Spatially Variable Precipitation and Its Influence on Water Balance in a Headwater Alpine Basin, Nepal
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Data Collections
3.1.1. Climatic Data Collection
3.1.2. Streamflow Measurement
3.2. Evapotranspiration (ET) Simulation Using the Penman–Monteith Approach
3.3. Interpolation of Precipitation and ET Flux
3.4. Water Balance
4. Results and Discussions
4.1. Interpolated Precipitation Surface
4.2. Interpolated ET Surface
4.3. Water Balance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devkota, M.P. Environmental Impacts of Khudi Small Hydropower Project on the Fishery of the Khudi River during Operation Phase. In Proceedings of the International Conference on Small Hydropower-Hydro Sri Lanka, Kandy, Sri Lanka, 22–24 October 2007; Volume 22, p. 24. [Google Scholar]
- Bajracharya, T.R.; Acharya, S.; Ale, B.B. Changing climatic parameters and its possible impacts in hydropower generation in Nepal (a case study on Gandaki River Basin). J. Inst. Eng. 2011, 8, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Koppes, M.; Hallet, B.; Rignot, E.; Mouginot, J.; Wellner, J.S.; Boldt, K. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 2015, 526, 100–103. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Bierkens, M.F. Asian water towers: More on monsoons-response. Science 2010, 330, 585. [Google Scholar]
- Andres, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Am. 2006, 398, 39. [Google Scholar]
- Mahmood, T.H.; Vivoni, E.R. Evaluation of distributed soil moisture simulations through field observations during the North American monsoon in Redondo Creek, New Mexico. Ecohydrology 2008, 1, 271–287. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54, 670–684. [Google Scholar] [CrossRef]
- Patil, S.D.; Wigington, P.J., Jr.; Leibowitz, S.G.; Sproles, E.A.; Comeleo, R.L. How does spatial variability of climate affect catchment streamflow predictions? J. Hydrol. 2014, 517, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Essery, R. Boreal forests and snow in climate models. Hydrol. Process. 1998, 12, 1561–1567. [Google Scholar] [CrossRef]
- Gabet, E.J.; Burbank, D.W.; Pratt-Sitaula, B.; Putkonen, J.; Bookhagen, B. Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett. 2008, 267, 482–494. [Google Scholar] [CrossRef]
- Jeannotte, T.L.; Mahmood, T.H.; Vandeberg, G.S.; Matheney, R.K.; Hou, X.; Van Hoy, D.F. Impacts of cold region hydroclimatic variability on phosphorus exports: Insights from concentration-discharge relationship. J. Hydrol. 2020, 591, 125312. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, M.; Ma, Y. Variability and trends in daily precipitation extremes on the northern and southern slopes of the central Himalaya. Theor. Appl. Climatol. 2017, 130, 571–581. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ojha, C.S.P.; Singh, R.P.; Pal, L.; Fu, D. Evaluation of TRMM Precipitation Dataset over Himalayan Catchment: The Upper Ganga Basin, India. Water 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Khadka, N.; Hamal, K.; Shrestha, D.; Talchabhadel, R.; Chen, Y. How accurately can satellite products (TMPA and IMERG) detect precipitation patterns, extremities, and drought across the Nepalese Himalaya? Earth Space Sci. 2020, 7, e2020EA001315. [Google Scholar] [CrossRef]
- Yong, B.; Hong, Y.; Ren, L.L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Andermann, C.; Bonnet, S.; Gloaguen, R. Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Kaini, S.; Nepal, S.; Pradhananga, S.; Gardner, T.; Sharma, A.K. Impacts of climate change on the flow of the transboundary Koshi River, with implications for local irrigation. Int. J. Water Resour. Dev. 2020, 1–26. [Google Scholar] [CrossRef]
- Sharma, R.H.; Shakya, N.M. Hydrological changes and its impact on water resources of Bagmati watershed, Nepal. J. Hydrol. 2006, 327, 315–322. [Google Scholar] [CrossRef]
- Sinha, R.; Gupta, A.; Mishra, K.; Tripathi, S.; Nepal, S.; Wahid, S.M.; Swarnkar, S. Basin-scale hydrology and sediment dynamics of the Kosi river in the Himalayan foreland. J. Hydrol. 2019, 570, 156–166. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro Environ. Res. 2016, 10, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.P.; Moore, B.; Vorosmarty, C.J. Anthropogenic, climatic, and hydrologic trends in the Kosi Basin, Himalaya. Clim. Change 2000, 47, 141–165. [Google Scholar] [CrossRef]
