Long-Term Analysis of Precipitation in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.3. Statistical Analysis
2.4. Spatial Distribution
3. Results
3.1. Basic Statistics of Precipitation in Slovakia
3.2. Descriptive Statistics
3.3. Trend Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Dokhayel, A.A. Regional Precipitation Frequency Analysis for Qasim; BS Project; Civil Engineering Department, King Saud University: Riyadh, Saudi Arabia, 1986. [Google Scholar]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Purcz, P.; Blišťan, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Portela, M.M.; Zelenáková, M.; Santos, J.F.; Purcz, P.; Silva, A.T.; Hlavatá, H. Drought analysis in Slovakia: Regionalization, frequency analysis and precipitation thresholds. WIT Trans Ecol Environ. 2015, 197, 237–248. [Google Scholar]
- Frei, C.; Christensen, J.H.; Déqué, M.; Jacob, D.; Jones, R.G.; Vidale, P.L. Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res. Atmos. 2005, 108, 4124. [Google Scholar]
- Tank, A.K.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.; Weedon, G.P.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar]
- Chow, V.T. Handbook of Applied Hydrology; Mc-Graw Hill Book Company: New York, NY, USA, 1964. [Google Scholar]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef] [Green Version]
- Onyutha, C. Trends and variability in African long-term precipitation. Stoch. Environ. Res. Risk Assess. 2018, 32, 2721–2739. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-term precipitation trend analysis in Europe and in the Mediterranean basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V. Trend analysis of precipitation and temperature data for India. Curr. Sci. 2012, 102, 37–49. [Google Scholar]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D.; Baloutsos, G. Analysis of a long record of annual maximum precipitation in Athens, Greece, and design precipitation inferences. Nat. Hazards 2000, 22, 29–48. [Google Scholar] [CrossRef]
- Rodó, X.; Baert, E.; Comin, F.A. Variations in seasonal precipitation in Southern Europe during the present century: Relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Clim. Dyn. 1997, 13, 275–284. [Google Scholar]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, N.; González-Hidalgo, J.C.; Brunetti, M.; Martín Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 2012, 12, 2799–2810. [Google Scholar] [CrossRef] [Green Version]
- Junkermann, W.; Hacker, J.; Lyons, T.; Nair, U. Land use change suppresses precipitation. Atmos. Chem. Phys. 2009, 9, 6531–6539. [Google Scholar] [CrossRef] [Green Version]
- Diem, J.E.; Brown, D.P. Anthropogenic impacts on summer precipitation in central Arizona, USA. Prof. Geogr. 2003, 55, 343–355. [Google Scholar]
- Déqué, M. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob. Planet. Chang. 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Terek, J.; Dobos, E. Život Medzi Riekami—Monografia Krajinného Manažmentu Medzibodrožia; University of Miskolc: Miskolc, Hungary, 2008; ISBN 978 9630642651. [Google Scholar]
