Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China
Abstract
:1. Introduction
2. Method
2.1. Sample Collection and Measurement
2.2. HYSPLIT
2.3. Calculation of Re-Evaporation
3. Results
3.1. Isotopic Changes in Precipitation
3.2. Isotopic Changes in Water Vapor
3.3. The Enrichment of Heavy Isotopes by Re-Evaporation
4. Discussion
4.1. Effects of Water Vapor Sources and Rayleigh Fractionation
4.2. Rain Event Styles Based on Formation Mechanism
4.3. Re-Evaporation under the Cloud Base
5. Conclusions
- (1)
- Synchronous changes of δp and δv are found in low-level jets. Residual precipitation forms at low altitudes after the end of precipitation, resulting in opposing changes in δp and δv.
- (2)
- Large-scale convective activity, characterized by opposing changes in δp and δv, brings in water vapor depleted in heavy isotopes from the upper troposphere, while rainout causes enrichment of heavy isotopes in precipitation. A decrease in precipitation amount and raindrop size at the end of the rain event and possible re-evaporation under the cloud base, leads to the depletion of heavy isotopes in precipitation.
- (3)
- The precipitation environment of low-pressure systems creates a high water vapor concentration, replenishes water vapor and synchronizes variations in δp and δv. Once the water vapor concentration decreases, the changes in δp and δv no longer coincide.
- (4)
- For small-scale events and small precipitation amounts, precipitation may occur within stable clouds, with less variable δv.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonnell, J.J.; Bonell, M.; Stewart, M.K.; Pearce, A.J. Deuterium variations in storm rainfall: Implications for stream hydrograph separation. Water Resour. Res. 1990, 26, 455–458. [Google Scholar] [CrossRef]
- Uhlenbrook, S.; Frey, M.; Leibundgut, C.; Maloszewski, P. Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resour. Res. 2002, 38, 31-1–31-14. [Google Scholar] [CrossRef] [Green Version]
- Krabbenhoft, D.P.; Bowser, C.J.; Anderson, M.P.; Valley, J.W. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method. Water Resour. Res. 1990, 26, 2445–2453. [Google Scholar] [CrossRef]
- Gibson, J.J.; Edwards, T.W.D.; Birks, S.J.; Amour, N.A.S.; Buhay, W.M.; McEachern, P.; Wolfe, B.B.; Peters, D.L. Progress in isotope tracer hydrology in Canada. Hydrol. Process. 2005, 19, 303–327. [Google Scholar] [CrossRef]
- Yakir, D.; Wang, X.-F. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 1996, 380, 515–517. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Hurk, B.V.D.; Dirmeyer, P.A.; Seneviratne, S.I.; Röckmann, T.; Trenberth, K.E.; Blyth, E.M.; Wenninger, J.; Hoffmann, G. HESS Opinions “A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation”. Hydrol. Earth Syst. Sci. 2014, 18, 2815–2827. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Worden, J.; Noone, D. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Risi, C.; Bony, S.; Vimeux, F.; Descroix, L.; Ibrahim, B.; Lebreton, E.; Mamadou, I.; Sultan, B. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 2008, 35, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Kanamitsu, M.; Dettinger, M. Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res. Space Phys. 2010, 115, 311–319. [Google Scholar] [CrossRef]
- Galewsky, J.; Sobel, A.; Held, I. Diagnosis of Subtropical Humidity Dynamics Using Tracers of Last Saturation. J. Atmos. Sci. 2005, 62, 3353–3367. [Google Scholar] [CrossRef] [Green Version]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef]
- Wen, X.-F.; Zhang, S.-C.; Sun, X.-M.; Yu, G.-R.; Lee, X. Water vapor and precipitation isotope ratios in Beijing, China. J. Geophys. Res. Space Phys. 2010, 115, 133–134. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Worden, J.; Noone, D. Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H2O. J. Geophys. Res. Atmos. 2013, 118, 54–72. [Google Scholar] [CrossRef] [Green Version]
- Farlin, J.; Lai, C.-T.; Yoshimura, K. Influence of synoptic weather events on the isotopic composition of atmospheric moisture in a coastal city of the western United States. Water Resour. Res. 2013, 49, 3685–3696. [Google Scholar] [CrossRef] [Green Version]
- Celle-Jeanton, H.; Gonfiantini, R.; Travi, Y.; Sol, B. Oxygen-18 variations of rainwater during precipitation: Application of the Rayleigh model to selected rainfalls in Southern France. J. Hydrol. 2004, 289, 165–177. [Google Scholar] [CrossRef]
- Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Barras, V.; Simmonds, I. Observation and modeling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J. Geophys. Res. Space Phys. 2009, 114, 23. [Google Scholar] [CrossRef]
