Next Article in Journal
Hydrological Impacts of Climate Change and Land Use
Previous Article in Journal
The Past, Present, and Future of Phosphorus Removal Structures
Open AccessArticle

Exploring Macroinvertebrates Ecological Preferences and Trait-Based Indicators of Suspended Fine Sediment Effects in the Tsitsa River and Its Tributaries, Eastern Cape, South Africa

Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
*
Authors to whom correspondence should be addressed.
Academic Editor: Christophe Piscart
Water 2021, 13(6), 798; https://doi.org/10.3390/w13060798
Received: 16 January 2021 / Revised: 4 March 2021 / Accepted: 6 March 2021 / Published: 15 March 2021
(This article belongs to the Section Aquatic Systems—Quality and Contamination)
The taxonomy-based response pattern of macroinvertebrates to sediment stress is well established, with tolerant taxa increasing in impacted conditions, while sensitive taxa decrease along a deteriorating water quality gradient. However, the distribution patterns of traits in response to environmental stress gradient, including suspended sediments, remain unclear, particularly in Africa, where trait-based studies are under-explored. We examined the distribution patterns of macroinvertebrate traits along a suspended sediment stress gradient and identified tolerant and sensitive traits for suspended sediment stress. We sampled macroinvertebrates and environmental variables seasonally in winter, spring, summer and autumn of 2016 to 2018 in eight selected sites in the Tsitsa River and its tributaries. We selected 12 traits and ecological preferences, resolved them into 47 trait attributes, and analysed them using the RLQ and fourth-corner analyses. Our results revealed that macroinvertebrate traits and ecological preferences were differentially influenced by fine suspended sediments in the Tsitsa River and its tributaries. Traits such as a preference for CPOM, collector-filtering, and a high sensitivity to oxygen depletion, were deemed sensitive to suspended sediments stress, exhibiting positive associations with the control sites, and negatively associated with any of the environmental parameters (sediment grain sizes, turbidity, TSS and EC). Tolerant indicator traits included a high tolerance of oxygen depletion, skating and a preference for FPOM. The fourth-corner analysis results indicated that suspended fine sediment grain sizes, (including coarse sand, fine silt and clay) were the most important variables influencing macroinvertebrate trait distribution patterns during the dry season, while gravel, mud and medium sand were more important during the wet season. Overall, our study provided critical insights towards trait-based responses of macroinvertebrates communities to suspended sediment stress, key information that could stimulate the development of macroinvertebrate trait-based biomonitoring tools for the assessment of suspended sediment stress in the Afrotropical region. View Full-Text
Keywords: biomonitoring; freshwater; pollution; RLQ; sediments biomonitoring; freshwater; pollution; RLQ; sediments
Show Figures

Figure 1

MDPI and ACS Style

Ntloko, P.; Palmer, C.G.; Akamagwuna, F.C.; Odume, O.N. Exploring Macroinvertebrates Ecological Preferences and Trait-Based Indicators of Suspended Fine Sediment Effects in the Tsitsa River and Its Tributaries, Eastern Cape, South Africa. Water 2021, 13, 798. https://doi.org/10.3390/w13060798

AMA Style

Ntloko P, Palmer CG, Akamagwuna FC, Odume ON. Exploring Macroinvertebrates Ecological Preferences and Trait-Based Indicators of Suspended Fine Sediment Effects in the Tsitsa River and Its Tributaries, Eastern Cape, South Africa. Water. 2021; 13(6):798. https://doi.org/10.3390/w13060798

Chicago/Turabian Style

Ntloko, Phindiwe; Palmer, Carolyn G.; Akamagwuna, Frank C.; Odume, Oghenekaro N. 2021. "Exploring Macroinvertebrates Ecological Preferences and Trait-Based Indicators of Suspended Fine Sediment Effects in the Tsitsa River and Its Tributaries, Eastern Cape, South Africa" Water 13, no. 6: 798. https://doi.org/10.3390/w13060798

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop