Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geology
2.3. Geomorphology
2.4. Methods
3. Results
3.1. Formation Patterns and Spatial Distribution of Water-Bodies
3.2. Formation Patterns and Stored Water Volumes
3.3. Formation Patterns and Associated Green Fringe Surfaces
3.4. Water Depth and Water-Body Formation Types
4. Discussion
4.1. Water-Bodies of Glacial Origin
4.2. Water-Bodies Caused by Landslide
4.3. Water-Bodies and Tectonics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A challenge for freshwater ecology. Bioscience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Acuña, V.; Datry, T.; Marshall, J.; Barceló, D.; Dahm, C.N.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M.A. Why should we care about temporary waterways? Science 2014, 343, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Benda, L.; Marwan, A.; Hassan, M.A.; Church, M.; May, C.L. Geomorphology of Steepland headwaters: The transition from hillslopes to channels. J. Am. Water Resour. As. 2007, 41, 835–851. [Google Scholar] [CrossRef]
- Costigan, K.H.; Jaeger, K.L.; Goss, C.W.; Fritz, K.M.; Goebel, P.C. Understanding controls on flow permanence in intermittent rivers to aid ecological research: Integrating meteorology, geology and land cover. Ecohydrology 2015. [Google Scholar] [CrossRef]
- Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E. River-aquifer interactions, geologic heterogeneity, and low-flow management. Groundwater 2006, 44, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Jencso, K.G.; McGlynn, B.L. Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resour. Res. 2011, 47, W11527. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.W.; Doyle, M.W. Rangeland management and fluvial geomorphology in northern Tanzania. Geomorphology 2014, 214, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Shanafield, M.; Cook, P.G. Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. J. Hydrol. 2014, 511, 518–529. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Hazelton, A.F.; White, M.S.; White, J.M.; Fischer, R.A. Ephemeral wetlands along a spatially intermittent river: Temporal patterns of vegetation development. Wetlands 2009, 29, 330–342. [Google Scholar] [CrossRef]
- Colombo, N.; Gruber, S.; Martin, M.; Malandrino, M.; Magnani, A.; Godone, D.; Freppaz, M.; Fratianni, S.; Salerno, F. Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d’Olen Rock Glacier in the NW Italian Alps. Sci. Total Environ. 2018, 639, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr. Periglac. Process. 2005, 17, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Todd, A.S.; Manning, A.H.; Verplanck, P.L.; Crouch, C.; McKnight, D.M.; Dunham, R. Climate-change-driven deterioration of water quality in a mineralized watershed. Environ. Sci. Technol. 2012, 46, 9324–9332. [Google Scholar] [CrossRef] [PubMed]
- Jasmine, E.; Saros, J.E.; Rose, K.C.; Clow, D.W.; Stephens, V.C.; Nurse, A.B.; Arnett, H.A.; Stone, J.R.; Williamson, C.E.; Wolfe, A.P. Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ. Sci. Technol. 2010, 44, 4891–4896. [Google Scholar] [CrossRef] [Green Version]
- Thies, H.; Nickus, U.; Mair, V.; Tessadri, R.; Tait, D.; Thaler, B.; Psenner, R. Unexpected response of high alpine lake waters to climate warming. Environ. Sci. Technol. 2007, 41, 7424–7429. [Google Scholar] [CrossRef]
- Diaz-Hernandez, J.L.; Herrera-Martinez, A.J. Hydrological Characteristics and Paradoxes of Mediterranean High-Mountain Water-Bodies of the Sierra-Nevada, SE Spain. Hydrology 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W.; Alean, J.-C.; Müller, P.; Funk, M. Assessing Risks from Glacier Hazards in High Mountain Regions: Some Experiences in the Swiss Alps. Ann. Glaciol. 1989, 13, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.G.; Clague, J.J. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphol. Nat. Hazards 1994, 10, 107–128. [Google Scholar] [CrossRef]
