Decay of Free Residual Chlorine in Wells Water of Northern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Microbiological Analyses
2.3. Statistical Analyses
3. Results
3.1. Microbiological Analysis
3.2. Chlorine Decay
4. Discussion
4.1. Microbiological Analysis
4.2. Chlorine Decay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- ITB—Instituto Trata Brasil. Ranking Do Saneamento 2020; ITB: Sao Paolo, Brazil, 2020; p. 133. [Google Scholar]
- World Health Organization. Safely Managed Drinking Water: Thematic Report on Drinking Water; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Hussein, H. The Guarani Aquifer System, Highly Present but Not High Profile: A Hydropolitical Analysis of Transboundary Groundwater Governance. Environ. Sci. Policy 2018, 83, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Cassuto, D.N.; Sampaio, R.S.R. Keeping It Legal: Transboundary Management Challenges Facing Brazil and the Guarani. Water Int. 2011, 36, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.P.B.; Hussein, H. Production of Scale in Regional Hydropolitics: An Analysis of La Plata River Basin and the Guarani Aquifer System in South America. Geoforum 2019, 99, 42–53. [Google Scholar] [CrossRef]
- Jalba, D.I.; Cromar, N.J.; Pollard, S.J.T.; Charrois, J.W.; Bradshaw, R.; Hrudey, S.E. Safe Drinking Water: Critical Components of Effective Inter-Agency Relationships. Environ. Int. 2010, 36, 51–59. [Google Scholar] [CrossRef]
- Ligon, G.; Bartram, J. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks. Int. J. Environ. Res. Public Health 2016, 13, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasil Portaria de Consolidação. No. 5 de 28 de Setembro de 2017. In Consolidação Das Normas Sobre as Ações e Os Serviços de Saúde Do Sistema Único de Saúde; Ministério Da Saúde: Brasilia, Brazil, 2017; p. 926. [Google Scholar]
- Madzivhandila, V.A.; Chirwa, E.M.N. Modeling Chlorine Decay in Drinking Water Distribution Systems Using Aquasim. Chem. Eng. Trans. 2017, 57, 1111–1116. [Google Scholar] [CrossRef]
- Roth, D.K.; Cornwell, D.A. DBP Impacts from Increased Chlorine Residual Requirements. J. Am. Water Work. Assoc. 2018, 110, 13–28. [Google Scholar] [CrossRef]
- Sanabria, J.; De Julio, M. Decaimento Do Cloro Residual Em Águas De Abastecimento Do Município De Campo Grande/Ms. Rev. De Eng. E Tecnol. 2013, 5, 92–104. [Google Scholar]
- Wu, H.; Dorea, C.C. Towards a Predictive Model for Initial Chlorine Dose in Humanitarian Emergencies. Water 2020, 12, 1506. [Google Scholar] [CrossRef]
- Powell, J.C.; West, J.R.; Hallam, N.B.; Forster, C.F.; Simms, J.; Analyst, N.; Black, B. Performance of various kinetic models for chlorine decay. J. Water Resour. Plan. Manag. 2001. [Google Scholar] [CrossRef]
- Musz-Pomorska, A.; Widomski, M.K.; Matczuk, A.; Sadura, K. Modeling Chlorine Distribution in Water Supply System Utilizing Empirically Determined Chlorine Decay Rate. E3s Web Conf. 2019, 100, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Luo, F.; Dong, F.; Zhao, J.; Zhang, T.; He, G.; Cizmas, L.; Sharma, V.K.; Feng, L. Chlorine Decay and Trihalomethane Formation Following Ferrate(VI) Preoxidation and Chlorination of Drinking Water. Chemosphere 2017, 187, 413–420. [Google Scholar] [CrossRef]
- Rossman, L. Computer Models/Epanet. Water Distribution Systems Handbook; McGraw Hill: New York, NY, USA, 1999. [Google Scholar]
- Brandão, C.J.; Botelho, M.J.C.; Sato, M.I.Z. Guia Nacional de Coleta e Preservação de Amostras: Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos; Agência Nacional de Águas: Brasilia, Brazil, 2018.