- Rangarajan, R.; Laskar, A.H.; Bhattacharya, S.K.; Shen, C.-C.; Liang, M.-C. An insight into the western Pacific wintertime moisture sources using dual water vapor isotopes. J. Hydrol. 2017, 547, 111–123. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Hoffmann, G.; Shindell, D.T.; Hu, Y. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-E.; Pierrehumbert, R.; Swann, A.; Lintner, B.R. Sensitivity of stable water isotopic values to convective parameterization schemes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrology; Lewis Publishers: Boca Raton, FL, USA, 1998. [Google Scholar]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Space Phys. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Cappa, C.D.; Hendricks, M.B.; Depaolo, D.J. Isotopic fractionation of water during evaporation. J. Geophys. Res. Atmos. 2002, 108, 4525. [Google Scholar] [CrossRef]
- Dittmann, A.; Schlosser, E.; Masson-Delmotte, V.; Powers, J.G.; Manning, K.W.; Werner, M.; Fujita, K. Precipitation regime and stable isotopes at Dome Fuji, East Antarctica. Atmos. Chem. Phys. Discuss. 2016, 16, 6883–6900. [Google Scholar] [CrossRef] [Green Version]
- Rindsberger, M.; Jaffe, S.; Rahamim, S.; Gat, J.R. Patterns of the isotopic composition of precipitation in time and space: Data from the Israeli storm water collection program. Tellus B 1990, 423, 263–271. [Google Scholar] [CrossRef]
- Miyake, Y.; Matsubaya, O.; Nishihara, C. An Isotopic Study on Meteoric Precipitation. Pap. Meteorol. Geophys. 1968, 19, 243–266. [Google Scholar] [CrossRef]
- Munksgaard, N.C.; Wurster, C.M.; Bass, A.; Bird, M.I. Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrol. Process. 2012, 26, 3630–3634. [Google Scholar] [CrossRef]
- Adaretal, E.M. A Mechanical Sequential Rain Sampler for Isotopic and Chemical Analyses; Contract No. 5542/RO/RB; IAEA: Vienna, Austria, 1991. [Google Scholar]
- Xu, T.; Sun, X.; Hong, H.; Wang, X.; Cui, M.; Lei, G.; Gao, L.; Liu, J.; Lone, M.A.; Jiang, X. Stable isotope ratios of typhoon rains in Fuzhou, Southeast China, during 2013–2017. J. Hydrol. 2019, 570, 445–453. [Google Scholar] [CrossRef]
- Chen, T.J.; Wang, C.C.; Lin, T.W. Characteristics of low-level jets over northern taiwan in mei-yu season and their relationship to heavy rain events. Mon. Weather Rev. 2010, 133, 20–43. [Google Scholar] [CrossRef] [Green Version]
- Lekshmy, P.R.; Midhun, M.; Ramesh, R.; Jani, R.A. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall. Sci. Rep. 2015, 4, 5661. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-E.; Fung, I. “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. 2007, 22, 1–8. [Google Scholar] [CrossRef]
- Saranya, P.; Krishan, G.; Rao, M.; Kumar, S.; Kumar, B. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems. J. Hydrol. 2018, 557, 679–687. [Google Scholar] [CrossRef]
- Houze, R.A. Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Fudeyasu, H.; Ichiyanagi, K.; Yoshimura, K.; Mori, S.; Hamada, J.-I.; Sakurai, N.; Yamanaka, M.D.; Matsumoto, J.; Syamsudin, F. Effects of Large-scale Moisture Transport and Mesoscale Processes on Precipitation Isotope Ratios Observed at Sumatera, Indonesia. J. Meteorol. Soc. Jpn. 2011, 89A, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Fudeyasu, H.; Ichiyanagi, K.; Sugimoto, A.; Yoshimura, K.; Ueta, A.; Yamanaka, M.D.; Ozawa, K. Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Laskar, A.H.; Huang, J.-C.; Hsu, S.-C.; Bhattacharya, S.K.; Wang, C.-H.; Liang, M.-C. Stable isotopic composition of near surface atmospheric water vapor and rain–vapor interaction in Taipei, Taiwan. J. Hydrol. 2014, 519, 2091–2100. [Google Scholar] [CrossRef]
- Worden, J.; The Tropospheric Emission Spectrometer Science Team and Data Contributors; Noone, D.; Bowman, K.; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, A.; Herman, R.; et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nat. Cell Biol. 2007, 445, 528–532. [Google Scholar] [CrossRef]
- Coplen, T.B. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim. Cosmochim. Acta 1996, 60, 3359–3360. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Space Phys. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Goodkin, N.F.; Jackisch, D.; Ong, M.R.; Samanta, D. Continuous real-time analysis of the isotopic composition of precipitation during tropical rain events: Insights into tropical convection. Hydrol. Process. 2018, 32, 1531–1545. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.H.; Wu, G.X.; Chen, W. Advances and Frontiers in the Study of Atmospheric Science and Global Climate Change; Science Press: Beijing, China, 2014. [Google Scholar]
