A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrogeological Characteristics of the Study Area
2.2. Subsurface Water Levels (Response Parameters)
2.3. Environmental Explanatory Parameters
2.4. Data Preprocessing
2.5. Applied Methodology
Dynamic Factor Analysis
- a diagonal matrix with equal variances in the diagonal
- a diagonal matrix with unequal variances in the diagonal
- a non-diagonal matrix with equal variances in the diagonal and equal covariances
- an unconstrained covariance matrix
3. Results
3.1. Estimation of Common Trends and Driving Factors of the SGW Levels and Their Spatial Distribution
3.2. Estimation of SGW Levels from the Dynamic Factor Models
4. Discussion
5. Conclusions and Outlook
- (i)
- provided a detailed insight into the most important drivers of the SGW table in the area
- (ii)
- yielded an accurate estimation of the SGW table fluctuations
- (iii)
- facilitated the spatial grouping of the wells
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
R Matrix | Number of Factors | ΔAICc |
---|---|---|
different variances & covariances | 3 | 0 |
2 | 36.8 | |
1 | 191.4 | |
different variances & no covariance | 3 | 19,326.2 |
2 | 24,461.2 | |
same variances & same covariance | 3 | 24,674.1 |
same variances & no covariance | 25,846.9 | |
same variances & same covariance | 2 | 28,591.4 |
same variances & no covariance | 30,351.3 | |
same variances & same covariance | 1 | 32,570.6 |
different variances & no covariance | 34,279.2 | |
same variances & no covariance | 37,725.7 |
References
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguez-Macho, G.; Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. 2012, 117, D15113. [Google Scholar] [CrossRef]
- Nayak, P.C.; Rao, Y.S.; Sudheer, K. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour. Manag. 2006, 20, 77–90. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yu, J.; Pozdniakov, S.P.; Grinevsky, S.O.; Liu, C. Shallow groundwater dynamics and its driving forces in extremely arid areas: A case study of the lower Heihe River in northwestern China. Hydrol. Process. 2014, 28, 1539–1553. [Google Scholar] [CrossRef]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59–60, 143–156. [Google Scholar] [CrossRef]
- Perez-Valdivia, C.; Sauchyn, D.; Vanstone, J. Groundwater levels and teleconnection patterns in the Canadian Prairies. Water Resour. Res. 2012, 48, W07516. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Nahin, K.T.K.; Basak, R.; Alam, R. Groundwater Vulnerability Assessment with DRASTIC Index Method in the Salinity-Affected Southwest Coastal Region of Bangladesh: A Case Study in Bagerhat Sadar, Fakirhat and Rampal. Earth Syst. Environ. 2020, 4, 183–195. [Google Scholar] [CrossRef]
- Jaseela, C.; Prabhakar, K.; Harikumar, P.S.P. Application of GIS and DRASTIC Modeling for Evaluation of Groundwater Vulnerability near a Solid Waste Disposal Site. Int. J. Geosci. 2016, 7, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Kroes, J.; Supit, I.; van Dam, J.; van Walsum, P.; Mulder, M. Impact of capillary rise and recirculation on simulated crop yields. Hydrol. Earth Syst. Sci. 2018, 22, 2937–2952. [Google Scholar] [CrossRef] [Green Version]
- Mejia, M.N.; Madramootoo, C.A.; Broughton, R.S. Influence of water table management on corn and soybean yields. Agric. Water Manag. 2000, 46, 73–89. [Google Scholar] [CrossRef]
