# Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Governing Equations and Numerical Framework

#### 2.1. Exact Equations

#### 2.2. LES Filtering

#### 2.3. The SPH Method

#### 2.4. Boundary Conditions

#### 2.5. Time Marching Scheme

**and**

## 3. Pipe Bend Model Description

#### Validation and Particle Independence Test

## 4. Results

#### 4.1. Laminar Flow

#### 4.2. Turbulent Flow

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int. J. Heat Fluid Flow
**1982**, 3, 213–219. [Google Scholar] [CrossRef][Green Version] - Sudo, K.; Sumida, M.; Hibara, H. Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Exp. Fluids
**1998**, 25, 42–49. [Google Scholar] [CrossRef] - Sudo, K.; Sumida, M.; Hibara, H. Experimental investigation on turbulent flow in a square-sectioned 90-degree bend. Exp. Fluids
**2001**, 30, 246–252. [Google Scholar] [CrossRef] - Hellström, L.H.O.; Sinha, A.; Smits, A.J. Visualizing the very-large-scale motion in turbulent pipe flow. Phys. Fluids
**2011**, 23, 011703. [Google Scholar] [CrossRef][Green Version] - Verma, A.K.; Singh, S.N.; Seshadri, V. Pressure drop for the flow of high concentration solid-liquid mixture across 90
^{°}horizontal coventional circular pipe bend. Indian J. Eng. Mat. Sci.**2006**, 13, 477–483. [Google Scholar] - Rup, K.; Malinowski, L.; Sarna, P. Measurements of flow rate in square-sectioned duct bend. J. Theoret. Appl. Mech.
**2011**, 49, 301–311. [Google Scholar] - Kalpakli, A.; Örlü, R. Turbulent pipe flow downstream a 90
^{°}pipe bend with and without superimposed swirl. Int. J. Heat Fluid Flow**2013**, 41, 103–111. [Google Scholar] [CrossRef] - Kim, J.; Yadav, M.; Kim, S. Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Eng. Appl. Comput. Fluid Mech.
**2014**, 8, 229–239. [Google Scholar] [CrossRef] - Wang, S.; Ren, C.; Sun, Y.; Yang, X.; Tu, J. A study on the instantaneous turbulent flow field in a 90-degree elbow pipe with circular section. Sci. Tech. Nucl. Inst.
**2016**, 2016, 5265748. [Google Scholar] [CrossRef] - Kalpakli Vester, A.; Sattarzadeh, S.S.; Örlü, R. Combined hot-wire and PIV measurements of a swirling turbulent flow at the exit of a 90
^{°}pipe bend. J. Vis.**2016**, 19, 261–273. [Google Scholar] [CrossRef] - Kalpakli Vester, A.; Örlü, R.; Alfredsson, P.H. Turbulent flows in curved pipes: Recent advances in experiments and simulations. Appl. Mech. Rev.
**2016**, 68, 050802. [Google Scholar] [CrossRef] - Van de Vosse, F.N.; van Steenhoven, A.A.; Segal, A.; Janssen, J.D. A finite element analysis of the steady laminar entrance flow in a 90
^{°}curved tube. Int. J. Numer. Meth. Fluids**1989**, 9, 275–287. [Google Scholar] [CrossRef] - Pantokratoras, A. Steady laminar flow in a 90
^{°}bend. Adv. Mech. Eng.**2016**, 8, 1–9. [Google Scholar] [CrossRef] - Röhrig, R.; Jakirlić, S.; Tropea, C. Comparative computational study of turbulent flow in a 90
^{°}pipe elbow. Int. J. Heat Fluid Flow**2015**, 55, 120–131. [Google Scholar] [CrossRef] - Dutta, P.; Saha, S.K.; Nandi, N.; Pal, N. Numerical study on flow separation in 90
^{°}pipe bend under high Reynolds number by k-ϵ modelling. Eng. Sci. Technol. Int. J.**2016**, 19, 904–910. [Google Scholar] - Wang, Z.; Orlü, R.; Schlatter, P.; Chung, Y.M. Direct numerical simulation of a turbulent 90
^{°}bend pipe flow. Int. J. Heat Fluid Flow**2018**, 73, 199–208. [Google Scholar] [CrossRef][Green Version] - Hufganel, L.; Canton, J.; "Orlü, R.; Marin, O.; Merzari, E.; Schlatter, P. The three-dimensional structure of swirl-switching in bent pipe flow. J. Fluid Mech.
