Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling Methods and Analyses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Water Chemistry
3.2. Macroinvertebrate Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Pinto, I.; Rodrigues, S.; Lage, O.M.; Antunes, S.C. Assessment of Water Quality in Aguieira Reservoir: Ecotoxicological Tools in Addition to the Water Framework Directive. Ecotoxicol. Environ. Saf. 2021, 208, 111583. [Google Scholar] [CrossRef] [PubMed]
- Setty, K.E.; Kayser, G.L.; Bowling, M.; Enault, J.; Loret, J.F.; Serra, C.P.; Alonso, J.M.; Mateu, A.P.; Bartram, J. Water Quality, Compliance, and Health Outcomes among Utilities Implementing Water Safety Plans in France and Spain. Int. J. Hyg. Environ. Health 2017, 220, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Matos, C.; Alvarenga, P.; Köck-Schulmeyer, M.; Simões, I.; Barceló, D.; López de Alda, M.J. Ecological and Ecotoxicological Responses in the Assessment of the Ecological Status of Freshwater Systems: A Case-Study of the Temporary Stream Brejo of Cagarrão (South of Portugal). Sci. Total Environ. 2018, 634, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Naiman, R.J.; Latterell, J.J.; Pettit, N.E.; Olden, J.D. Flow Variability and the Biophysical Vitality of River Systems. Comptes Rendus-Geosci. 2008, 340, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, W.; White, G.; Worthington, E.; Ivens, J. Man-Made Lakes: Their Problems and Environmental Effects. In Geophysical Monograph Series; Ackermann, W.C., White, G.F., Worthington, E.B., Ivens, J.L., Eds.; American Geophysical Union: Washington, DC, USA, 1973; ISBN 9781118664117. [Google Scholar]
- Farley, M. Encyclopedia of Lakes and Reservoirs. In Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-1-4020-5616-1. [Google Scholar]
- Simões, N.R.; Nunes, A.H.; Dias, J.D.; Lansac-Tôha, F.A.; Velho, L.F.M.; Bonecker, C.C. Impact of Reservoirs on Zooplankton Diversity and Implications for the Conservation of Natural Aquatic Environments. Hydrobiologia 2015, 758, 3–17. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. The Serial Discontinuity Concept: Extending the Model to Floodplain Rivers. Regul. Rivers Res. Manag. 1995, 10, 159–168. [Google Scholar] [CrossRef]
- Jorcin, A.; Nogueira, M.G.; Belmont, R. Spatial and Temporal Distribution of the Zoobenthos Community during the Filling up Period of Porto Primavera Reservoir (Paraná River, Brazil). Braz. J. Biol. 2009, 69, 19–29. [Google Scholar] [CrossRef] [Green Version]
- do Nascimento Filho, S.L.; De França, E.J.; De Melo, J.; do Nascimento Moura, A. Interactiis coons between Benthic Microalgae, Nutrients and Benthic Macroinvertebrates in Reservoirs from the Semi-Arid Neotropical Region. Fundam. Appl. Limnol. 2019, 192, 237–254. [Google Scholar] [CrossRef]
- Jovem-Azevêdo, D.; Bezerra-Neto, J.F.; Azevêdo, E.L.; Gomes, W.I.A.; Molozzi, J.; Feio, M.J. Dipteran Assemblages as Functional Indicators of Extreme Droughts. J. Arid. Environ. 2019, 164, 12–22. [Google Scholar] [CrossRef]
- de Figueiredo, D.R.; Pereira, M.J.; Moura, A.; Silva, L.; Bárrios, S.; Fonseca, F.; Henriques, I.; Correia, A. Bacterial Community Composition over a Dry Winter in Meso- and Eutrophic Portuguese Water Bodies. FEMS Microbiol. Ecol. 2007, 59, 638–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llirós, M.; Inceoğlu, Ö.; García-Armisen, T.; Anzil, A.; Leporcq, B.; Pigneur, L.-M.; Viroux, L.; Darchambeau, F.; Descy, J.-P.; Servais, P. Bacterial Community Composition in Three Freshwater Reservoirs of Different Alkalinity and Trophic Status. PLoS ONE 2014, 9, e1161452014. [Google Scholar] [CrossRef] [PubMed]