- Van Loon, A.F. On the Propagation of Drought, How Climate and Catchment Characteristics Influence Hydrological Drought Development and Recovery. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- Mishra, K.; Singh, P. A review of drought concepts. J. Hydrol. 2010, 392, 202–216. [Google Scholar] [CrossRef]
- Horecká, V.; Valovič, Š. Atmosférické zrážky. Klimatické pomery Slovenska. Vybrané charakteristiky. Zborník prác SHMÚ 1991, 33, 107–144. [Google Scholar]
- Pecho, J.; Faško, P.; Lapin, M.; Kajaba, P.; Mikulová, K.; Šťastný, P. Extrémne atmosférické zrážky na jar a na začiatku leta 2010 na Slovensku. Meteorologický časopis 2010, 13, 69–80. [Google Scholar]
- Gaál, L.; Lapin, M.; Faško, P. Maximálne viacdenné úhrny zrážok na Slovensku. In Sborník Abstraktů–Seminář Extrémy Počasí a Podněbí; Czech Hydrometeorological Institute: Brno, Czech Republic, 2004; Volume 30. [Google Scholar]
- Zeleňáková, M.; Vido, J.; Portela, M.M.; Purcz, P.; Blišťan, P.; Hlavatá, H.; Hluštík, P. Precipitation trends over Slovakia in the period 1981–2013. Water 2017, 9, 922. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.; Zelenakova, M.; Kaposztasova, D.; Hlavata, H.; Simonova, D. Identification of dry and wet years in eastern Slovakia using indices. IOP Conf. Ser. Earth Environ. Sci. 2020, 444, 012041. [Google Scholar] [CrossRef] [Green Version]
- Repel, A.; Jothiprakash, V.; Hlavatá, H.; Galas, S.; Portela, M.M. Spatial-temporal statistical analysis of daily precipitation for Košice station in eastern Slovakia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 867, 012035. [Google Scholar] [CrossRef]
- Repel, A.; Zelenakova, M.; Vranayova, Z.; Kanalikova, A.; Hlavata, H. Analysis of trends in precipitation time series in selected precipitation stations in eastern Slovakia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 444, 012048. [Google Scholar] [CrossRef]
- Repel, A.; Jothiprakash, V.; Zeleňáková, M.; Hlavatá, H.; Minea, I. Temporal Analysis of Daily and 10 Minutes of Rainfall of Poprad Station in Eastern Slovakia. Hydrology 2020, 7, 32. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Khalili, K.; Ahmadi, F.; Dinpashoh, Y.; Fard, A.F. Determination of Climate Changes on Streamflow Process in the West of Lake Urmia with Used to Trend and Stationarity Analysis. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1220–1235. [Google Scholar]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econ. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Arltová, M.; Fedorová, D. Selection of Unit Root Test on the Basis of Length of the Time Series and Value of AR(1) Parameter. Statistika 2016, 96, 47–64. [Google Scholar]
- Adewole, O.O.; Serifat, F. Modelling rainfall series in the geo-political zones of Nigeria. J. Environ. Earth Sci. 2015, 5, 100–111. [Google Scholar]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Machiwal, D.; Kumar, S.; Dayal, D.; Mangalassery, S. Identifying abrupt changes and detecting gradual trends of annual rainfall in an Indian arid region under heightened rainfall rise regime. Int. J. Climatol. 2016, 37, 2719–2733. [Google Scholar] [CrossRef]