**2018**, 835, 86–101. [Google Scholar] - Du, X.; Wei, A.; Fang, Y.; Yang, Z.; Wei, D.; Lin, C.-H.; Jin, Z. The effect of bend angle on pressure drop and flow behavior in a corrugated duct. Acta Mech.
**2020**, 231, 3755–3777. [Google Scholar] [CrossRef] - Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T. Smoothed particle hydrodynamics simulations of flow separation at bends. Comput. Fluids
**2014**, 90, 138–146. [Google Scholar] [CrossRef][Green Version] - Alvarado-Rodríguez, C.E.; Klapp, J.; Sigalotti, L.D.G.; Domínguez, J.M.; de la Cruz Sánchez, E. Nonreflecting outlet boundary conditions for incompressible flows using SPH. Comput. Fluids
**2017**, 159, 177–188. [Google Scholar] [CrossRef][Green Version] - Rosić, N.M.; Kolarević, M.B.; Savić, L.M.; Dordević, D.M.; Kapor, R.S. Numerical modelling of supercritical flow in circular conduit bends using SPH method. J. Hydrodyn.
**2017**, 29, 344–352. [Google Scholar] [CrossRef] - Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.
**1992**, 30, 543–574. [Google Scholar] [CrossRef] - Liu, M.B.; Liu, G.R. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Meth. Eng.
**2010**, 17, 25–76. [Google Scholar] [CrossRef][Green Version] - Monaghan, J.J. Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech.
**2012**, 44, 323–346. [Google Scholar] [CrossRef] - Becker, M.; Teschner, M. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Europhysics Symposium on Computer Animation, San Diego, CA, USA, 2–4 August 2007; ACM Press: San Diego, CA, USA, 2007; pp. 32–58. [Google Scholar]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid scale eddy viscosity model. Phys. Fluids
**1991**, 3, 1760–1765. [Google Scholar] [CrossRef][Green Version] - Gómez-Gesteira, M.; Rogers, B.D.; Crespo, A.J.C.; Dalrymple, R.A.; Narayanaswamy, M.; Domínguez, J.M. Sphysics—Development of a free-surface fluid solver—Part 1: Theory and formulations. Comput. Geosci.
**2012**, 48, 289–299. [Google Scholar] [CrossRef] - Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys.
**2003**, 191, 448–475. [Google Scholar] [CrossRef] - Lo, E.Y.M.; Shao, S. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl. Ocean Res.
**2002**, 24, 275–286. [Google Scholar] - Bonet, J.; Lok, T.-S.L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Meth. Appl. Mech. Eng.
**1999**, 180, 97–115. [Google Scholar] [CrossRef] - Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P.; Feldman, J. Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Meth. Appl. Mech. Eng.
**2013**, 256, 132–148. [Google Scholar] [CrossRef] - Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math.
**1995**, 4, 389–396. [Google Scholar] [CrossRef] - Dehnen, W.; Aly, H. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc.
**2012**, 425, 1068–1082. [Google Scholar] [CrossRef][Green Version] - Crespo, A.J.C.; Gómez-Gesteira, M.; Dalrymple, R.A. Boundary conditions generated by dynamic particles in SPH methods. Comput. Mat. Cont.
**2007**, 5, 173–184. [Google Scholar] - Crespo, A.J.C.; Domínguez, J.M.; Rogers, B.D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O. DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun.
**2015**, 187, 204–216. [Google Scholar] [CrossRef]

**Figure 2.**Schematic diagram of the bend geometry and dimensions. The vertical lines on the outer arc of the pipe mark the stations where the numerical results are compared with the experimental data.