- Nydick, K.R.; Lafrancois, B.M.; Baron, J.S.; Johnson, B.M. Nitrogen Regulation of Algal Biomass, Productivity, and Composition in Shallow Mountain Lakes, Snowy Range, Wyoming, USA. Can. J. Fish. Aquat. Sci. 2004, 61, 1256–1268. [Google Scholar] [CrossRef]
- Sun, X.; Mwagona, P.C.; Shabani, I.E.; Hou, W.; Li, X.; Zhao, F.; Chen, Q.; Zhao, Y.; Liu, D.; Li, X.; et al. Phytoplankton Functional Groups Response to Environmental Parameters in Muling River Basin of Northeast China. Ann. Limnol.-Int. J. Limnol. 2019, 55, 17. [Google Scholar] [CrossRef] [Green Version]
- García-Chicote, J.; Armengol, X.; Rojo, C. Zooplankton Abundance: A Neglected Key Element in the Evaluation of Reservoir Water Quality. Limnologica 2018, 69, 46–54. [Google Scholar] [CrossRef]
- Geraldes, A.M.; Silva-Santos, P.; Pasupuleti, R. Zooplankton Community Structure in a Deep Reservoir: Seasonal Trends and Structuring Variables? In Proceedings of the International Zoological Congress of “Grigore Antipa” Museum; Popa, L.O., Adam, C., Chisamera, G., Iorgu, E., Murariu, D., Popa, O.P., Eds.; “Grigore Antipa” National Museum of Natural History: Bucharest, Romania, 2016. [Google Scholar]
- Hinojosa-Garro, D.; Mason, C.F.; Underwood, G.J.C. Influence of Macrophyte Spatial Architecture on Periphyton and Macroinvertebrate Community Structure in Shallow Water Bodies under Contrasting Land Management. Fundam. Appl. Limnol. 2010, 177, 19–37. [Google Scholar] [CrossRef]
- Magbanua, F.S.; Mendoza, N.Y.B.; Uy, C.J.C.; Matthaei, C.D.; Ong, P.S. Water Physicochemistry and Benthic Macroinvertebrate Communities in a Tropical Reservoir: The Role of Water Level Fluctuations and Water Depth. Limnologica 2015, 55, 13–20. [Google Scholar] [CrossRef]
- Trottier, G.; Embke, H.; Turgeon, K.; Solomon, C.; Nozais, C.; Gregory-Eaves, I. Macroinvertebrate Abundance Is Lower in Temperate Reservoirs with Higher Winter Drawdown. Hydrobiologia 2019, 834, 199–211. [Google Scholar] [CrossRef]
- Zerlin, R.A.; Henry, R. Does Water Level Affect Benthic Macro-Invertebrates of a Marginal Lake in a Tropical River-Reservoir Transition Zone? Braz. J. Biol. 2014, 74, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Community Commission (ECC). Commission Directive 2000/60/EC of the European Parliament and the Council establishing the framework for community action in the field of water policy. Off. J. Eur. Union 2000, 327, 1–73. [Google Scholar]
- Mugnai, R.; Nessimian, J.L.; BaptistaA, D.F. Manual de Identificação de Macroinvertebrados Aquáticos Do Estado Do Rio de Janeiro; de Janeiro, R., Ed.; Tecnical books Editora: Rio de Janeiro, Brazil, 2010; ISBN 8561368101. [Google Scholar]
- Chagas, F.B.; Rutkoski, C.F.; Bieniek, G.B.; Vargas, G.D.L.P.; Hartmann, P.A.; Hartmann, M.T. Utilização Da Estrutura de Comunidades de Macroinvertebrados Bentônicos Como Indicador de Qualidade Da Água Em Rios No Sul Do Brasil. Rev. Ambiente E Agua 2017, 12, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.; Cortes, R.V.; Morais, M. Qualidade Ecológica e Gestão Integrada de Albufeiras; INAG: Lisboa, Portugal, 2009. [Google Scholar]
- McEwen, D.C.; Butler, M.G. The Effects of Water-Level Manipulation on the Benthic Invertebrates of a Managed Reservoir. Freshw. Biol. 2010, 55, 1086–1101. [Google Scholar] [CrossRef]
- Ntislidou, C.; Lazaridou, M.; Tsiaoussi, V.; Bobori, D.C. A New Multimetric Macroinvertebrate Index for the Ecological Assessment of Mediterranean Lakes. Ecol. Indic. 2018, 93, 1020–1033. [Google Scholar] [CrossRef]
- White, M.S.; Xenopoulos, M.A.; Hogsden, K.; Metcalfe, R.A.; Dillon, P.J. Natural Lake Level Fluctuation and Associated Concordance with Water Quality and Aquatic Communities within Small Lakes of the Laurentian Great Lakes Region. Hydrobiologia 2008, 613, 21–31. [Google Scholar] [CrossRef]