- Ng, C.K.; Ng, J.L.; Huang, Y.F.; Tan, Y.X.; Mirzaei, M. Tropical rainfall trend and stationarity analysis. Water Supply 2020, 20, 2471–2483. [Google Scholar] [CrossRef]
- Praveenkumar, C.; Jothiprakash, V. Spatio-temporal trend and homogeneity analysis of gridded and gauge precipitation in Indravati river basin, India. J. Water Clim. Chang. 2020, 11, 178–199. [Google Scholar] [CrossRef]
- Yilmaz, A.G.; Perera, B.J.C. Extreme rainfall nonstationarity investigation and intensity–frequency–duration relationship. J. Hydrol. Eng. 2014, 19, 1160–1172. [Google Scholar] [CrossRef] [Green Version]
- Schuster, A. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. 1989, 3, 13–41. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin and Co. Ltd.: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Di Piazza, A.; Lo Conti, F.; Noto, L.V.; Viola, F.; La Loggia, G. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 396–408. [Google Scholar] [CrossRef]
- Di Piazza, A.; Lo Conti, F.; Viola, F.; Eccel, E.; Noto, L.V. Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water 2015, 7, 1866–1888. [Google Scholar] [CrossRef] [Green Version]
- Priestley, M.B.; Rao, T.S. A test for non-stationarity of time-series. J. R. Stat. Soc. Ser. B 1969, 31, 140–149. [Google Scholar] [CrossRef]
Station | Observed Period | Number of Observed Years | Altitude (m asl.) | Latitude | Longitude |
---|---|---|---|---|---|
Bratislava-Koliba | 1950–2019 | 69 | 287 | 48°10′7″ | 17°6′38″ |
Bratislava-airport | 1951–2019 | 68 | 182 | 48°9′8″ | 17°4′13″ |
Dudince | 1977–2019 | 42 | 139 | 48°10′9″ | 18°52′34″ |
Hurbanovo | 1900–2019 | 119 | 115 | 47°52′23″ | 18°11′39″ |
Jaslovské Bohunice | 1961–2019 | 58 | 176 | 48°29′12″ | 17°40′15″ |
Kráľová pri Senci | 1961–2019 | 58 | 124 | 48°12′0″ | 17°16′29″ |
Malý Javorník | 1982–2019 | 37 | 586 | 48°15′21″ | 17°9′14″ |
Piešťany | 1951–2019 | 68 | 163 | 48°36′47″ | 17°49′58″ |
Podhájska | 1961–2019 | 58 | 145 | 48°6′27″ | 18°20′21″ |
Prievidza | 1973–2019 | 46 | 260 | 48°46′11″ | 18°35′38″ |
Veľké Ripňany | 1966–2019 | 53 | 188 | 48°30′38″ | 17°59′26″ |
Žihárec | 1961–2019 | 58 | 111 | 48°4′13″ | 17°52′55″ |
Banská Štiavnica | 1970–2019 | 49 | 575 | 48°26′58″ | 18°55′18″ |
Boľkovce | 1951–2019 | 68 | 214 | 48°20′20″ | 19°44′11″ |
Bzovík | 1978–2019 | 41 | 355 | 48°19′9″ | 19°5′38″ |
Dolné Plachtince | 1965–2019 | 54 | 228 | 48°12′24″ | 19°19′12″ |
Dolný Hričov | 1976–2019 | 43 | 309 | 49°13′56″ | 18°36′51″ |
Chopok | 1955–2019 | 64 | 2005 | 48°56′38″ | 19°35′32″ |
Liptovský Hrádok | 1950–2019 | 69 | 640 | 49°2′21″ | 19°43′31″ |
Lom nad Rimavicou | 1980–2019 | 39 | 1018 | 48°39′38″ | 19°39′57″ |
Oravská Lesná | 1951–2019 | 68 | 780 | 49°22′6″ | 19°10′59″ |
Ratková | 1968–2019 | 51 | 311 | 48°35′34″ | 20°5′37″ |
Rimavská Sobota | 1951–2019 | 68 | 215 | 48°22′26″ | 20°0′38″ |
