, UK, 2018; pp. 115–133. [Google Scholar]
- Re, V.; Sacchi, E.; Kammoun, S.; Tringali, C.; Trabelsi, R.; Zouari, K.; Daniele, S. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci. Total Environ. 2017, 593–594, 664–676. [Google Scholar] [CrossRef]
- Yu, D.J.; Chang, H.; Davis, T.T.; Hillis, V.; Marston, L.T.; Oh, W.S.; Sivapalan, M.; Waring, T.M. Socio-hydrology: An interplay of design and self-organization in a multilevel world. Ecol. Soc. 2020, 25. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Yan, K.; Ferdous, M.R.; Brandimarte, L. The interplay between human population dynamics and flooding in Bangladesh: A spatial analysis. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Brandimarte, L.; Beven, K. The seventh facet of uncertainty: Wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrol. Sci. J. 2016, 61, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Saccà, S.; Aronica, G.T.; Grimaldi, S.; Ciullo, A.; Crisci, M. Human-flood interactions in Rome over the past 150 years. Adv. Geosci. 2017, 44, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Kuil, L.; Carr, G.; Viglione, A.; Prskawetz, A.; Blöschl, G. Conceptualizing socio-hydrological drought processes: The case of the Maya collapse. Water Resour. Res. 2016, 52, 6222–6242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuil, L.; Evans, T.; McCord, P.F.; Salinas, J.L.; Blöschl, G. Exploring the Influence of Smallholders’ Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socio-Hydrological Modeling. Water Resour. Res. 2018, 54, 2580–2604. [Google Scholar] [CrossRef]
- Riaux, J. Engager la construction d’un regard sociohydrologique: Des archives catalyseurs de l’interdisciplinarité. Nat. Sci. Soc. 2013, 21, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Riaux, J.; Massuel, S. Construire un regard sociohydrologique (2). Le terrain en commun, générateur de convergences scientifiques. Nat. Sci. Soc. 2014, 22, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Riaux, J.; Ogilvie, A.; Jenhaoui, Z. More than just water! Hydraulic materiality and the process of resource making: A sociohydrological reading of Tunisian hillside reservoirs. J. Rural Stud. 2020, 79, 125–135. [Google Scholar] [CrossRef]
- Lele, S. Watershed services of tropical forests: From hydrology to economic valuation to integrated analysis. Curr. Opin. Environ. Sustain. 2009, 1, 148–155. [Google Scholar] [CrossRef]
- Serrano, L. Aguas Dulces y Derecho Internacional: El Agua Como Bien Común y Como Derecho Humano Desde la Perspectiva del Desarrollo Sostenible; Institut de Drets Humans de Catalunya: Barcelona, Spain, 2014. [Google Scholar]
- ONU. Comisión Económica para Europa de las Naciones Unidas. Convenio Sobre la Protección y Utilización de los Cursos de Agua Transfronterizos y de los Lagos Internacionales Guía para la Implementación del Convenio Sobre el Agua; ONU: Nueva York, NY, USA; Geneva, Switzerland, 2014. [Google Scholar]
- Swyngedouw, E.; Williams, J. From Spain’s hydro-deadlock to the desalination fix. Water Int. 2016, 41, 54–73. [Google Scholar] [CrossRef]
- Wen, B.; Horlings, E.; van der Zouwen, M.; van den Besselaar, P. Mapping science through bibliometric triangulation: An experimental approach applied to water research. J. Assoc. Inf. Sci. Technol. 2017, 68, 724–738. [Google Scholar] [CrossRef]