- Clague, J.J. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev. 2000, 19, 1763–1783. [Google Scholar] [CrossRef]
- Schaub, Y.; Haeberli, W.; Huggel, C.; Künzler, M.; Bründl, M. Landslides and New Lakes in Deglaciating Areas: A Risk Management Framework. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer Nature: Berlin, Heildeberg, Germany, 2013; pp. 31–38. [Google Scholar] [CrossRef]
- Haeberli, W.; Whiteman, C. Snow and Ice-Related Hazards, Risks, and Disasters: A General Framework; Haeberli, W., Whiteman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–34. [Google Scholar] [CrossRef]
- Cook, S.J.; Swift, D.A. Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth-Sci. Rev. 2012, 115, 332–372. [Google Scholar] [CrossRef] [Green Version]
- Obermaier, H. Los glaciares cuaternarios de Sierra Nevada. Trab. Del Mus. Nac. DCienc. Nat. Geol. 1916, 17, 1–68. [Google Scholar]
- Messerli, B. Beiträge zur Geomorphologie der Sierra Nevada (Andalusien); Juris Druck & Verlag: Zurich, Switzerland, 1965; p. 178. [Google Scholar]
- Gómez-Ortiz, A.; Sánchez-Gómez, S.T.; Simón-Torres, M. Geomorphological Map of Sierra Nevada. Glacial and Periglacial Geomorphology; Junta de Andalucía (Consejería de Medio Ambiente), Universidad de Barcelona: Barcelona, Spain, 2002; p. 86. ISBN 84-95785-24-2. [Google Scholar]
- Ortiz, A.G.; Schulte, L.; Franch, F.S.; Estremera, D.P.; Blasco, J.J.S.; Gordo, A.A. Deglaciación reciente de Sierra Nevada: Repercusiones morfogénicas, nuevos datos y perspectivas de estudio futuro. Cuad. Investig. Geogr. 2004, 30, 147. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Haeberli, W.; Hoelzle, M.; Paul, F. Alpine glaciers to disappear within decades? Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Swiss Academy of Sciences. Klimänderung und die Schweiz 2050-Erwartete Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft; OcCc and ProClim; Hohmann, R., Ed.; Swiss Academy of Sciences: Bern, Switzerland, 2007; p. 167. [Google Scholar]
- Frey, H.; Huggel, C.; Paul, F.; Haeberli, W. Automated detection of glacier lakes based on remote sensing in view of assessing associated hazard potentials. Grazer Schr. Geogr. Raumforsch. 2010, 45, 261–272. [Google Scholar]
- Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nat. Cell Biol. 1996, 379, 505–510. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Allen, P.A. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Braga, J.C.; Martín, J.M.; Quesada, C. Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 2003, 50, 3–26. [Google Scholar] [CrossRef]
- Reinhardt, L.J.; Dempster, T.J.; Shroder, J.F., Jr.; Persano, C. Tectonic denudation and topographic development in the Spanish Sierra Nevada. Tectonics 2007. [Google Scholar] [CrossRef] [Green Version]
- Brozović, N. Climatic Limits on Landscape Development in the Northwestern Himalaya. Science 1997, 276, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Soti, V.; Tran, A.; Bailly, J.-S.; Puech, C.; Seen, D.L.; Bégué, A. Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Messerli, B.; Ives, J.D. Mountains of the World: A Global Priority; The Parthenon Publishing Group: New York, NY, USA, 1997; p. 495. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. 2018 Revision of World Urbanization Prospects. 2018. Available online: https://sdgs.un.org/goals (accessed on 15 January 2021).
- Oliva, M. Quaternary landscape evolution of Sierra Nevada (Southern Spain): State of the art. Rev. Cuater. Geomor. 2011, 25, 21–44. [Google Scholar]
- MITECO (Ministry for the Ecological Transition and the Demographic Challenge). SAIH Sistema de Información. 2020. Available online: https://www.chguadalquivir.es/saih/ (accessed on 15 January 2021).
