Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agulhon, P.H. Présence et utilité du bore chez les végétaux. Nutr. Rev. 1988, 46, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, L.; Lukaszewski, K.; Bonilla, I.; Blevins, D. Why boron? Plant Physiol. Biochem. 2004, 42, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant salt tolerance. In ASCE Manual and Reports on Engineering Practice No. 71 Agricultural Salinity Assessment and Management; Wallender, W.W., Tanji, K.K., Eds.; ASCE: Reston, VA, USA, 2012; pp. 405–459. [Google Scholar]
- Hilal, N.; Kim, G.; Somerfield, C. Boron removal from saline water: A comprehensive review. Desalination 2011, 273, 23–35. [Google Scholar] [CrossRef]
- Saif, Y.; Almansoori, A. Synthesis of reverse osmosis desalination network under boron specifications. Desalination 2015, 371, 26–36. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Anzellotti, D.; González-Fontes, A. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol. Biochem. 2002, 40, 997–1002. [Google Scholar] [CrossRef]
- Molassiotis, A.; Sotiropoulos, T.; Tanou, G.; Diamantidis, G.; Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot. 2006, 56, 54–62. [Google Scholar] [CrossRef]
- Novoa, M.A.; Miranda, D.; Melgarejo, L.M. Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass). Rev. Colomb. Cienc. Hortícolas 2018, 12, 293–307. [Google Scholar] [CrossRef]
- Warncke, D.D. Ameliorating internal black spot in cranberry bean seed with boron application. Commun. Soil Sci. Plant Anal. 2005, 36, 775–781. [Google Scholar] [CrossRef]
- Yu, X.; Bell, P. Boron and lime effects on yield and deficiency symptoms of rice grown in greenhouse on acid typic glossaqualf. J. Plant Nutr. 2002, 25, 2591–2602. [Google Scholar] [CrossRef]
- Reid, R. Update on boron toxicity and tolerance in plants. In Advances in Plant Animal Boron Nutrition; Xu, F., Goldbach, H.E., Brown, P.H., Bell, R.W., Fujiwara, T., Hunt, C.D., Goldberg, S., Shi, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 83–90. [Google Scholar]
- Ben-Gal, A.; Shani, U. Effect of excess boron on tomatoes under salinity stress. Plant Soil 2002, 247, 211–221. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Zarzo, D.; Campos, E.; Terrero, P. Spanish experience in desalination for agriculture. Desalination Water Treat. 2013, 51, 53–66. [Google Scholar] [CrossRef]
- Li, S.; Li, Z. Reverse osmosis and forward osmosis in desalination membrane systems. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–303. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Membr. Sci. 2012, 415, 1–8. [Google Scholar] [CrossRef]
- Duranceau, S.J.; Pfeiffer-Wilder, R.J.; Douglas, S.A.; Peña-Holt, N.; Watson, I.C. Post-Treatment Stabilization of Desalinated Water; Water Research Foundation: Alexandria, VA, USA, 2011. [Google Scholar]
- Wang, S.; Zhou, Y.; Gao, C. Novel high boron removal polyamide reverse osmosis membranes. J. Membr. Sci. 2018, 554, 244–252. [Google Scholar] [CrossRef]
- Latorre, M. El Boro En La Desalación; Experiencia en la Planta de Valdelentisco: Murcia, Spain, 2010. [Google Scholar]
- BOE. Real Decreto 140/2003, de 7 de Febrero, Por el Que se Establecen los Criterios Sanitarios de la Calidad del Agua de Consumo Humano (Spain); Official State Bulletin: Madrid, Spain, 2003. [Google Scholar]
- Yermiyahu, U.; Tal, A.; Ben-Gal, A.; Bar-Tal, A.; Tarchitzky, J.; Lahav, O. Rethinking desalinated water quality and agriculture. Science 2007, 318, 920–921. [Google Scholar] [CrossRef]