- Rozanski, K. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Peng, T.-R.; Wang, C.-H.; Huang, C.-C.; Fei, L.-Y.; Chen, C.-T.A.; Hwong, J.-L. Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth Planet. Sci. Lett. 2010, 289, 357–366. [Google Scholar] [CrossRef]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth Planet. Sci. Lett. 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Che, Y.; Zhu, X.; Liu, X. Influence of Below-Cloud Evaporation on Deuterium Excess in Precipitation of Arid Central Asia and Its Meteorological Controls. J. Hydrometeorol. 2016, 17, 1973–1984. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions—Moisture recycling. Isot. Environ. Heal. Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef]
- Stewart, M.K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. Space Phys. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Kinzer, G.D.; Gunn, R. The evaporation, temperature and thermal relaxation-time of freely falling waterdrops. J. Atmos. Sci. 1951, 8, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Best, A.C. The size distribution of raindrops. Q. J. R. Meteorol. Soc. 1950, 76, 16–36. [Google Scholar] [CrossRef]
- Salamalikis, V.; Argiriou, A.; Dotsika, E. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Sci. Total. Environ. 2016, 544, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Sekine, M.; Lind, G. Rain Attenuation 0f Centimeter, Millimeter and Submillimeter Radio Waves. Eur. Microw. Conf. 1982, 584–589. [Google Scholar] [CrossRef]
- Qiu, S.B.; Chen, J.H. The distribution of raindrop size in Guangzhou. Chin. J. of Radio Sci. 1995, 10, 73–77. [Google Scholar]
- Sekine, M.; Ishii, S.; Hwang, S.I.; Sayama, S. Weibull Raindrop-Size Distribution and its Application to Rain Attenuation from 30 GHz to 1000 GHz. Int. J. Infrared Millim. Waves 2007, 28, 383–392. [Google Scholar] [CrossRef]
- Aemisegger, F.; Spiegel, J.K.; Pfahl, S.; Sodemann, H.; Eugster, W.; Wernli, H. Isotope meteorology of cold front passages: A case study combining observations and modeling. Geophys. Res. Lett. 2015, 42, 5652–5660. [Google Scholar] [CrossRef]
- Gat, J.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus B 2003, 55, 953–965. [Google Scholar] [CrossRef]
- Kurita, N.; Ichiyanagi, K.; Matsumoto, J.; Yamanaka, M.D.; Ohata, T. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor. 2009, 102, 113–122. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L.; Bowen, G.J. Spatial-seasonal patterns reveal large-scale atmospheric controls on Asian Monsoon precipitation water isotope ratios. Earth Planet. Sci. Lett. 2018, 503, 158–169. [Google Scholar] [CrossRef]
- Noone, D.C. Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere. J. Clim. 2012, 25, 4476–4494. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Sveinbjörnsdottir, A.E.; Jonsson, T. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J. Geophys. Res. Atmos. 2015, 120, 5757–5774. [Google Scholar] [CrossRef] [Green Version]
- Konecky, B.L.; Noone, D.C.; Cobb, K.M. The Influence of Competing Hydroclimate Processes on Stable Isotope Ratios in Tropical Rainfall. Geophys. Res. Lett. 2019, 46, 1622–1633. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sun, X.; Wang, J.; Yu, G.; Wen, X. Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes. J. Geogr. Sci. 2011, 21, 401–416. [Google Scholar] [CrossRef]
- Aemisegger, F.; Pfahl, S.; Sodemann, H.; Lehner, I.; I Seneviratne, S.; Wernli, H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys. Discuss. 2014, 14, 4029–4054. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-E.; Fung, I.; DePaolo, D.J.; Henning, C.C. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Moore, M.H.; Kuang, Z.; Blossey, P.N. A moisture budget perspective of the amount effect. Geophys. Res. Lett. 2014, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Wei, G.; Deng, W.; Zhao, X. Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources. J. Hydrol. 2011, 400, 477–489. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, H.; Cai, Z.; Yang, X.; Yin, J. Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction. Earth Planet. Sci. Lett. 2019, 527, 115794. [Google Scholar] [CrossRef]
- Lawrence, R.J.; Gedzelman, D.S. Low stable isotope ratios of tropical cyclone rains. Geophys. Res. Lett. 1996, 23, 527–530. [Google Scholar] [CrossRef]
- Sharp, Z.D. Principles of Stable Isotope Geochemistry, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2017; Available online: https://doi.org/10.25844/h9q1-0p82 (accessed on 21 May 2018).