- IGME. Mapa Geológico de España a Escala 1:50.000, Nº 1027 (Güéjar-Sierra); Serie MAGNA; Instituto Geológico y Minero de España: Madrid, Spain, 1979. (In Spanish)
- IGME. Mapa Geológico de España a Escala 1:50.000, Nº 1042 (Lanjarón); Serie MAGNA; Instituto Geológico y Minero de España: Madrid, Spain, 1980. (In Spanish)
- IGME. Mapa Geológico de España a Escala 1:50.000, Nº 1028 (Aldeire); Serie MAGNA; Instituto Geológico y Minero de España: Madrid, Spain, 1981. (In Spanish)
- Lafuste, M.J.; Pavillon, M.J. Mise en évidence d’Eifelien daté au sein des terraines métamorphiques des zones internes des Cordillères Bétiques. C. R. Acad. Sci. Paris 1976, 283, 1016–1018. [Google Scholar]
- Puga, E.; De Federico, A.D.; Nieto, J.M. Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: A review. Geodin. Acta 2002, 15, 23–43. [Google Scholar] [CrossRef] [Green Version]
- De Galdeano, C.S.; López-Garrido, A.C. Nature and impact of the Neotectonic deformation in the western Sierra Nevada (Spain). Geomorphology 1999, 30, 259–272. [Google Scholar] [CrossRef]
- Dresch, J. De la Sierra Nevada au Grand Atlas, Formes Glaciaires et Formes de Nivation; Mélanges de Géographie et d’Orientalisme Offerts a E. F. Gautier; Arrault: Tours, France, 1937; pp. 194–212. [Google Scholar]
- Casas, A. Contribución al estudio del glaciarismo cuaternario en Sierra Nevada. Bol. R. Soc. Esp. Hist. Nat. 1943, 45, 543–567. [Google Scholar]
- Schulte, L. Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Quat. Int. 2002, 85–100. [Google Scholar] [CrossRef]
- Hughes, P.; Woodward, J.C.; Gibbard, P.L. Quaternary glacial history of the Mediterranean mountains. Prog. Phys. Geogr. Earth Environ. 2006, 30, 334–364. [Google Scholar] [CrossRef]
- Hughes, P.; Woodward, J.C. Timing of glaciation in the Mediterranean mountains during the last cold stage. J. Quat. Sci. 2008, 23, 575–588. [Google Scholar] [CrossRef]
- Vogiatzakis, I. Mediterranean Mountain Environments; John Wiley & Sons: Hoboken, NJ, USA, 2012; 240p, ISBN 978-0-470-68625-6. [Google Scholar]
- Ortiz, A.G.; Estremera, D.P.; Palade, B.; Selem, L.V.; Salvador-Franch, F.; García, L.M.T.; Franganillo, M.O. La evolución glaciar de Sierra Nevada y la formación de glaciares rocosos. BAGE 2013, 61, 139–162. [Google Scholar] [CrossRef] [Green Version]
- Colin, C.; Turpin, L.; Bertaux, J.; Desprairies, A.; Kissel, C. Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth Planet. Sci. Lett. 1999, 171, 647–660. [Google Scholar] [CrossRef]
- Benn, D.I.; Owen, L.A. Himalayan glacial sedimentary environments: A framework for reconstructing and dating the former extent of glaciers in high mountains. Quat. Int. 2002, 97–98, 3–25. [Google Scholar] [CrossRef]
- Anderson, R.S.; Jiménez-Moreno, G.; Carrión, J.; Pérez-Martínez, C. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat. Sci. Rev. 2011, 30, 1615–1629. [Google Scholar] [CrossRef]
- Jiménez-Moreno, G.; Anderson, R.S. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quat. Res. 2012, 77, 44–53. [Google Scholar] [CrossRef]
- IGN. Mapa Topográfico Nacional a Escala 1:25.000, Nº 1027 and 1042; Instituto Geográfico Nacional: Madrid, Spain, 2000; NIPO: 162-94-001-9; ISBN 84-7819-053-8.
- Iberpix. Available online: https://www.ign.es/iberpix2/visor/ (accessed on 15 January 2021).