- Salem, G.S.A.; Kazama, S.; Shahid, S.; Dey, N.C. Impact of temperature changes on groundwater levels and irrigation costs in a groundwater-dependent agricultural region in Northwest Bangladesh. Hydrol. Res. Lett. 2017, 11, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Kløve, B. Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran. Water 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Garamhegyi, T.; Hatvani, I.G.; Szalai, J.; Kovács, J. Delineation of Hydraulic Flow Regime Areas Based on the Statistical Analysis of Semicentennial Shallow Groundwater Table Time Series. Water 2020, 12, 828. [Google Scholar] [CrossRef] [Green Version]
- Gribovszki, Z.; Szilágyi, J.; Kalicz, P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—A review. J. Hydrol. 2010, 385, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Barthel, R.; Reichenau, T.G.; Krimly, T.; Dabbert, S.; Schneider, K.; Mauser, W. Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour. Manag. 2012, 26, 1929–1951. [Google Scholar] [CrossRef]
- Mercau, J.L.; Nosetto, M.D.; Bert, F.; Giménez, R.; Jobbágy, E.G. Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects. Agric. Water Manag. 2016, 163, 159–168. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation–a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Reisner, G. Data Collection, Data Preparation and Description of the Agricultural Irrigation Requirement; Burgenländische Einrichtung zur Realisierung Technischer Agrarprojekte: Eisenstadt, Austria, 2014; p. 7. (In German) [Google Scholar]
- Magyar, N.; Hatvani, I.G.; Székely, I.K.; Herzig, A.; Dinka, M.; Kovács, J. Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol. Eng. 2013, 55, 82–92. [Google Scholar] [CrossRef]
- Herzig, A.; Hatvani, I.G.; Tanos, P.; Blaschke, A.P.; Sommer, R.; Farnleitner, A.H.; Kirschner, A.K.T. Microbiological-hygienic examinations at Lake Neusiedl—From the individual examination to the overall concept. Österreichische Wasser- Und Abfallwirtschaft 2019. (In German) [Google Scholar] [CrossRef] [Green Version]
- Hatvani, I.G.; Kirschner, A.K.; Farnleitner, A.H.; Tanos, P.; Herzig, A. Hotspots and main drivers of fecal pollution in Neusiedler See, a large shallow lake in Central Europe. Environ. Sci. Pollut. Res. 2018, 25, 28884–28898. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, G.; Zessner, M. Neusiedler See. Österreichische Wasser- Und Abfallwirtschaft 2019, 71, 481–482. [Google Scholar] [CrossRef] [Green Version]
- Dinka, M.; Kiss, A.; Magyar, N.; Ágoston-Szabó, E. Effects of the introduction of pre-treated wastewater in a shallow lake reed stand. Open Geosci. 2016, 8, 62–77. [Google Scholar] [CrossRef] [Green Version]
- Dinka, M.; Ágoston-Szabó, E.; Berczik, Á.; Kutrucz, G. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertõ/Neusiedler See. Limnologica 2004, 34, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Kovács, J.; Kovács, S.; Magyar, N.; Tanos, P.; Hatvani, I.G.; Anda, A. Classification into homogeneous groups using combined cluster and discriminant analysis. Environ. Model. Softw. 2014, 57, 52–59. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Magyar, N.; Zessner, M.; Kovács, J.; Blaschke, A.P. The Water Framework Directive: Can more information be extracted from groundwater data? A case study of Seewinkel, Burgenland, eastern Austria. Hydrogeol. J. 2014, 22, 779–794. [Google Scholar] [CrossRef]
- Magyar, N.; Trásy, B.; Kutrucz, G.; Dinka, M. Delineating water bodies on the Hungarian side of Lake Fertő/Neusiedler See. In Theories and Applications in Geomathematics: Selected Studies of the 2012 Croatian-Hungarian Geomathematical Convent; GeoLitera: Opatija, Croatia, 2013. [Google Scholar]
- Blaschke, A.; Gschöpf, C. Groundwater Flow Model Seewinkel; Burgenländische Landesregierung: Eisenstadt, Austria, 2011; (In German). Available online: https://wasser.bgld.gv.at/fileadmin/user_upload/news/Kurzfassung_Bericht_GWM.pdf (accessed on 10 July 2020).