- Field, R.D.; Jones, D.B.A.; Brown, D.P. Effects of postcondensation exchange on the isotopic composition of water in the atmosphere. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. J. Atmospheric Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Arnold, R. Modeling the isotopic composition of precipitation. J. Geophys. Res. Space Phys. 1994, 99, 10455–10471. [Google Scholar] [CrossRef]
Event Number | Date | Duration (h) | # of Samples | Precipitation (mm) | Precipitation Isotopes (‰) | Water Vapor Isotopes (‰) | Equilibrium Vapor Isotopes (‰) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ18O | std | δ2H | std | δ18O | std | δ2H | std | δ18O | δ2H | |||||
N1 | 18 April 2016 | 6 | 8 | 26.9 | −0.82 | 0.60 | −4.09 | 3.56 | −13.37 | 0.43 | −93.92 | 2.93 | −10.21 | −79.91 |
N2 | 20 April 2016 | 4 | 4 | 8.7 | −1.49 | 1.25 | −6.38 | 5.64 | −11.66 | 0.26 | −85.20 | 1.70 | −10.95 | −81.55 |
N3 | 22 April 2016 | 3 | 3 | 1.6 | −1.99 | 0.17 | −10.40 | 3.79 | −12.52 | 0.08 | −91.20 | 0.53 | −11.15 | −85.31 |
N4 | 24 April 2016 | 7 | 7 | 3.4 | −0.53 | 1.13 | −1.86 | 4.24 | −12.66 | 0.35 | −89.27 | 1.71 | −10.26 | −78.00 |
N5 | 30 April 2016 | 6 | 6 | 17.6 | −0.54 | 1.02 | 2.83 | 3.06 | −12.56 | 0.33 | −84.38 | 2.08 | −10.36 | −75.06 |
N6 | 3 May 2016 | 7 | 7 | 32.5 | −0.57 | 1.04 | 0.00 | 3.72 | −12.54 | 0.56 | −87.02 | 3.49 | −10.40 | −76.08 |
N7 | 6 May 2016 | 4 | 4 | 9 | −1.94 | 1.12 | −9.62 | 2.67 | −13.20 | 0.64 | −91.98 | 2.90 | −11.25 | −82.82 |
N8 | 10 May 2016 | 17 | 17 | 153.5 | −2.64 | 0.89 | −11.56 | 3.99 | −13.26 | 0.73 | −90.62 | 4.47 | −11.65 | −84.35 |
N9 | 20 May 2016 | 13 | 6 | 37.1 | −2.89 | 0.11 | −10.17 | 2.46 | −12.56 | 0.80 | −88.05 | 4.86 | −12.18 | −87.28 |
N10 | 27 May 2016 | 16 | 13 | 19.1 | −6.01 | 1.46 | −41.17 | 11.19 | −18.00 | 1.32 | −126.55 | 8.48 | −12.30 | −92.44 |
N11 | 4 June2016 | 7 | 5 | 28.5 | −5.81 | 1.16 | −36.08 | 7.71 | −15.25 | 1.23 | −107.73 | 9.01 | −14.76 | −108.01 |
N12 | 5 June 2016 | 2 | 2 | 22.4 | −7.27 | 1.60 | −46.39 | 12.09 | −15.39 | 0.07 | −108.19 | 0.51 | −15.85 | −112.27 |
N13 | 21 October 2016 | 2 | 2 | 0.3 | −3.01 | 2.38 | −26.18 | 7.06 | −15.09 | 0.37 | −108.08 | 2.38 | −12.71 | −96.47 |
N14 | 8 May 2017 | 4 | 4 | 48.3 | −3.70 | 0.63 | −13.53 | 3.39 | −12.42 | 1.08 | −89.51 | 6.09 | −12.86 | −86.95 |
N15 | 2 June 2017 | 8 | 6 | 3.01 | −5.47 | 2.25 | −34.32 | 18.46 | −12.98 | 0.39 | −93.95 | 2.53 | −14.69 | −103.18 |