- Vieira, P.; Coelho, S.T.; Loureiro, D. Accounting for the Influence of Initial Chlorine Concentration, TOC, Iron and Temperature When Modelling Chlorine Decay in Water Supply. J. Water Supply: Res. Technol. 2004, 53, 453–467. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Marshall, R.T., Ed.; APHA: Washington, WA, USA, 2012; ISBN 978–0-87553–235–6. [Google Scholar]
- Volpato, G.L. Estatistica Sem Dor!!! Best Writing: Botucatu, Brazil, 2016; ISBN 978-85-232-0700-7. [Google Scholar]
- Dalgaard, P. Introdutory Statistics with R; Springer US: New York, NY, USA, 2008; Volume 2, ISBN 978-0-387-79053-4. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2003; Volume 2, ISBN 3-900051-07-0. [Google Scholar]
- Saidan, M.N.; Rawajfeh, K.; Nasrallah, S.; Meric, S.; Mashal, A. Evaluation of factors affecting bulk chlorine decay kinetics for the zai water supply system in jordan. case study. Environ. Prot. Eng. 2017, 43. [Google Scholar] [CrossRef]
- Da Silva, G.A.B.; Meira, C.M.B.S.; de Santana, C.F.D.; Coura, M.D.A.; De Oliveira, R.; Do Nascimento, R.S.; Dos Santos, W.B. Simulação Do Decaimento de Cloro Residual Livre Em Reservatórios de Distribuição de Água. Rev. Dae 2019, 67, 92–103. [Google Scholar] [CrossRef]
- Rodrigues, M.F.S.; Scalize, P.S. Decaimento de cloro residual livre em águas distribuidas em redes de abastecimento. Braz. J. Dev. 2019, 5, 16366–16375. [Google Scholar] [CrossRef]
- Monteiro, L.; Figueiredo, D.; Covas, D.; Menaia, J. Integrating Water Temperature in Chlorine Decay Modelling: A Case Study. Urban Water J. 2017, 14, 1097–1101. [Google Scholar] [CrossRef]
- CONAMA. Classificação de Águas, Doces, Salobras e Salinas do Território Nacional; Resolução CONAMA no. 357, de 17 de março de 2005; CONAMA: Brasilia, Brazil, 2005. [Google Scholar]
- Kang, J.; Jeen, S.-W. Simultaneous removal of nitrate and phosphate in groundwater using ca-citrate complex. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Naser, A.M.; Higgins, E.M.; Arman, S.; Ercumen, A.; Ashraf, S.; Das, K.K.; Rahman, M.; Luby, S.P.; Unicomb, L. Effect of Groundwater Iron on Residual Chlorine in Water Treated with Sodium Dichloroisocyanurate Tablets in Rural Bangladesh. Am. J. Trop. Med. Hyg. 2018, 98, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Stefan, M.I. Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications; IWA Publishing: London, UK, 2017; ISBN 978-1-78040-718-0. [Google Scholar]
- Wang, A.Q.; Lin, Y.L.; Xu, B.; Hu, C.Y.; Gao, Z.C.; Liu, Z.; Cao, T.C.; Gao, N.Y. Factors affecting the water odor caused by chloramines during drinking water disinfection. Sci. Total Environ. 2018, 639, 687–694. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Khan, N.A.; Ahmed, S.; Khan, A.H.; Hussain, A.; Rahisuddin; Changani, F.; Yousefi, M.; Ahmadi, S.; Vambol, V. Chlorination Disinfection By-Products in Municipal Drinking Water–A Review. J. Clean. Prod. 2020, 273, 123159. [Google Scholar] [CrossRef]
- FUNASA. Practical Water Analysis Manual; National Health Foundation (FUNASA): Vitória, Brazil, 2013; p. 150. [Google Scholar]
- Turner, R. Drinking water disinfection-a history and improved monitoring techniques. J. N. Engl. Water Work. Assoc. 2018, 132, 83–89. [Google Scholar]
- Lin, H.; Zhu, X.; Wang, Y.; Yu, X. Effect of Sodium Hypochlorite on Typical Biofilms Formed in Drinking Water Distribution Systems. J. Water Health 2017, 15, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazilian Institute of Geography and Statistics—IBGE. Pesquisa Nacional de Saneamento Básico 2017: Abastecimento de água e esgotamento sanitário; Coordenação de População e Indicadores Sociais: Rio de Janeiro, Brazil, 2017.