- Karner, K.; Mitter, H.; Schmid, E. The economic value of stochastic climate information for agricultural adaptation in a semi-arid region in Austria. J. Environ. Manag. 2019, 249, 109431. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema: Rotterdam, The Netherlands, 2005. [Google Scholar]
- Wang, Y.; Ma, T.; Luo, Z. Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: A case study in the Liulin karst system, northwestern China. J. Hydrol. 2001, 246, 223–234. [Google Scholar] [CrossRef]
- Anim-Gyampo, M.; Anornu, G.K.; Agodzo, S.K.; Appiah-Adjei, E.K. Groundwater Risk Assessment of Shallow Aquifers within the Atankwidi Basin of Northeastern Ghana. Earth Syst. Environ. 2019, 3, 59–72. [Google Scholar] [CrossRef]
- Blöschl, G.; Blaschke, A.P.; Haslinger, K.; Hofstätter, M.; Parajka, J.; Salinas, J.; Schöner, W. Impact of climate change on Austria’s water sector—An updated status report. Österreichische Wasser- Und Abfallwirtschaft 2019, 70, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Carpena, R.; Ritter, A.; Li, Y.C. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. J. Contam. Hydrol. 2005, 80, 49–70. [Google Scholar] [CrossRef]
- Winter, T.C.; Mallory, S.E.; Allen, T.R.; Rosenberry, D.O. The Use of Principal Component Analysis for Interpreting Ground Water Hydrographs. Groundwater 2000, 38, 234–246. [Google Scholar] [CrossRef]
- Zhang, R.G. Groundwater Hydrograph Patterns in North China Plain during 1982–1986 Interpreted Using Principal Component Analysis. Adv. Mater. Res. 2012, 356–360, 2320–2324. [Google Scholar] [CrossRef]
- Seferli, S.; Modis, K.; Adam, K. Interpretation of groundwater hydrographs in the West Thessaly basin, Greece, using principal component analysis. Environ. Earth Sci. 2019, 78, 257. [Google Scholar] [CrossRef]
- Moon, S.-K.; Woo, N.C.; Lee, K.S. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J. Hydrol. 2004, 292, 198–209. [Google Scholar] [CrossRef]
- Márkus, L.; Berke, O.; Kovács, J.; Urfer, W. Spatial prediction of the intensity of latent effects governing hydrogeological phenomena. Environmetrics Off. J. Int. Environmetrics Soc. 1999, 10, 633–654. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Kovács, J.; Márkus, L.; Clement, A.; Hoffmann, R.; Korponai, J. Assessing the relationship of background factors governing the water quality of an agricultural watershed with changes in catchment property (W-Hungary). J. Hydrol. 2015, 521, 460–469. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J. Hydrol. 2006, 317, 340–354. [Google Scholar] [CrossRef]
- Zuur, A.F.; Fryer, R.J.; Jolliffe, I.T.; Dekker, R.; Beukema, J.J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics Off. J. Int. Environmetrics Soc. 2003, 14, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Kovács, J.; Márkus, L.; Halupka, G. Dynamic factor analysis for quantifying aquifer vulnerability. Acta Geol. Hung. 2004, 47, 1–17. [Google Scholar] [CrossRef]
- Kovács, J.; Márkus, L.; Szalai, J.; Barcza, M.; Bernáth, G.; Székely, I.K.; Halupka, G. Exploring Potentially Hazardous Areas for Water Quality Using Dynamic Factor Analysis. In Water Quality Monitoring and Assessment; InTech: Rijeka, Croatia, 2012; pp. 227–256. [Google Scholar]