- White, M.S.; Xenopoulos, M.A.; Metcalfe, R.A.; Somers, K.M. Water Level Thresholds of Benthic Macroinvertebrate Richness, Structure, and Function of Boreal Lake Stony Littoral Habitats. Can. J. Fish. Aquat. Sci. 2011, 68, 1695–1704. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Formigo, N.; Antunes, S.C. Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks. Water 2021, 13, 2605. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Martins, F.; Formigo, N.; Antunes, S.C. Can Biochemical Endpoints Improve the Sensitivity of the Biomonitoring Strategy Using Bioassays with Standard Species, for Water Quality Evaluation? Ecotoxicol. Environ. Saf. 2021, 215, 112151. [Google Scholar] [CrossRef]
- Pinto, I.; Calisto, R.; Serra, C.R.; Lage, O.M.; Antunes, S.C. Bacterioplankton Community as a Biological Element for Reservoirs Water Quality Assessment. Water 2021, 13, 2836. [Google Scholar] [CrossRef]
- Bordalo, A.A.; Teixeira, R.; Wiebe, W.J. A Water Quality Index Applied to an International Shared River Basin: The Case of the Douro River. Environ. Manag. 2006, 38, 910–920. [Google Scholar] [CrossRef]
- SNIRH. Sistema Nacional de Informação de Recursos Hídricos SNIRH. Sistema Nacional de Informação de Recursos Hídricos. Available online: https://snirh.apambiente.pt/index.php?idMain= (accessed on 24 September 2019).
- Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica, Parte 5-Objetivos, Anexo II.1, Região Hidrográfica Do Douro (RH3); Agência Portuguesa do Ambiente: Lisboa, Portugal, 2016. [Google Scholar]
- Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica, Parte 5-Objetivos, Anexo II.2, Região Hidrográfica Do Douro (RH3); Agência Portuguesa do Ambiente: Lisboa, Portugal, 2016. [Google Scholar]
- Pádua, J.; Bernardo, J.M.; Alves, M.H. Exercício de Intercalibração Em Massas de Água Fortemente Modificadas–Albufeiras, No Âmbito Da Directiva Quadro Da Água. In Proceedings of the 9th Congresso da Água; INAG: Lisboa, Portugal, 2005; pp. 1–14. [Google Scholar]
- Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica, Parte 5-Objetivos, Anexo II.1, Região Hidrográfica Do Vouga, Mongedo e Lis (RH4); Agência Portuguesa do Ambiente: Lisboa, Portugal, 2016. [Google Scholar]
- Pérez, J.R.; Loureiro, S.; Menezes, S.; Palma, P.; Fernandes, R.M.; Barbosa, I.R.; Soares, A.M.V.M. Assessment of Water Quality in the Alqueva Reservoir (Portugal) Using Bioassays. Environ. Sci. Pollut. Res. 2010, 17, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica, Parte 5-Objetivos, Anexo II.1, Região Hidrográfica Do Guadiana (RH7); Agência Portuguesa do Ambiente: Lisboa, Portugal, 2016. [Google Scholar]
- ISO. NF EN ISO 10304-1 Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. 2007. Available online: https://www.iso.org/standard/46004.html (accessed on 24 September 2019).
- ISO. NF EN 25663 Water Quality-Determination of Kjeldahl Nitrogen-Method after Mineralization with Selenium. 1984. Available online: https://www.iso.org/standard/11756.html (accessed on 10 November 2021).
- ISO. NF EN ISO 17294-2 Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. 2016. Available online: https://www.iso.org/standard/62962.html (accessed on 24 September 2019).
- ISO. NF EN ISO 15923-1 Water Quality—Determination of Selected Parameters by Discrete Analysis Systems—Part 1: Ammonium, Nitrate, Nitrite, Chloride, Orthophosphate, Sulfate and Silicate with Photometric Detection. 2013. Available online: https://www.iso.org/standard/55559.html (accessed on 24 September 2019).