- Saritas, O.; Burmaoglu, S. The evolution of the use of Foresight methods: A scientometric analysis of global FTA research output. Scientometrics 2015, 105, 497–508. [Google Scholar] [CrossRef]
- Boyack, K.W. Thesaurus-based methods for mapping contents of publication sets. Scientometrics 2017, 111, 1141–1155. [Google Scholar] [CrossRef]
- Hallinger, P.; Chatpinyakoop, C. A Bibliometric Review of Research on Higher Education for Sustainable Development, 1998–2018. Sustainability 2019, 11, 2401. [Google Scholar] [CrossRef] [Green Version]
- Martínez-López, F.J.; Merigó, J.M.; Valenzuela-Fernández, L.; Nicolás, C. Fifty years of the European Journal of Marketing: A bibliometric analysis. Eur. J. Mark. 2018, 52, 439–468. [Google Scholar] [CrossRef]
- Merigó, J.M.; Yang, J.-B. A bibliometric analysis of operations research and management science. Omega 2017, 73, 37–48. [Google Scholar] [CrossRef] [Green Version]
Ranking | Country | Publications | Citations | Total Link Strength |
---|---|---|---|---|
1 | United States of America | 171 | 3009 | 76,382 |
2 | Netherlands | 83 | 2237 | 49,965 |
3 | United Kingdom | 63 | 1276 | 31,783 |
4 | Australia | 44 | 1599 | 26,571 |
5 | Canada | 38 | 1059 | 22,725 |
6 | Germany | 37 | 329 | 16,040 |
7 | Sweden | 33 | 404 | 22,858 |
8 | Austria | 27 | 1309 | 22,068 |
9 | China | 27 | 298 | 22,282 |
10 | France | 24 | 564 | 13,388 |
11 | Spain | 23 | 171 | 9256 |
12 | Italy | 21 | 201 | 14,135 |
13 | India | 19 | 292 | 8967 |
14 | Switzerland | 17 | 157 | 9011 |
15 | Brazil | 14 | 108 | 4404 |
Author | University | Country | Documents | Citations |
---|---|---|---|---|
Boelens, R. | Wageningen University & Research | Germany | 27 | 730 |
Sivapalan, M. | University of Illinois Urbana–Champaign | United States of America | 26 | 1135 |
Di Baldassarre, G. | Uppsala Universitet | Sweden | 17 | 681 |
Blöschl, G. | Technische Universitat Wien | Austria | 16 | 1162 |
Vos, J. | Wageningen University & Research | Netherlands | 12 | 206 |
Garcia, M. | Arizona State University | United States of America | 11 | 130 |
Viglione, A. | Politecnico di Torino | Italy | 10 | 653 |
Kuil, L. | Waterschap (Waterboard) Drents Overijsselse Delta | Netherlands | 9 | 594 |
Nüsser, M. | Universität Heidelberg | Germany | 9 | 133 |
Pande, S. | TU Delft | Netherlands | 9 | 102 |
Linton, J. | Universite de Limoges | France | 7 | 391 |
Brandimarte, L. | Royal Institute of Technology (KTH) | Sweden | 7 | 363 |
Hoogesteger, J. | UNAM Campus Morelia | Mexico | 7 | 296 |
Sanderson, M.R. | Kansas State University | United States of America | 7 | 114 |
Savenije, H.H.G. | Delft University of Technology | Netherlands | 6 | 582 |
R | Authors | Years | Title | Citations | Reference |
---|---|---|---|---|---|
1 | Sivapalan, M., Savenije, H.H.G., Blöschl, G. | 2012 | Socio-hydrology: a new science of people and water | 465 | [23] |
2 | Brown, R.R., Keith, N., Wong, T.H.F. | 2009 | Urban water management in cities: historical, current and future regimes | 345 | [93] |
3 | Linton, J., Budds, J. | 2014 | The hydrosocial cycle: defining and mobilizing a relational-dialectical approach to water | 307 | [66] |
4 | Wong, T.H.F., Brown, R.R. | 2009 | The water sensitive city: principles for practice | 244 | [112] |
5 | Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J.L., Blöschl, G. | 2013 | Socio-hydrology: conceptualising human-flood interactions | 231 | [113] |