- Panday, P.K.; Williams, C.A.; Frey, K.E.; Brown, M.E. Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process. 2014, 28, 5337–5353. [Google Scholar] [CrossRef] [Green Version]
- Nepal, S.; Flügel, W.A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. Process. 2014, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Putkonen, J.K. Continuous snow and rain data at 500 to 4400 m altitude near Annapurna, Nepal, 1999–2001. Arct. Antarct. Alp. Res. 2004, 36, 244–248. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. 1948, 193, 120–145. [Google Scholar]
- Mahmood, T.H.; Vivoni, E.R. A climate-induced threshold in hydrologic response in a semiarid ponderosa pine hillslope. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Ohsawa, M.; Shakya, P.R.; Numata, M. Distribution and succession of west Himalayan forest types in the eastern part of the Nepal Himalaya. Mt. Res. Dev. 1986, 6, 143–157. [Google Scholar] [CrossRef]
- Arend, D.N. Choices (Version 4.0) [Computer Software]; CERL Report No. CH7-22510; US Army Corps of Engineers Research Laboratory: Champaign, IL, USA, 1993. [Google Scholar]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Frei, C.; Schär, C. A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol. J. R. Meteorol. Soc. 1998, 18, 873–900. [Google Scholar] [CrossRef]
- Desurosne, I.; Ribot-Bruno, J.; Watremez, S.; Oberlin, G. Interactions Pluies:Rélief à L’échelle Temporelle des Intensités, Guide Pratique des Données Pluivographiques et des Résultats d’un Réseau Préalpin, Le TGP; Report CP 220; Cemagref, Dision Hydrologie-Hydraulique: Lyon, France, 1996. [Google Scholar]
- Wastl, C.; Zängl, G. Analysis of mountain-valley precipitation differences in the Alps. Meteorol. Z. 2008, 17, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Haugen, J.E.; Xu, C.Y. Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrol. Earth Syst. Sci. 2018, 22, 5097–5110. [Google Scholar] [CrossRef] [Green Version]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Jha, S.K.; Zhao, H.; Woldemeskel, F.M.; Sivakumar, B. Network theory and spatial rainfall connections: An interpretation. J. Hydrol. 2015, 527, 13–19. [Google Scholar] [CrossRef]
- Baral, T. Evapotransiration from Natural and Planted Forest in the Middle Mountain of Nepal; University of Twente Faculty of Geo-Information and Earth Observation (ITC): Enschede, The Netherlands, 2012. [Google Scholar]
- Devkota, L.P.; Gyawali, D.R. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. J. Hydrol. Reg. Stud. 2015, 4, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.P.; Chiao, S.; Lang, T.J.; Burbank, D.; Putkonen, J. From weather to climate-seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Spec. Pap. Geol. Soc. Am. 2006, 398, 17. [Google Scholar]
- Barros, A.P.; Joshi, M.; Putkonen, J.; Burbank, D.W. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett. 2000, 27, 3683–3686. [Google Scholar] [CrossRef]
- Roe, G.H. Orographic Precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
Water Year | NSE | RMSE | R2 |
---|---|---|---|
2001 | 0.5 (0.94) | 593 (49) | 0.64 (0.95) |
2002 | 0.54 (0.81) | 318 (96) | 0.62 (0.82) |
2003 | 0.46 (0.81) | 695 (95) | 0.56 (0.82) |
2004 | 0.5 | 722 | 0.6 |
Flux | 2001 | 2002 | 2003 | 2004 |
---|---|---|---|---|
Prelev (mm) | 4127 | 3486 | 3593 | 3651 |
Pravg (mm) | 3313 | 3282 | 3191 | 3152 |
PrThiessen (mm) | 3393 | 3219 | 3559 | NA |
ET (mm) | 414 | 390 | 322 | 400 |
Streamflow (mm) | 3720 | 2968 | 3415 | 3002 |
ΔSelev (mm) | −7 (−0.2%) | 127 (3.7%) | −144 (3.8%) | 248 (7.2%) |
ΔSavg (mm) | −821(−20%) | −76 (−2.2%) | −546 (14%) | −250 (7.3%) |
ΔSThiessen (mm) | −741 (−18%) | −139 (−4.1%) | −178 (4.7%) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, T.H.; Putkonen, J.; Sobbe, A. Spatially Variable Precipitation and Its Influence on Water Balance in a Headwater Alpine Basin, Nepal. Water 2021, 13, 254. https://doi.org/10.3390/w13030254
Mahmood TH, Putkonen J, Sobbe A. Spatially Variable Precipitation and Its Influence on Water Balance in a Headwater Alpine Basin, Nepal. Water. 2021; 13(3):254. https://doi.org/10.3390/w13030254
Chicago/Turabian StyleMahmood, Taufique H., Jaakko Putkonen, and Aaron Sobbe. 2021. "Spatially Variable Precipitation and Its Influence on Water Balance in a Headwater Alpine Basin, Nepal" Water 13, no. 3: 254. https://doi.org/10.3390/w13030254
APA StyleMahmood, T. H., Putkonen, J., & Sobbe, A. (2021). Spatially Variable Precipitation and Its Influence on Water Balance in a Headwater Alpine Basin, Nepal. Water, 13(3), 254. https://doi.org/10.3390/w13030254