Sliač | 1951–2019 | 68 | 313 | 48°38′33″ | 19°8′31″ |
Štrbské Pleso | 1951–2019 | 68 | 1322 | 49°7′10″ | 20°3′48″ |
Telgárt | 1951–2019 | 68 | 901 | 48°50′55″ | 20°11′21″ |
Vígľaš-Pstruša | 1972–2019 | 47 | 368 | 48°32′39″ | 19°19′19″ |
Žiar nad Hronom | 1984–2019 | 35 | 275 | 48°35′10″ | 18°51′8″ |
Žilina | 1981–2019 | 38 | 365 | 49°12′19″ | 18°44′48″ |
Červený Kláštor | 1961–2019 | 58 | 469 | 49°23′14″ | 20°25′27″ |
Jakubovany | 1973–2019 | 46 | 410 | 49°6′32″ | 21°8′27″ |
Kamenica nad Cirochou | 1951–2019 | 68 | 176 | 48°56′20″ | 22°0′22″ |
Košice-airport | 1951–2019 | 68 | 230 | 48°40′20″ | 21°13′21″ |
Lomnický štít | 1951–2019 | 68 | 2635 | 49°11′43″ | 20°12′54″ |
Medzilaborce | 1961–2019 | 58 | 305 | 49°15′12″ | 21°54′50″ |
Michalovce | 1968–2019 | 51 | 110 | 48°44′24″ | 21°56′43″ |
Milhostov | 1961–2019 | 58 | 105 | 48°39′47″ | 21°43′26″ |
Orechová | 1978–2019 | 41 | 122 | 48°42′19″ | 22°13′31″ |
Plaveč | 1961–2019 | 58 | 485 | 49°15′35″ | 20°50′45″ |
Podolínec | 1982–2019 | 37 | 573 | 49°15′20″ | 20°31′58″ |
Poprad | 1951–2019 | 68 | 694 | 49°4′8″ | 20°14′44″ |
Prešov | 1985–2019 | 34 | 307 | 49°1′55″ | 21°18′31″ |
Silica | 1974–2019 | 45 | 520 | 48°33′17″ | 20°31′15″ |
Skalnaté pleso | 1961–2019 | 58 | 1778 | 49°11′22″ | 20°14′9″ |
Somotor | 1961–2019 | 58 | 100 | 48°25′17″ | 21°49′6″ |
Spišské Vlachy | 1965–2019 | 54 | 380 | 48°56′35″ | 20°48′8″ |
Tatranská Javorina | 1970–2019 | 49 | 1013 | 49°15′47″ | 20°8′37″ |
Tisinec | 1963–2019 | 56 | 216 | 49°12′56″ | 21°39′0″ |
Station | Observed Period | Average Annual Precipitation (mm) | Maximum Daily Precipitation (mm) | Average Number of Days without Precipitation in a Year |
---|---|---|---|---|
Western Slovakia | ||||
Bratislava-Koliba | 1950–2019 | 673.3 | 86.4 | 215 |
Bratislava-airport | 1951–2019 | 572.7 | 78.4 | 224 |
Dudince | 1977–2019 | 592.5 | 91 | 233 |
Hurbanovo | 1900–2019 | 565.7 | 90.2 | 228 |
Jaslovské Bohunice | 1961–2019 | 555.7 | 73.1 | 226 |
Kráľová pri Senci | 1961–2019 | 522.7 | 106.1 | 235 |
Malý Javorník | 1982–2019 | 768.9 | 108 | 216 |
Piešťany | 1951–2019 | 577.5 | 83.6 | 225 |
Podhájska | 1961–2019 | 557.9 | 74.2 | 228 |
Prievidza | 1973–2019 | 655.5 | 74.9 | 219 |
Veľké Ripňany | 1966–2019 | 553.1 | 73.4 | 240 |
Žihárec | 1961–2019 | 573.8 | 94.4 | 222 |
Central Slovakia | ||||
Banská Štiavnica | 1970–2019 | 752 | 70.8 | 215 |
Boľkovce | 1951–2019 | 596.1 | 105 | 233 |
Bzovík | 1978–2019 | 615.2 | 63 | 235 |
Dolné Plachtince | 1965–2019 | 615.8 | 62.6 | 240 |
Dolný Hričov | 1976–2019 | 737.2 | 65.5 | 199 |
Chopok | 1955–2019 | 1134 | 116.7 | 158 |
Liptovský Hrádok | 1950–2019 | 688.3 | 62.7 | 209 |
Lom nad Rimavicou | 1980–2019 | 883.9 | 89 | 220 |
Oravská Lesná | 1951–2019 | 1125.7 | 163.2 | 172 |
Ratková | 1968–2019 | 725.2 | 92 | 227 |
Rimavská Sobota | 1951–2019 | 620.2 | 82.7 | 238 |
Sliač | 1951–2019 | 698 | 93.8 | 220 |
Štrbské Pleso | 1951–2019 | 1011.9 | 100.8 | 162 |
Telgárt | 1951–2019 | 860.1 | 94.6 | 191 |
Vígľaš-Pstruša | 1972–2019 | 621 | 74.8 | 228 |
Žiar nad Hronom | 1984–2019 | 658.6 | 90.2 | 220 |