N16 | 14 June 2017 | 4 | 4 | 6.6 | −8.30 | 0.59 | −58.20 | 4.44 | −12.92 | 0.80 | −95.27 | 6.02 | −17.48 | −126.88 |
N17 | 16 June 2017 | 3 | 3 | 20.6 | −5.93 | 0.77 | −40.34 | 4.55 | −21.03 | 0.20 | −151.05 | 1.48 | −14.81 | −107.89 |
N18 | 17 June 2017 | 9 | 9 | 34 | −9.23 | 2.76 | −63.21 | 20.42 | −20.62 | 0.60 | −147.50 | 4.27 | −16.45 | −117.91 |
N19 | 22 June 2017 | 2 | 2 | 0.6 | −3.45 | 0.28 | −17.23 | 2.53 | −14.35 | 0.72 | −102.51 | 4.71 | −12.16 | −83.56 |
N20 | 13 July 2017 | 2 | 2 | 22.3 | −5.45 | 0.01 | −36.38 | 0.91 | −13.51 | 0.09 | −95.88 | 0.80 | −14.02 | −99.60 |
N21 | 15 July 2017 | 2 | 2 | 1.9 | −4.43 | 0.90 | −22.75 | 6.20 | −13.51 | 0.85 | −94.71 | 5.16 | −13.68 | −96.90 |
N22 | 14 September 2017 | 2 | 2 | 40.6 | −10.61 | 0.38 | −73.90 | 1.61 | −16.63 | 0.30 | −120.47 | 2.11 | −19.42 | −139.64 |
N23 | 13 November 2017 | 15 | 15 | 12.2 | −6.70 | 0.62 | −41.69 | 3.99 | −16.70 | 0.25 | −121.24 | 1.44 | −15.85 | −113.79 |
N24 | 6 January 2018 | 13 | 9 | 67.5 | −5.96 | 1.25 | −32.35 | 10.73 | −15.50 | 1.13 | −111.78 | 8.44 | −12.80 | −96.77 |
Style | Number | Temperature (°C) | RH (%) | Raindrop Radius (mm) | Evaporation Rate | Evaporation | Remaining Proportion after Evaporation | Isotopic Change of Water under the Cloud Base (‰) | Enrichment Rate (Precipitation) | Enrichment Rate (Vapor) | Effective Fractionation Factor | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | ||||||||
S1 | N1 | 22.21 | 95.10 | 0.76 | 6.22 | 0.37 | 87.81 | −8.49 | −72.20 | 9.38 | 16.66 | −0.23 | −0.15 | 16.35 | 22.97 |
N2 | 22.80 | 94.17 | 0.61 | 4.44 | 0.18 | 83.05 | −8.57 | −71.07 | 4.77 | 10.14 | −0.06 | −0.04 | 7.85 | 13.35 | |
N16 | 26.50 | 90.83 | 0.55 | 4.21 | 0.17 | 79.67 | −8.84 | −67.38 | 0.07 | 0.16 | 0.35 | 0.32 | 1.56 | 1.64 | |
N20 | 33.61 | 76.64 | 1.00 | 14.17 | 0.28 | 88.72 | −9.36 | −60.60 | 0.72 | 0.67 | 0.04 | 0.04 | 2.48 | 2.64 | |
N24 | 14.02 | 98.36 | 0.80 | 5.14 | 0.67 | 91.00 | −7.79 | −81.51 | 0.31 | 1.52 | 0.04 | 0.02 | 2.60 | 3.46 | |
S2 | N5 | 21.43 | 91.25 | 0.66 | 4.80 | 0.29 | 85.93 | −8.40 | −73.24 | 14.48 | −26.90 | −0.19 | −0.12 | 23.13 | −29.84 |
N6 | 23.87 | 87.78 | 0.77 | 6.72 | 0.47 | 87.35 | −8.65 | −69.98 | 14.27 | −0.21 | −0.14 | 22.14 | |||
N8 | 23.57 | 95.60 | 0.94 | 9.35 | 1.59 | 90.62 | −8.66 | −70.10 | 2.29 | 5.06 | −0.09 | −0.06 | 5.03 | 7.84 | |
N11 | 25.32 | 89.89 | 0.74 | 6.55 | 0.46 | 86.14 | −8.73 | −68.97 | 0.50 | 0.91 | −0.02 | −0.01 | 2.63 | 2.99 | |