- Williamson, C.E.; Morris, D.P.; Pace, M.L.; Olson, O.G. Dissolved Organic Carbon and Nutrients as Regulators of Lake Ecosystems: Resurrection of a More Integrated Paradigm. Limnol. Oceanogr. 1999, 44, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Brower, J.E.; Zar, J.H.; von Ende, C.N. Field and Laboratory Methods for General Ecology, 4th ed.; WCB McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Instituto da Água. Manual Para a Avaliação Da Qualidade Biológica Da Água Em Lagos e Albufeiras Segundo a Diretiva Quadro Da Água. Protocolo de Amostragem e Análise Para o Fitoplâncton; Ministério do Ambiente do Ordenamento do Território e do Desenvolvimento Regional: Lisboa, Portugal, 2009.
- Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica-Parte 2-Caracterização e Diagnóstico-Anexos -Região Hidrográfica Do Vouga, Mondego E Lis (Rh4); Agência Portuguesa do Ambiente: Lisboa, Portugal, 2016. [Google Scholar]
- INAG. Manual Para a Avaliação Biológica Da Qualidade Da Água Em Sistemas Fluviais Segundo a Directiva Quadro Da Água Protocolo de Amostragem e Análise Para Os Macroinvertebrados Bentónicos; Instituto daÁgua: Lisbon, Portugal, 2008. [Google Scholar]
- Alba-Tercedor, J.; Sánchez-Ortega, A. A Simple and Quick Method to Evaluate Biological Quality of Renning Freshwater Based on Hellawell (1978). Limnética 1988, 4, 51–56. [Google Scholar]
- Agência Portuguesa do Ambiente. Plano de Ordenamento Da Albufeira Da Aguieira; Agência Portuguesa do Ambiente: Lisboa, Portugal, 2005. [Google Scholar]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce: Systématique, Biologie, Écologie.; CNRS: Paris, France, 2000; ISBN 2-271-05745-0. [Google Scholar]
- Picińska-Fałtynowicz, J.; Błachuta, J. WYTYCZNE METODYCZNE Do Przeprowadzenia Monitoringu i Oceny Potencjału Ekologicznego Zbiorników Zaporowych w Polsce Wersja; Sfinansowana ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej: Wrocław, Poland, 2012. [Google Scholar]
- Cabecinha, E.; Cortes, R.; Alexandre Cabral, J.; Ferreira, T.; Lourenço, M.; Pardal, M. Multi-Scale Approach Using Phytoplankton as a First Step towards the Definition of the Ecological Status of Reservoirs. Ecol. Indic. 2009, 9, 240–255. [Google Scholar] [CrossRef]
- Instituto da Água. Modelação Matemática Da Qualidade Da Água Em Albufeiras Com Planos de Ordenamento-Lll-Albufeira Da Aguieira; Ministério da Agricultura, Mar, Ambiente e Ordenamento do Território. Instituto da Água, I.P.: Lisboa, Portugal, 2011.
- Vasconcelos, V.; Morais, J.; Vale, M. Microcystins and Cyanobacteria Trends in a 14 Year Monitoring of a Temperate Eutrophic Reservoir (Aguieira, Portugal). J. Environ. Monit. 2011, 13, 668–672. [Google Scholar] [CrossRef]
- Fouz, P.S.; Vázquez, E.V.; Avalos, J.M.M. Oscillation of Three Phosphorus Forms and Suspended Solids Content from 1999 to 2007 in a Spanish Agroforestry Catchment under Atlantic Climate. Commun. Soil Sci. Plant Anal. 2012, 43, 288–298. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Valcárcel Armesto, M.; de Abreu, C.A.; da Silva Dias, R.; Vidal Vázquez, E. Temporal Oscillation and Losses of Three Xarbon Forms in a Microcatchment of NW Spain. Commun. Soil Sci. Plant Anal. 2015, 46, 296–308. [Google Scholar] [CrossRef]