- Zuffo, C.E.; de Abreu, F.d.A.M.; Cavalcante, I.N.; Nascimento, G.F. Águas Subterrâneas Em Rondônia: Análise Estatística de Dados Hidroquímicos, Organolépticos e Bacteriológicos. Revista do Instituto Geológico 2009, 30, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, É.R.D.; Holanda, I.B.B.; Carvalho, D.P.; Bernardi, J.V.E.; Manzatto, A.G.; Bastos, W.R. Distribuição Espacial Da Qualidade de Água Subterrânea Na Área Urbana Da Cidade de Porto Velho, Rondônia. Sci. Amazon. 2014, 3, 97–105. [Google Scholar]
- Lauthartte, L.C.; De Holanda, Í.B.B.; Luz, C.C.; Mussy, M.H.; Pansini, S.; Manzatto, Â.G.; Yamashita, M.; Bastos, W.R. Avaliação da qualidade da água subterrânea para consumo humano: Estudo de caso no Distrito de Jaci-Paraná, Porto Velho–RO. R. Águas Subteraneas 2016, 30, 246. [Google Scholar] [CrossRef] [Green Version]
- Painel Saneamento Brasil-Minha Localidade-Comparar Localidades. Available online: https://www.painelsaneamento.org.br/localidade/compare?id=11 (accessed on 21 October 2020).
- Cotruvo, J.A.; Amato, H. Trihalomethanes: Concentrations, Cancer Risks, and Regulations. J. Am. Water Work. Assoc. 2019, 111, 12–20. [Google Scholar] [CrossRef]
- Liu, C.; Ersan, M.S.; Plewa, M.J.; Amy, G.; Karanfil, T. Formation of Iodinated Trihalomethanes and Noniodinated Disinfection Byproducts during Chloramination of Algal Organic Matter Extracted from Microcystis Aeruginosa. Water Res. 2019, 162, 115–126. [Google Scholar] [CrossRef]
- Deborde, M.; von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds during Water Treatment—Kinetics and Mechanisms: A Critical Review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Hallam, N.B.; West, J.R.; Forster, C.F.; Powell, J.C.; Spencer, I. The Decay of Chlorine Associated with the Pipe Wall in Water Distribution Systems. Water Research 2002, 36, 3479–3488. [Google Scholar] [CrossRef]
- Crider, Y.; Sultana, S.; Unicomb, L.; Davis, J.; Luby, S.P.; Pickering, A.J. Can You Taste It? Taste Detection and Acceptability Thresholds for Chlorine Residual in Drinking Water in Dhaka, Bangladesh. Sci. Total Environ. 2018, 613–614, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, A.; Goswami, R.S.; Goswami, A.; Garde, S.; Phadnis, P. Efficacy of Ef-Chlor for Drinking Water Purification and Multipurpose Disinfection. Int. J. Sci. Technol. Res. 2017, 7, 13. [Google Scholar]
- Guedes, A.F.; Tavares, L.N.; Marques, M.N.d.N.; Moura, S.P.; de Sousa, M.N.A. Tratamento Da Água Na Prevenção de Doenças de Veiculação Hídrica. J. Med. Health Promot. 2017, 2, 452–461. [Google Scholar]
- March, H.; Garcia, X.; Domene, E.; Sauri, D. Tap Water, Bottled Water or In-Home Water Treatment Systems: Insights on Household Perceptions and Choices. Water 2020, 12, 1310. [Google Scholar] [CrossRef]