N14 | 22.68 | 90.83 | 1.03 | 10.21 | 0.41 | 92.20 | −8.53 | −71.67 | 1.30 | 4.30 | 0.06 | −0.01 | 3.35 | 6.62 | |
N15 | 29.83 | 98.90 | 0.35 | 2.25 | 0.18 | 62.62 | −9.09 | −63.82 | 0.66 | 0.86 | 0.10 | 0.08 | 2.37 | 2.74 | |
N18 | 26.49 | 92.18 | 0.72 | 6.62 | 0.60 | 85.09 | −8.85 | −67.44 | −0.04 | 0.07 | −0.11 | −0.11 | 2.23 | 2.33 | |
S3 | N7 | 24.58 | 93.33 | 0.61 | 4.66 | 0.19 | 82.83 | −8.69 | −69.48 | 3.47 | 6.22 | −0.15 | −0.10 | 6.79 | 9.56 |
N10 | 26.47 | 88.78 | 0.50 | 3.62 | 0.58 | 76.76 | −8.84 | −67.33 | 0.47 | 0.64 | −0.16 | −0.13 | 2.99 | 3.07 | |
N13 | 26.43 | 89.50 | 0.22 | 0.93 | 0.02 | 61.68 | −8.77 | −67.63 | 1.91 | 1.17 | −0.19 | −0.06 | 5.01 | 3.47 | |
N17 | 25.15 | 97.25 | 0.87 | 8.50 | 0.26 | 88.98 | −8.74 | −69.05 | 0.47 | 0.71 | −0.28 | −0.27 | 3.55 | 3.74 | |
N19 | 30.48 | 90.27 | 0.31 | 1.96 | 0.04 | 60.52 | −9.11 | −63.20 | 1.64 | 2.67 | −0.14 | −0.18 | 4.16 | 5.95 | |
N22 | 26.04 | 91.60 | 1.17 | 14.17 | 0.28 | 93.48 | −8.82 | −68.02 | −0.17 | −0.08 | 0.19 | 0.17 | 1.57 | 1.63 | |
S4 | N3 | 22.14 | 96.60 | 0.37 | 1.95 | 0.06 | 73.25 | −8.47 | −72.06 | 3.26 | 5.93 | −0.08 | −0.06 | 6.29 | 8.77 |
N4 | 24.17 | 83.89 | 0.37 | 2.08 | 0.15 | 69.98 | −8.61 | −69.71 | 15.29 | 36.43 | −0.22 | −0.15 | 23.95 | 47.94 | |
N9 | 25.09 | 94.07 | 0.66 | 5.38 | 0.70 | 84.14 | −8.73 | −68.98 | 2.02 | 5.78 | −0.03 | −0.06 | 4.35 | 8.66 | |
N12 | 24.15 | 97.75 | 1.01 | 10.35 | 0.21 | 91.54 | −8.66 | −70.12 | 0.19 | 0.51 | 0.08 | 0.08 | 2.12 | 2.33 | |
N21 | 27.70 | 84.50 | 0.45 | 3.20 | 0.06 | 74.77 | −8.91 | −66.27 | 1.01 | 1.91 | 0.00 | −0.03 | 3.05 | 4.16 | |
N23 | 21.71 | 95.94 | 0.43 | 2.51 | 0.38 | 76.43 | −8.39 | −73.20 | 0.25 | 0.76 | −0.03 | −0.05 | 2.49 | 2.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tang, C.; Cui, J. Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China. Water 2021, 13, 940. https://doi.org/10.3390/w13070940
Li X, Tang C, Cui J. Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China. Water. 2021; 13(7):940. https://doi.org/10.3390/w13070940
Chicago/Turabian StyleLi, Xingxian, Changyuan Tang, and Jingsi Cui. 2021. "Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China" Water 13, no. 7: 940. https://doi.org/10.3390/w13070940
APA StyleLi, X., Tang, C., & Cui, J. (2021). Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China. Water, 13(7), 940. https://doi.org/10.3390/w13070940