Žilina | 1981–2019 | 761.5 | 68.2 | 200 |
Eastern Slovakia | ||||
Červený Kláštor | 1961–2019 | 803.7 | 106 | 212 |
Jakubovany | 1973–2019 | 637.7 | 73.2 | 223 |
Kamenica nad Cirochou | 1951–2019 | 724.1 | 85.5 | 204 |
Košice-airport | 1951–2019 | 615.8 | 110.5 | 220 |
Lomnický štít | 1951–2019 | 1574.2 | 141.2 | 149 |
Medzilaborce | 1961–2019 | 846.6 | 86.2 | 196 |
Michalovce | 1968–2019 | 635.4 | 61.9 | 219 |
Milhostov | 1961–2019 | 560.8 | 82.5 | 221 |
Orechová | 1978–2019 | 692.3 | 67.8 | 225 |
Plaveč | 1961–2019 | 709 | 119.2 | 196 |
Podolínec | 1982–2019 | 724.1 | 92.4 | 185 |
Poprad | 1951–2019 | 602.8 | 79.3 | 210 |
Prešov | 1985–2019 | 648.4 | 65.8 | 217 |
Silica | 1974–2019 | 709.6 | 70.8 | 240 |
Skalnaté pleso | 1961–2019 | 1374.8 | 144.5 | 160 |
Somotor | 1961–2019 | 557.7 | 74 | 227 |
Spišské Vlachy | 1965–2019 | 620 | 77 | 212 |
Tatranská Javorina | 1970–2019 | 1336.1 | 144.6 | 174 |
Tisinec | 1963–2019 | 679.1 | 70.2 | 200 |
Stations | Number of Days without Precipitation | Annual Precipitation | Maximum Daily Precipitation |
---|---|---|---|
Bratislava-koliba | Τ = −0.021, p = 0.803 | Τ = 0.095, p = 0.248 | Τ = −0.023, p = 0.788 |
Bratislava-letisko | Τ = 0.235, p = 0.005 | Τ = −0.004, p = 0.970 | Τ = 0.088, p = 0.290 |
Dudince | Τ = 0.111, p = 0.308 | Τ = 0.201, p = 0.062 | Τ = 0.176, p = 0.104 |
Hurbanovo | Τ = 0.212, p = 0.001 | Τ = −0.077, p = 0.213 | Τ = 0.024, p = 0.698 |
Jaslovské Bohunice | Τ = 0.145, p = 0.114 | Τ = 0.068, p = 0.452 | Τ = 0.205, p = 0.023 |
Kráľová pri Senci | Τ = −0.201, p = 0.028 | Τ = 0.108, p = 0.232 | Τ = 0.084, p = 0.355 |
Malý Javorník | Τ = −0.029, p = 0.814 | Τ = 0.213, p = 0.065 | Τ = 0.156, p = 0.178 |
Piešťany | Τ = −0.042, p = 0.619 | Τ = −0.112, p = 0.179 | Τ = 0.053, p = 0.525 |
Podhájska | Τ = −0.154, p = 0.095 | Τ = 0.123, p = 0.179 | Τ = −0.019, p = 0.842 |
Prievidza | Τ = 0.042, p = 0.690 | Τ = 0.096, p = 0.353 | Τ = 0.105, p = 0.311 |
Veľké Ripňany | Τ = −0.430, p = 0.001 | Τ = 0.132, p = 0.165 | Τ = 0.067, p = 0.485 |
Žihárec | Τ = 0.539, p = 0.001 | Τ = 0.130, p = 0.151 | Τ = 0.119, p = 0.191 |
Banská Štiavnica | Τ = −0.340, p = 0.001 | Τ = 0.185, p = 0.061 | Τ = 0.206, p = 0.038 |
Boľkovce | Τ = −0.015, p = 0.861 | Τ = 0.017, p = 0.845 | Τ = 0.073, p = 0.385 |
Bzovík | Τ = −0.253, p = 0.022 | Τ = 0.227, p = 0.038 | Τ = −0.033, p = 0.770 |
Dolné Plachtince | Τ = −0.368, p = 0.001 | Τ = 0.154, p = 0.101 | Τ = −0.164, p = 0.082 |
Dolný Hričov | Τ = 0.082, p = 0.451 | Τ = 0.017, p = 0.884 | Τ = 0.041, p = 0.706 |
Chopok | Τ = −0.348, p = 0.001 | Τ = 0.162, p = 0.060 | Τ = 0.143, p = 0.096 |
Liptovský Hrádok | Τ = −0.267, p = 0.001 | Τ = 0.221, p = 0.007 | Τ = 0.047, p = 0.576 |
Lom nad Rimavicou | Τ = 0.366, p = 0.001 | Τ = 0.341, p = 0.002 | Τ = 0.374, p = 0.001 |
Oravská Lesná | Τ = 0.023, p = 0.791 | Τ = 0.186, p = 0.025 | Τ = 0.180, p = 0.031 |
Ratková | Τ = 0.109, p = 0.269 | Τ = 0.096, p = 0.322 | Τ = 0.051, p = 0.603 |
Rimavská Sobota | Τ = −0.166, p = 0.047 | Τ = 0.040, p = 0.630 | Τ = 0.067, p = 0.421 |