- Bonnélye, V.; Sanz, M.; Francisci, L.; Beltran, F.; Cremer, G.; Colcuera, R.; Laraudogoitia, J. Curacao, Netherlands Antilles: A successful example of boron removal on a seawater desalination plant. Desalination 2007, 205, 200–205. [Google Scholar] [CrossRef]
- Taniguchi, M.; Fusaoka, Y.; Nishikawa, T.; Kurihara, M. Boron removal in RO seawater desalination. Desalination 2004, 167, 419–426. [Google Scholar] [CrossRef]
- Landsman, M.R.; Lawler, D.F.; Katz, L.E. Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis. Desalination 2020, 491, 114563. [Google Scholar] [CrossRef]
- Kheriji, J.; Mnif, A.; Bejaoui, I.; Hamrouni, B. Study of the influence of operating parameters on boron removal by a reverse osmosis membrane. Desalination Water Treat. 2015, 56, 2653–2662. [Google Scholar] [CrossRef]
- Tu, K.L.; Nghiem, L.D.; Chivas, A.R. Boron removal by reverse osmosis membranes in seawater desalination applications. Sep. Purif. Technol. 2010, 75, 87–101. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef]
- Dupont. WAVE (Water Application Value Engine). Wave Software For Water Treatment Plant Design. Available online: https://www.dupont.com/water/resources/design-software.html (accessed on 29 July 2020).
- Hung, P.V.X.; Cho, S.-H.; Moon, S.-H. Prediction of boron transport through seawater reverse osmosis membranes using solution–diffusion model. Desalination 2009, 247, 33–44. [Google Scholar] [CrossRef]
- Hyung, H.; Kim, J.-H. A mechanistic study on boron rejection by sea water reverse osmosis membranes. J. Membr. Sci. 2006, 286, 269–278. [Google Scholar] [CrossRef]
- Gupta, V.K.; Hwang, S.-T.; Krantz, W.B.; Greenberg, A.R. Characterization of nanofiltration and reverse osmosis membrane performance for aqueous salt solutions using irreversible thermodynamics. Desalination 2007, 208, 1–18. [Google Scholar] [CrossRef]
- Martínez, D. Cost of Desalinated Seawater Per RO. In Water Desalination: Technological, Environmental, Legal and Economic Aspects; Fundación Instituto Euromediterráneo del Agua: Murcia, Spain, 2009. (In Spanish) [Google Scholar]
- World Health Organization. Guidelines for Drinking Water Quality; World Health Organization: Ginebra, Switzerland, 2011. (In Spanish) [Google Scholar]
- Lahav, O.; Kochva, M.; Tarchitzky, J. Potential drawbacks associated with agricultural irrigation with treated wastewaters from desalinated water origin and possible remedies. Water Sci. Technol. 2010, 61, 2451–2460. [Google Scholar] [CrossRef]
- Maas, E. Crop salt tolerance. In Agricultural Salinity Assessment Management; Tanji, K.K., Ed.; Amer Society of Civil Engineers: New York, NY, USA, 1990; pp. 262–304. [Google Scholar]
- Rodríguez Guerreiro, M.J.; de la Fuente, M.d.M.; Muñoz Camacho, E. Boron toxicity in plants. In Encuentros En La Biología; Universidad de Granada: Granada, Spain, 2002; Volume 5, p. 1. (In Spanish) [Google Scholar]
- Cotruvo, J.; Voutchkov, N.; Fawell, J.; Payment, P.; Cunliffe, D.; Lattemann, S. Desalination Technology: Health and Environmental Impacts; CRC Press and IWA Publishing: Boca Raton, FL, USA, 2010. [Google Scholar]
- Lahav, O.; Birnhack, L. Post-Treatment of Desalinated Water; Balaban Desalination Publications: L’Aquila, Italy, 2012. [Google Scholar]
- Martínez Beltrán, J.; Koo-Oshima, S. Water desalination for agricultural applications. FAO Land Water Discuss. Pap. 2006, 5, 48. Available online: http://www.fao.org/3/a-a0494e.pdf (accessed on 22 January 2021).