**Figure 3.**Numerical horizontal (

**left**) and vertical (

**right**) streamwise velocity profiles for $N=$ 1,080,924, 2,104,126 and 4,042,185 particles as compared with the experimental data at ${S}_{2}=0.58D$ upstream of the bend inlet for Re = 43,000. Asymptotic convergence of the numerical solution to the experimental measurements is obtained for $N=$ 4,042,185 SPH particles.

**Figure 4.**Comparison of the numerical normalized horizontal (

**left**) and vertical (

**right**) streamwise velocity profiles with the experimental measurements at ${S}_{2}=0.58D$ upstream of the bend inlet for Re $=500$ and $N=$ 4,042,185, 8,064,442 and 16,056,513 particles.

**Figure 5.**Comparison of the numerical normalized horizontal (

**left**) and vertical (

**right**) streamwise velocity profiles with the experimental measurements at ${S}_{2}=0.58D$ upstream of the bend inlet for Re $=1093$ and $N=$ 4,042,185, 8,064,442 and 16,056,513 particles.

**Figure 6.**Cross-sectional streamwise velocity maps at planes $\theta ={30}^{\xb0}$, ${60}^{\xb0}$ and ${75}^{\xb0}$ through the bend and ${S}_{3}=1D$ downstream of the bend outlet for Re $=500$ (

**left**) and Re$=1093$ (

**right**). The numbers on the color bars indicate the values of the streamwise velocity normalized to ${v}_{\mathrm{B}}$.

**Figure 7.**Comparison of the numerical normalized horizontal (

**left**) and vertical (

**right**) streamwise velocity profiles with the experimental measurements at ${S}_{2}=0.58D$ upstream of the bend inlet for Re = 43,000 and $N=$ 4,042,185, 8,064,442 and 16,056,513 particles.

**Figure 8.**Comparison of the numerical normalized horizontal (

**left**) and vertical (

**right**) turbulence intensity profiles with the experimental measurements at ${S}_{2}=0.58D$ upstream of the bend inlet for Re = 43,000 and $N=$ 4,042,185, 8,064,442 and 16,056,513 particles.

**Figure 9.**Cross-sectional streamwise velocity maps at planes $\theta ={30}^{\xb0}$, ${60}^{\xb0}$ and ${75}^{\xb0}$ in the bend and at stations ${S}_{3}=1D$ and ${S}_{5}=6D$ downstream of the bend outlet for Re = 43,000. The numbers on the color bars indicate the values of the streamwise velocity normalized to ${v}_{\mathrm{B}}$.

**Figure 10.**Variation of the wall static pressure along the inner and outer arc of the bend at Re = 43,000. The numerically calculated values (filled dots) are compared with Enayet et al.’s [1] experimental measurements (open circles). The data are taken at station ${S}_{1}$ upstream of the bend inlet, at angles $\theta ={15}^{\xb0}$, ${30}^{\xb0}$, ${60}^{\xb0}$ and ${75}^{\xb0}$ in the bend and at stations ${S}_{3}$ and ${S}_{4}$ downstream of the bend outlet for azimuthal angles $\varphi ={0}^{\xb0}$, ${45}^{\xb0}$, ${90}^{\xb0}$, ${135}^{\xb0}$ and ${180}^{\xb0}$ on the circular wall of the pipe.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sigalotti, L.D.G.; Alvarado-Rodríguez, C.E.; Klapp, J.; Cela, J.M. Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend. *Water* **2021**, *13*, 1081.
https://doi.org/10.3390/w13081081

**AMA Style**

Sigalotti LDG, Alvarado-Rodríguez CE, Klapp J, Cela JM. Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend. *Water*. 2021; 13(8):1081.
https://doi.org/10.3390/w13081081

**Chicago/Turabian Style**

Sigalotti, Leonardo Di G., Carlos E. Alvarado-Rodríguez, Jaime Klapp, and José M. Cela. 2021. "Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend" *Water* 13, no. 8: 1081.
https://doi.org/10.3390/w13081081