6 | Swyngedouw, E. | 2007 | Technonatural revolutions: the scalar politics of Franco’s hydro-social dream for Spain, 1939–1975 | 200 | [114] |
7 | Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., Blöschl, G. | 2015 | Debates—perspectives on socio-hydrology: capturing feedbacks between physical and social processes | 178 | [115] |
8 | Boelens, R., Hoogesteger, J., Swyngedouw, E., Vos, J., Wester, P. | 2016 | Hydrosocial territories: a political ecology perspective | 147 | [67] |
9 | Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J.L., Scolobig, A., Blöschl, G. | 2014 | Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust | 125 | [116] |
10 | Boelens, R. | 2014 | Cultural politics and the hydrosocial cycle: water, power and identity in the Andean highlands | 124 | [108] |
11 | Elshafei, Y., Sivapalan, M., Tonts, M., Hipsey, M.R. | 2014 | A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach | 107 | [117] |
12 | Meehan, K.M. | 2014 | Tool-power: water infrastructure as wellsprings of state power | 103 | [118] |
13 | Vogel, R.M., Lall, U., Cai, X., Rajagopalan, B., Weiskel, P.K., Hooper, R.P., Matalas, N.C. | 2015 | Hydrology: the interdisciplinary science of water | 94 | [119] |
14 | Savenije, H.H.G., Hoekstra, A.Y., Van Der Zaag, P. | 2014 | Evolving water science in the Anthropocene | 73 | [120] |
15 | Lane, S.N. | 2014 | Acting, predicting and intervening in a socio-hydrological world | 72 | [121] |
Ranking | Authors | Citations | Total Link Strength |
---|---|---|---|
1 | Sivapalan, M. | 718 | 46,475 |
2 | Boelens, R. | 629 | 25,825 |
3 | Bloschl, G. | 513 | 31,110 |
4 | Swyngedouw, E. | 486 | 16,165 |
5 | Di Baldassarre, G. | 344 | 20,780 |
6 | Budds, J. | 274 | 8391 |
7 | Savenije, H.H.G. | 252 | 16,217 |
8 | Viglione, A. | 249 | 15,997 |
9 | Linton, J. | 234 | 7027 |
10 | Srinivasan, V. | 214 | 14,077 |
11 | Bakker, K. | 210 | 6739 |
12 | Carr, G. | 210 | 13,263 |
13 | Kuil, L. | 196 | 12,660 |
14 | Hoogesteger, J. | 180 | 8120 |
15 | Wester, P. | 149 | 5962 |
Ranking | Scientific Source | Co-Citations | Total Link Strength |
---|---|---|---|
1 | Water Resources Research | 951 | 23,629 |
2 | Hydrology and Earth System Sciences | 762 | 18,919 |
3 | Geoforum | 584 | 10,769 |
4 | Water International | 395 | 7377 |
5 | Journal of Hydrology | 379 | 9943 |
6 | Hydrological Processes | 310 | 8103 |
7 | Ecological Economics | 294 | 7922 |
8 | Water Alternatives | 288 | 5214 |
9 | Science | 256 | 6629 |
10 | Annals of the American Association of Geographers | 233 | 4728 |
11 | Global Environmental Change | 205 | 5518 |
12 | Hydrological Sciences Journal | 205 | 5982 |
13 | Water Resources Management | 156 | 3758 |
14 | Water | 150 | 2917 |
15 | Nature | 130 | 3940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. https://doi.org/10.3390/w13091283
Herrera-Franco G, Montalván-Burbano N, Carrión-Mero P, Bravo-Montero L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water. 2021; 13(9):1283. https://doi.org/10.3390/w13091283
Chicago/Turabian StyleHerrera-Franco, Gricelda, Néstor Montalván-Burbano, Paúl Carrión-Mero, and Lady Bravo-Montero. 2021. "Worldwide Research on Socio-Hydrology: A Bibliometric Analysis" Water 13, no. 9: 1283. https://doi.org/10.3390/w13091283
APA StyleHerrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., & Bravo-Montero, L. (2021). Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water, 13(9), 1283. https://doi.org/10.3390/w13091283