- Ferreira, D.C.; Luz, S.L.B.; Buss, D.F. Avaliação de cloradores simplificados por difusão para descontaminação de água de poços em assentamento rural na Amazônia, Brasil. Ciênc. Saúde Coletiva 2016, 21, 767–776. [Google Scholar] [CrossRef] [Green Version]
Water Source (AIS) | Well Type | Temperature (°C) | Electrical Conductivity (µS cm−1) | pH | Turbidity (NTU) | Nitrate (mg·L−1) | Phosphate (mg·L−1) |
---|---|---|---|---|---|---|---|
AIS 1 | Tube well | 27.0 | 108.0 | 5.3 | 0.20 | 25.83 | 0.20 |
AIS 2 | Protected dug well | 27.4 | 120.0 | 5.1 | 15 | 12.76 | 0.16 |
AIS 3 | Protected dug well | 27.0 | 80.0 | 5.3 | 2.5 | 14.78 | 0.10 |
AIS 4 | Tube well | 28.1 | 130.0 | 4.8 | 11 | 19.96 | <LD |
AIS 5 | Protected dug well | 27.0 | 180.0 | 5.9 | 19 | 33.77 | 0.07 |
AIS 6 | Protected dug well | 28.5 | 57.4 | 5.9 | 6.7 | 7.72 | <LD |
AIS 7 | Tube well | 28.0 | 59.2 | 4.9 | 4.1 | 6.4 | 0.08 |
AIS 8 | Tube well | 27.1 | 49.0 | 4.9 | 1.3 | 9.42 | 0.24 |
AIS 9 | Tube well | 27.9 | 12.6 | 5.5 | 1.1 | 0.1 | 0.06 |
AIS 10 | Protected dug well | 27.2 | 140.0 | 5.0 | 33 | 10.35 | 0.06 |
Descriptive Statistics | Min | 27.0 | 12.6 | 4.8 | 0.20 | 0.1 | 0.13 |
Mean | 27.5 | 93.6 | 5.3 | 9.5 | 14.1 | 0.24 | |
Max | 28.5 | 180.0 | 5.9 | 33.0 | 33.8 | 0.07 | |
SD | 0.6 | 50.6 | 0.4 | 10.0 | 10.0 | 0.20 |
Initial Chlorine Concentration | Tube Wells (n = 5) | Protected Dug Wells (n = 5) | ||||
---|---|---|---|---|---|---|
k h−1 | k.day−1 | R2 | k h−1 | k day−1 | R2 | |
C0 0.2 mg·L−1 | 0.0361 | 0.8664 | 0.8652 | 0.1165 | 2.796 | 0.9682 |
C0 0.6 mg·L−1 | 0.008 | 0.192 | 0.816 | 0.0345 | 0.828 | 0.8436 |
C0 1.0 mg·L−1 | 0.0072 | 0.1728 | 0.7312 | 0.0174 | 0.4176 | 0.8536 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, T.F.; Baía, C.C.; Machado, T.L.d.S.; Dórea, C.C.; Bastos, W.R. Decay of Free Residual Chlorine in Wells Water of Northern Brazil. Water 2021, 13, 992. https://doi.org/10.3390/w13070992
Vargas TF, Baía CC, Machado TLdS, Dórea CC, Bastos WR. Decay of Free Residual Chlorine in Wells Water of Northern Brazil. Water. 2021; 13(7):992. https://doi.org/10.3390/w13070992
Chicago/Turabian StyleVargas, Taise Ferreira, Célia Ceolin Baía, Tatiana Lemos da Silva Machado, Caetano Chang Dórea, and Wanderley Rodrigues Bastos. 2021. "Decay of Free Residual Chlorine in Wells Water of Northern Brazil" Water 13, no. 7: 992. https://doi.org/10.3390/w13070992
APA StyleVargas, T. F., Baía, C. C., Machado, T. L. d. S., Dórea, C. C., & Bastos, W. R. (2021). Decay of Free Residual Chlorine in Wells Water of Northern Brazil. Water, 13(7), 992. https://doi.org/10.3390/w13070992