- Kovács, J.; Márkus, L.; Szalai, J.; Kovács, I.S. Detection and evaluation of changes induced by the diversion of River Danube in the territorial appearance of latent effects governing shallow-groundwater fluctuations. J. Hydrol. 2015, 520, 314–325. [Google Scholar] [CrossRef]
- Kisekka, I.; Migliaccio, K.W.; Muñoz-Carpena, R.; Schaffer, B.; Li, Y.C. Dynamic factor analysis of surface water management impacts on soil and bedrock water contents in Southern Florida Lowlands. J. Hydrol. 2013, 488, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Kroiss, H.; Zessner, M.; Schilling, C.; Kavka, G.; Farnleitner, A.; Mach, R.; Blaschke, A.; Kirnbauer, R.; Tentschert, E.; Hassler, C. Effect of seepage and trickling of wastewater mechanically and biologically treated by small sewage treatment plants in decentralized locations. In Endbericht. Im Auftrage des Bundesministeriums für Land-und Forstwirtschaft und Umwelt; Bundesministerium für Landwirtschaft, Regionen und Tourismus: Stubenring, Austria, 2006; pp. 1–249. (In German) [Google Scholar]
- Kroiss, H.; Matsche, N.; Vogel, B.; Zessner, M.; Kavka, G.; Farnleitner, A.; Mach, R.; Gutknecht, D.; Blaschke, A.; Heinecke, U. Effects of the infiltration of biologically treated wastewater on the groundwater. In Report for BuMi Wirtschaft u. Arbeit, BuMi Bildung Wissenschaft u. Kultur, BuMi Land-Forstwirtschaft, Umwelt und Wasserwirtschaft, Amt der Burgenländischen Landesregierung Abteilung; Amt der burgenländischen Landesregierung: Eisenstadt, Austria, 2002; Volume 9. (In German) [Google Scholar]
- Kersebaum, K.; Steidl, J.; Bauer, O.; Piorr, H.-P. Modelling scenarios to assess the effects of different agricultural management and land use options to reduce diffuse nitrogen pollution into the river Elbe. Phys. Chem. Earth Parts A/B/C 2003, 28, 537–545. [Google Scholar] [CrossRef]
- Allen, R. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–92. [Google Scholar]
- Ben-Gal, I. Outlier Detection. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005; pp. 131–146. [Google Scholar] [CrossRef]
- Bánkövi, G.; Ziermann, M. Questions of dynamic forecasts of economic relations. Közgazdasági Szle. 1973, 11, 1269–1286. (In Hungarian) [Google Scholar]
- Geweke, J. The dynamic factor analysis of economic time series. In Latent Variables in Socio-Economic Models; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Zuur, A.; Pierce, G.J. Common trends in northeast Atlantic squid time series. J. Sea Res. 2004, 52, 57–72. [Google Scholar] [CrossRef]
- Mendelssohn, R.; Schwing, F. Common and uncommon trends in SST and wind stress in the California and Peru–Chile current systems. Prog. Oceanogr. 2002, 53, 141–162. [Google Scholar] [CrossRef]
- Trásy, B.; Magyar, N.; Havril, T.; Kovács, J.; Garamhegyi, T. The Role of Environmental Background Processes in Determining Groundwater Level Variability—An Investigation of a Record Flood Event Using Dynamic Factor Analysis. Water 2020, 12, 2336. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Holmes, E.; Ward, E.; Kellie Wills, N.; Federal, M.E.H.-N. Package ‘MARSS’. 2018. Available online: https://cran.r-project.org/web/packages/MARSS/MARSS.pdf (accessed on 14 April 2020).