2017 | T | EC | B | Pe | Er | 2018 | T | EC | B | Pe | Er | 2019 | T | EC | B | Pe | Er |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | 15.9 | 389 | 0.65 | 67.2 | 87.1 | Jan | 15.1 | 311 | 0.60 | 67.0 | 87.3 | Jan | 15.5 | 445 | 0.59 | 67.4 | 87.5 |
Feb | 15.5 | 347 | 0.56 | 67.3 | 88.9 | Feb | 15.5 | 352 | 0.61 | 67.1 | 87.5 | Feb | 16.5 | 458 | 0.61 | 67.0 | 88.0 |
Mar | 16.4 | 398 | 0.61 | 67.7 | 87.9 | Mar | 15.2 | 361 | 0.59 | 67.2 | 87.9 | Mar | 17.6 | 477 | 0.58 | 67.6 | 87.7 |
Apr | 17.9 | 431 | 0.71 | 67.1 | 85.4 | Apr | 17.1 | 401 | 0.70 | 66.4 | 84.8 | Apr | 19.4 | 481 | 0.62 | 66.9 | 85.3 |
May | 19.5 | 548 | 0.75 | 66.2 | 85.1 | May | 19.9 | 475 | 0.77 | 65.4 | 83.6 | May | 21.5 | 518 | 0.76 | 66.2 | 83.9 |
Jun | 25.0 | 541 | 0.90 | 65.8 | 82.0 | Jun | 22.8 | 604 | 0.88 | 63.6 | 81.3 | Jun | 23.1 | 612 | 0.82 | 64.7 | 80.9 |
Jul | 27.2 | 651 | 0.99 | 64.3 | 80.3 | Jul | 27.0 | 726 | 0.96 | 63.0 | 79.5 | Jul | 25.2 | 744 | 0.95 | 63.9 | 79.3 |
Aug | 28.5 | 562 | 0.99 | 63.8 | 80.0 | Aug | 28.6 | 761 | 1.00 | 62.9 | 80.0 | Aug | 26.4 | 757 | 0.99 | 63.7 | 80.5 |
Sep | 26.3 | 572 | 0.93 | 63.4 | 81.2 | Sep | 27.7 | 688 | 0.98 | 63.1 | 79.6 | Sep | 26.1 | 752 | 0.88 | 63.5 | 80.3 |
Oct | 25.1 | 495 | 0.91 | 63.8 | 81.7 | Oct | 23.6 | 580 | 0.93 | 63.6 | 80.7 | Oct | 23.9 | 650 | 0.85 | 63.7 | 81.0 |
Nov | 20.5 | 416 | 0.82 | 64.7 | 82.6 | Nov | 20.2 | 462 | 0.84 | 64.6 | 82.7 | Nov | 20.8 | 514 | 0.76 | 64.5 | 83.1 |
Dec | 16.7 | 333 | 0.67 | 65.3 | 85.8 | Dec | 17.9 | 448 | 0.75 | 66.2 | 84.0 | Dec | 17.0 | 419 | 0.71 | 65.8 | 84.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escarabajal-Henarejos, D.; Parras-Burgos, D.; Ávila-Dávila, L.; Cánovas-Rodríguez, F.J.; Molina-Martínez, J.M. Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation. Water 2021, 13, 322. https://doi.org/10.3390/w13030322
Escarabajal-Henarejos D, Parras-Burgos D, Ávila-Dávila L, Cánovas-Rodríguez FJ, Molina-Martínez JM. Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation. Water. 2021; 13(3):322. https://doi.org/10.3390/w13030322
Chicago/Turabian StyleEscarabajal-Henarejos, David, Dolores Parras-Burgos, Laura Ávila-Dávila, Francisco Javier Cánovas-Rodríguez, and José Miguel Molina-Martínez. 2021. "Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation" Water 13, no. 3: 322. https://doi.org/10.3390/w13030322
APA StyleEscarabajal-Henarejos, D., Parras-Burgos, D., Ávila-Dávila, L., Cánovas-Rodríguez, F. J., & Molina-Martínez, J. M. (2021). Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation. Water, 13(3), 322. https://doi.org/10.3390/w13030322