Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = water-bodies of Mediterranean mountains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11617 KB  
Article
The Charophytes (Charophyceae, Characeae) from Dagestan Aquatic Habitats, North Caucasus: Biogeographical and Barcoding Perspectives
by Roman E. Romanov, Maxim M. Mallaliev, Sophia Barinova, Vyacheslav Yu. Nikulin and Andrey A. Gontcharov
Environments 2023, 10(9), 153; https://doi.org/10.3390/environments10090153 - 1 Sep 2023
Cited by 8 | Viewed by 3688
Abstract
The charophytes in many regions of the world are still poorly understood. This hampers the synthesis of distributional and ecological datasets at worldwide and continental scales, as well as complicates the generalization of species concepts for widely distributed and local taxa. To fill [...] Read more.
The charophytes in many regions of the world are still poorly understood. This hampers the synthesis of distributional and ecological datasets at worldwide and continental scales, as well as complicates the generalization of species concepts for widely distributed and local taxa. To fill in the blanks for charophytes in the Caucasus and to improve our knowledge of species distribution areas in Eurasia, a field survey and study of available specimens from Dagestan (North Caucasus, Russia) was conducted based on morphological observation using light and scanning electron microscopy and molecular genetic analyses allowing for the precise identification and testing of the presence of cryptic and undescribed taxa. Nineteen new localities for seven Chara species and one Tolypella species, seven new species, and one new genus were identified in the studied region, and one new species in the Caspian Sea region was found. Some species records changed the outline or filled in the gaps in species distribution data. The presence of species distributed mainly in central Eurasia (C. globata, C. neglecta) with mainly Mediterranean–Middle Eastern species (C. gymnophylla) is notable for this region, as well as for other studied regions of the Caucasus characterized by a mixture combination of species with different distribution patterns. Chara gymnophylla was frequent in Dagestan, similar to the Mediterranean and Middle Eastern regions. Small brackish waterbodies on the coast of the Caspian Sea, freshwater mountain rivers, small associated waterbodies, and water reservoirs are the main habitats of charophytes in the studied region. Based on habitat preference and distribution in the Caucasus, recommendations for the protection of some species were suggested. The lack of endemic species among charophytes from Dagestan and Caucasus contrasts with the flora of terrestrial magnoliophytes that is rich in species endemism. Full article
Show Figures

Figure 1

20 pages, 7157 KB  
Article
Formation Patterns of Mediterranean High-Mountain Water-Bodies in Sierra-Nevada, SE Spain
by Jose Luis Diaz-Hernandez and Antonio Jose Herrera-Martinez
Water 2021, 13(4), 438; https://doi.org/10.3390/w13040438 - 8 Feb 2021
Cited by 5 | Viewed by 4598
Abstract
At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy [...] Read more.
At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions. Full article
Show Figures

Figure 1

23 pages, 7381 KB  
Article
Assessment of the Geo-Environmental Status of European Union Priority Habitat Type “Mediterranean Temporary Ponds” in Mt. Oiti, Greece
by Charalampos Vasilatos, Marianthi Anastasatou, John Alexopoulos, Emmanuel Vassilakis, Spyridon Dilalos, Sofia Antonopoulou, Stelios Petrakis, Pinelopi Delipetrou, Kyriacos Georghiou and Michael Stamatakis
Water 2019, 11(8), 1627; https://doi.org/10.3390/w11081627 - 7 Aug 2019
Cited by 5 | Viewed by 3898
Abstract
Mediterranean Temporary Ponds (MTPs) constitute priority habitat under the European Union Habitats’ Directive. They are inhabited by rare species and subjected to unstable environmental conditions. Lakes and ponds act as early indicators of climate change, to which high altitude ecosystems are especially vulnerable. [...] Read more.
Mediterranean Temporary Ponds (MTPs) constitute priority habitat under the European Union Habitats’ Directive. They are inhabited by rare species and subjected to unstable environmental conditions. Lakes and ponds act as early indicators of climate change, to which high altitude ecosystems are especially vulnerable. This study presents a full dataset of the geo-environmental parameters of such habitats (MTPs) along with their current ecological status for the first time. Furthermore, this paper aims to address the lack of basic geo-environmental background on the network of MTPs of Mt. Oiti concerning their geological, geomorphological, mineralogical and geochemical characteristics along with the pressures received from various activities. The study area is located in a mountainous Natura 2000 site of Central Greece, which hosts four MTPs. Fieldwork and sampling of water and bottom sediments were carried out during dry and wet periods between 2012 and 2014. Electrical Resistivity Tomography measurements identified synforms shaped under the ponds that topography does not always adopt them, mostly due to erosion procedures. The most significant feature, distinguishing those pond waters from any other province water bodies is the extremely low content of all studied ions (including NO2, NO3, NH4+, PO43−, HCO3, SO42−, Al, As, B, Ba, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Fe, Ga, Gd, Ge, Hf, Hg, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, S, Sb, Se, Si, Sn, Sr, Ti, U, V, W, Zn, and Zr). MTPs water bodies are of bicarbonate dominant type, and a fresh meteoric water origin is suggested. The main pressures identified were grazing and trampling by vehicles. MTPs of Mt. Oiti were classified according to their ecological status form excellent to medium. Our results can contribute to a better understanding of the mountainous temporary ponds development in the Mediterranean environment. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

19 pages, 7437 KB  
Article
Hydrological Characteristics and Paradoxes of Mediterranean High-Mountain Water-Bodies of the Sierra-Nevada, SE Spain
by Jose Luis Diaz-Hernandez and Antonio Jose Herrera-Martinez
Hydrology 2019, 6(3), 59; https://doi.org/10.3390/hydrology6030059 - 9 Jul 2019
Cited by 6 | Viewed by 4121
Abstract
Each lake complex must be understood before attempting any regional synthesis leading us to view these water-bodies as indicators of regional climate change. Therefore, in order to improve knowledge of these Mediterranean biotopes, we examined the dependence of the fringes of hygrophilous communities [...] Read more.
Each lake complex must be understood before attempting any regional synthesis leading us to view these water-bodies as indicators of regional climate change. Therefore, in order to improve knowledge of these Mediterranean biotopes, we examined the dependence of the fringes of hygrophilous communities surrounding the water-bodies (green fringes) on their hydrological and geomorphological features. The climate of the western sector of this massif is cryo–oromediterranean, where thawing produces 53 hm3 of run-off and 11 hm3 of sub-surface flow. Part of this water is stored in 123 water-bodies located from 2480 to 3200 m a.s.l., 72 of which (58%) are located on the south-facing Mediterranean watershed. The total surface of the water sheet is approximately 170,000 m2, and volume is approximately 215,000 m3, of which 140,000 m3 (65%) are stored in the south-facing water-bodies. Green fringes surrounding 84 water-bodies have a total surface area of approximately 186,000 m2. Surprisingly, the more xeric Mediterranean watershed holds 58 such fringes (149,000 m2, 80%) while 26 are found on the Atlantic watershed (38,000 m2, 20%). Green fringes are mainly associated with small water-bodies (<5000 m3), which occupy 148,000 m2 on the Mediterranean watershed, while on the Atlantic side, green fringes occupy 31,000 m2. Sierra Nevada also has 46 times higher water-efficiency in the smaller water-bodies than in the large ones; 16.4 and 335.8 times higher on the Atlantic and Mediterranean watersheds, respectively. The differences in gradient of the massif hillsides must largely explain this uneven behaviour. Full article
Show Figures

Figure 1

Back to TopTop