Sliač | Τ = −0.080, p = 0.340 | Τ = 0.056, p = 0.501 | Τ = 0.072, p = 0.391 |
Štrbské Pleso | Τ = 0.006, p = 0.945 | Τ = 0.284, p = 0.001 | Τ = 0.127, p = 0.129 |
Telgárt | Τ = −0.145, p = 0.083 | Τ = 0.124, p = 0.137 | Τ = 0.021, p = 0.804 |
Vígľaš-Pstruša | Τ = −0.221, p = 0.030 | Τ = 0.164, p = 0.107 | Τ = 0.092, p = 0.369 |
Žiar nad Hronom | Τ = 0.010, p = 0.943 | Τ = 0.129, p = 0.280 | Τ = 0.024, p = 0.853 |
Žilina | Τ = −0.105, p = 0.365 | Τ = 0.073, p = 0.530 | Τ = −0.071, p = 0.538 |
Červený Kláštor | Τ = −0.272, p = 0.003 | Τ = 0.304, p = 0.001 | Τ = −0.194, p = 0.032 |
Jakubovany | Τ = 0.059, p = 0.576 | Τ = 0.129, p = 0.211 | Τ = 0.172, p = 0.094 |
Kamenica nad Cirochou | Τ = 0.143, p = 0.088 | Τ = 0.054, p = 0.515 | Τ = 0.248, p = 0.003 |
Košice-letisko | Τ = −0.031, p = 0.711 | Τ = 0.021, p = 0.804 | Τ = 0.007, p = 0.937 |
Lomnický štít | Τ = −0.211, p = 0.012 | Τ = 0.332, p = 0.001 | Τ = 0.216, p = 0.009 |
Medzilaborce | Τ = 0.046, p = 0.615 | Τ = 0.131, p = 0.147 | Τ = 0.132, p = 0.147 |
Michalovce | Τ = 0.145, p = 0.139 | Τ = 0.139, p = 0.153 | Τ = 0.129, p = 0.186 |
Milhostov | Τ = −0.015, p = 0.877 | Τ = 0.061, p = 0.502 | Τ = 0.028, p = 0.758 |
Orechová | Τ = 0.426, p = 0.001 | Τ = −0.010, p = 0.937 | Τ = −0.045, p = 0.686 |
Plaveč | Τ = −0.454, p = 0.001 | Τ = 0.263, p = 0.004 | Τ = 0.133, p = 0.142 |
Podolínec | Τ = −0.223, p = 0.056 | Τ = 0.132, p = 0.255 | Τ = −0.087, p = 0.456 |
Poprad | Τ = −0.015, p = 0.861 | Τ = 0.183, p = 0.028 | Τ = 0.130, p = 0.120 |
Prešov | Τ = 0.206, p = 0.093 | Τ = 0.180, p = 0.138 | Τ = 0.128, p = 0.293 |
Silica | Τ = −0.280, p = 0.007 | Τ = 0.012, p = 0.914 | Τ = 0.039, p = 0.710 |
Skalnaté pleso | Τ = −0.030, p = 0.742 | Τ = 0.274, p = 0.002 | Τ = 0.004, p = 0.973 |
Somotor | Τ = −0.236, p = 0.009 | Τ = −0.030, p = 0.742 | Τ = −0.039, p = 0.668 |
Spišské Vlachy | Τ = −0.359, p = 0.001 | Τ = 0.277, p = 0.003 | Τ = 0.144, p = 0.126 |
Tatranská Javorina | Τ = −0.225, p = 0.024 | Τ = 0.267, p = 0.007 | Τ = 0.268, p = 0.007 |
Tisinec | Τ = −0.152, p = 0.102 | Τ = 0.121, p = 0.191 | Τ = −0.005, p = 0.961 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repel, A.; Zeleňáková, M.; Jothiprakash, V.; Hlavatá, H.; Blišťan, P.; Gargar, I.; Purcz, P. Long-Term Analysis of Precipitation in Slovakia. Water 2021, 13, 952. https://doi.org/10.3390/w13070952
Repel A, Zeleňáková M, Jothiprakash V, Hlavatá H, Blišťan P, Gargar I, Purcz P. Long-Term Analysis of Precipitation in Slovakia. Water. 2021; 13(7):952. https://doi.org/10.3390/w13070952
Chicago/Turabian StyleRepel, Adam, Martina Zeleňáková, Vinayakam Jothiprakash, Helena Hlavatá, Peter Blišťan, Ibrahim Gargar, and Pavol Purcz. 2021. "Long-Term Analysis of Precipitation in Slovakia" Water 13, no. 7: 952. https://doi.org/10.3390/w13070952
APA StyleRepel, A., Zeleňáková, M., Jothiprakash, V., Hlavatá, H., Blišťan, P., Gargar, I., & Purcz, P. (2021). Long-Term Analysis of Precipitation in Slovakia. Water, 13(7), 952. https://doi.org/10.3390/w13070952