- Zuur, A.; Tuck, I.; Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 2003, 60, 542–552. [Google Scholar] [CrossRef]
- Blaschke, A.; Merz, R.; Parajka, J.; Salinas, J.; Blöschl, G. Effects of climate change on the water supply of ground and surface water. Österreichische Wasser-und Abfallwirtschaft 2011, 63, 31–41. (In German) [Google Scholar] [CrossRef]
- Blöschl, G.; Schöner, W.; Kroiß, H.; Blaschke, A.; Böhm, R.; Haslinger, K.; Kreuzinger, N.; Merz, R.; Parajka, J.; Salinas, J. Adaptation strategies to climate change for Austria’s water management—Goals and conclusions of the study for federal and state governments. Österreichische Wasser-und Abfallwirtschaft 2011, 63, 1–10. (In German) [Google Scholar] [CrossRef]
- Chimani, B.; Heinrich, G.; Hofstätter, M.; Kerschbaumer, M.; Kienberger, S.; Leuprecht, A.; Lexer, A.; Peßenteiner, S.; Poetsch, M.; Salzmann, M. ÖKS15 climate scenarios for Austria. Daten Methoden und Klimaanalyse Report Vienna 2016. (In German). Available online: https://data.ccca.ac.at/dataset/endbericht-oks15-klimaszenarien-fur-osterreich-daten-methoden-klimaanalyse-v01/resource/06edd0c9-6b1b-4198-9f4f-8d550309f35b (accessed on 7 August 2020).
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Upper Saddle River, NJ, USA, 1979. [Google Scholar]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Schönhart, M.; Trautvetter, H.; Parajka, J.; Blaschke, A.P.; Hepp, G.; Kirchner, M.; Mitter, H.; Schmid, E.; Strenn, B.; Zessner, M. Modelled impacts of policies and climate change on land use and water quality in Austria. Land Use Policy 2018, 76, 500–514. [Google Scholar] [CrossRef]
- Bond, N.A.; Bumbaco, K.A. Summertime Potential Evapotranspiration in Eastern Washington State. J. Appl. Meteorol. Climatol. 2015, 54, 1090–1101. [Google Scholar] [CrossRef]
- Duethmann, D.; Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 2018, 22, 5143–5158. [Google Scholar] [CrossRef] [Green Version]
- Kovács, J.; Kovács, S.; Hatvani, I.G.; Magyar, N.; Tanos, P.; Korponai, J.; Blaschke, A.P. Spatial Optimization of Monitoring Networks on the Examples of a River, a Lake-Wetland System and a Sub-Surface Water System. Water Resour. Manag. 2015, 29, 5275–5294. [Google Scholar] [CrossRef]
- Dokulil, M.T.; Teubner, K.; Jagsch, A.; Nickus, U.; Adrian, R.; Straile, D.; Jankowski, T.; Herzig, A.; Padisák, J. The Impact of Climate Change on Lakes in Central Europe. In The Impact of Climate Change on European Lakes; George, G., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 387–409. [Google Scholar] [CrossRef]
- Dokulil, M.T. Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios. Hydrobiologia 2014, 731, 19–29. [Google Scholar] [CrossRef]
Statistics | GR1 | GR2 | All |
---|---|---|---|
Mean | 0.451 | 0.195 | 0.286 |
Median | 0.414 | 0.178 | 0.224 |
Standard deviation | 0.217 | 0.098 | 0.194 |
Range | 0.785 | 0.349 | 0.911 |
Minimum | 0.173 | 0.046 | 0.046 |
Maximum | 0.958 | 0.396 | 0.958 |
Number of wells | 36 | 65 | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magyar, N.; Hatvani, I.G.; Arató, M.; Trásy, B.; Blaschke, A.P.; Kovács, J. A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”. Water 2021, 13, 290. https://doi.org/10.3390/w13030290
Magyar N, Hatvani IG, Arató M, Trásy B, Blaschke AP, Kovács J. A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”. Water. 2021; 13(3):290. https://doi.org/10.3390/w13030290
Chicago/Turabian StyleMagyar, Norbert, István Gábor Hatvani, Miklós Arató, Balázs Trásy, Alfred Paul Blaschke, and József Kovács. 2021. "A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”" Water 13, no. 3: 290. https://doi.org/10.3390/w13030290
APA StyleMagyar, N., Hatvani, I. G., Arató, M., Trásy, B., Blaschke, A. P., & Kovács, J. (2021). A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”. Water, 13(3), 290. https://doi.org/10.3390/w13030290