- Swift, D.A.; Cook, S.; Heckmann, T.; Moore, J.R.; Gärtner-Roer, I.; Korup, O. Ice and Snow as Land-Forming Agents. In Snow and Ice-Related Hazards, Risks and Disasters; Haeberli, W., Whiteman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 167–199. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Korup, O.; Clague, J.J.; Hermanns, R.L.; Hewitt, K.; Strom, A.L.; Weidinger, J.T. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 2007, 261, 578–589. [Google Scholar] [CrossRef]
- Clague, J.J.; Stead, D. Landslides, Types, Mechanisms and Modelling; Cambridge University Press: Cambridge, UK, 2012; p. 420. [Google Scholar]
- Cossart, E.; Mercier, D.; Decaulne, A.; Feuillet, T. An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: Typology, timing and contribution to cascading fluxes. Quaternaire 2013, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Titos, M. Los trabajos de desagüe de las lagunas de Sierra Nevada: Un largo despropósito medioambiental. Rev. Cent. Estud. Históricos Granada Y Su Reino 2019, 31, 223–243. [Google Scholar]
- Cook, S.J.; Swift, D.A.; Kirkbride, M.; Knight, P.G.; Waller, R.I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort, M. Sedimentary Fluxes in Himalaya. In Source-to-Sink Fluxes in Undisturbed Cold Environments; Cambridge University Press: Cambridge, UK, 2016; pp. 326–350. [Google Scholar]
- Cann, J.H. Physical weathering of slate gravestones in a Mediterranean climate. Aust. J. Earth Sci. 2012, 59, 1021–1032. [Google Scholar] [CrossRef]
- Chen, J.; Blume, H.P.; Beyer, L. Weathering of rocks induced by lichen colonization—A review. Catena 2000, 39, 121–146. [Google Scholar] [CrossRef]
- Thorn, C.E.; Darmody, R.G.; Dixon, J.C. Rethinking weathering and pedogenesis in alpine periglacial regions: Some Scandinavian evidence. Geol. Soc. Lond. Spéc. Publ. 2011, 354, 183–193. [Google Scholar] [CrossRef]
- Molnar, P.; England, P.C. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nat. Cell Biol. 1990, 346, 29–34. [Google Scholar] [CrossRef]
- Crosta, G.B.; Clague, J.J. Large landslides: Dating, triggering, modelling, and hazard assessment. Eng. Geol. 2006, 83, 1–3. [Google Scholar] [CrossRef]
- Crosta, G.B.; Clague, J.J. Dating, triggering, modelling, and hazard assessment of large landslides. Geomorphology 2009, 103, 1–4. [Google Scholar] [CrossRef]
(A) Water-Bodies Number (%) | (B) Stored Water Volume (m3) | (C) Green Fringes Surface (m2) | (D) Mean Water Depth (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Formation Patterns | Watershed | Total Massif | Watershed | Total Massif | Watershed | Total Massif | Watershed | Tot Mas | ||||
Med. | Atl. | Med. | Atl. | Med. | Atl. | M. | At. | |||||
I Glacial | 44.7 | 26.8 | 71.5 | 125,960 | 67,923 | 193,883 | 10,1072 | 35,429 | 136,501 | |||
(a) Overdeep. | 39.8 | 22.0 | 61.8 | 41,643 | 65,215 | 107,858 | 100,194 | 35,429 | 135,623 | 0,9 | 0,9 | 0,9 |
(b) Mor.-da. | 4.9 | 4.9 | 9.8 | 83,317 | 2708 | 86,025 | 878 | 0 | 878 | 5,3 | 0,9 | 3,1 |
II Lands | 13.0 | 12.2 | 25.2 | 14,312 | 5938 | 20,250 | 47,717 | 1713 | 49,430 | |||
(a) Debris-fl. | 12.2 | 10.1 | 22.8 | 14,025 | 5679 | 19,704 | 47,626 | 1713 | 49,339 | 1,1 | 0,5 | 0,8 |
(b) Rock-fall | 0.8 | 1.6 | 2.4 | 287 | 259 | 546 | 90 | 0 | 90 | 1,4 | 1,0 | 1,1 |
III Other | 0.8 | 2.4 | 3.3 | 69 | 860 | 929 | 0 | 540 | 540 | 0,8 | 1,2 | 1,1 |
TOTAL | 58.5 | 41.5 | 100.0 | 140,341 | 74,721 | 215,062 | 148,788 | 37,683 | 186,471 | |||
% = 65 | % = 35 | % = 80 | % = 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Hernandez, J.L.; Herrera-Martinez, A.J. Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain. Water 2021, 13, 438. https://doi.org/10.3390/w13040438
Diaz-Hernandez JL, Herrera-Martinez AJ. Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain. Water. 2021; 13(4):438. https://doi.org/10.3390/w13040438
Chicago/Turabian StyleDiaz-Hernandez, Jose Luis, and Antonio Jose Herrera-Martinez. 2021. "Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain" Water 13, no. 4: 438. https://doi.org/10.3390/w13040438
APA StyleDiaz-Hernandez, J. L., & Herrera-Martinez, A. J. (2021). Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain. Water, 13(4), 438. https://doi.org/10.3390/w13040438