- Martins, F.S.; Formigo, N.; Antunes, S.C. Can Be the Environmental and Biotic Factors Responsible for Macroinvertebrate Communities’ Alterations in Portuguese Alpine Ponds? Limnologica 2020, 83, 125782. [Google Scholar] [CrossRef]
- Pamplin, P.; Almeida, T.; Rocha, O. Composition and Distribution of Benthic Macroinvertebrates in Americana Reservoir (SP, Brazil). Acta Limnol. Bras. 2006, 18, 121–132. [Google Scholar]
- Barbola, I.F.; Moraes, M.F.P.G.; Anazawa, T.M.; Nascimento, E.A.; Sepka, E.R.; Polegatto, C.M.; Milléo, J.; Schühli, G.S. Evaluation of the Aquatic Macroinvertebrate Community as a Tool for Monitoring a Reservoir in the Pitangui River Basin, Paraná, Brazil. Iheringia-Ser. Zool. 2011, 101, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, V.M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Namikoshi, M. Hepatotoxic Microcystin Diversity in Cyanobacterial Blooms Collected in Portuguese Freshwaters. Water Res. 1996, 30, 2377–2384. [Google Scholar] [CrossRef]
- Voshell, J.R.; Simmons, G.M. Colonization and Succession of Benthic Macroinvertebrates in a New Reservoir. Hydrobiologia 1984, 112, 27–39. [Google Scholar] [CrossRef]
- Morais, M.; Serafim, A.; Pinto, P.; Ilhéu, A.; Ruivo, M. Monitoring the water quality in Alqueva reservoir, Guadiana river, southern Portugal. In Reservoir and River Basin Management: Exchange of Experiences from Brazil, Portugal and Germany; Gunkel, G., Sobral, M., Eds.; Universitätsverlag der TU Berlin: Berlin, Germany, 2007; pp. 96–112. ISBN 978-3-7983-2056-7. [Google Scholar]
pH | Cond (μS/cm) | Temp (°C) | O2 (mg/L) | O2 (%) | CDOC | Turb (m−1) | NO2− (mg/L) | NO3− (mg/L) | NKj (mg/L) | Ptotal (mg/L) | NH4 (mg/L) | Phytoplankton (EQR) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Environmental Quality Standards | 6–9 (1) | ≥5 (1) | 60–120 *(1) 60–140 **(1) | ≤25 (1) | ≤0.05 *(1) ≤0.07 **(1) | North [1.0–0.60]—Good or more [0.6–0.4]—Moderate [0.4–0.2]—Poor [0.2–0]—Bad Main Course ≥0.17—Good or more <0.17—Moderate or less | |||||||||
Miranda Main Course | A18 | M | 8.1 | 403 | 9.4 | 9.8 | 89.4 | 0.000 | 0.025 | 0.08 | 6.9 | <0.6 | 0.10 | <0.05 | 0.68 |
S19 | M | 8.8 | 447 | 15.6 | 14.1 | 149.7 | 0.046 | 0.069 | 0.09 | 6.4 | <0.5 | 0.03 | <0.05 | 0.11 | |
A19 | M | 7.9 | 341 | 18.3 | 4.4 | 50.0 | 0.023 | 0.016 | 0.43 | 2.3 | <0.5 | 0.01 | 0.06 | 0.85 | |
S20 | M | 8.6 | 438 | 19.0 | 11.0 | 124.1 | 0.023 | 0.038 | 0.16 | 7.4 | <0.5 | 0.13 | <0.05 | 0.16 | |
Pocinho Main Course | A18 | P | 7.9 | 330 | 12.2 | 9.1 | 84.4 | 0.219 | 0.014 | 0.03 | 3.9 | <0.6 | 0.08 | <0.05 | 3.10 |
S19 | P | 8.8 | 316 | 16.5 | 14.0 | 144.0 | 0.000 | 0.016 | <0.01 | <0.5 | <0.5 | 0.03 | <0.05 | 0.26 | |
A19 | P | 8.0 | 306 | 19.2 | 8.2 | 90.3 | 0.002 | 0.000 | <0.04 | 2.3 | <0.5 | 0.04 | <0.05 | 0.61 | |
S20 | P | 9.2 | 268 | 22.8 | 15.9 | 185.0 | 0.097 | 0.054 | 0.05 | 3.5 | 0.7 | 0.09 | 0.05 | 0.12 | |
Aguieira North | A18 | Ag1 | 8.4 | 86 | 24.5 | 8.8 | 106.3 | 0.059 | 0.018 | <0.01 | 1.3 | <0.5 | <0.01 | <0.05 | 0.59 |
Ag2 | 7.6 | 97 | 23.2 | 8.0 | 94.4 | 0.082 | 0.036 | 0.02 | <0.5 | <0.5 | 0.03 | <0.05 | 0.53 | ||
Ag3 | 8.1 | 143 | 21.0 | 9.9 | 112.0 | 0.151 | 0.115 | <0.01 | <0.5 | 6.3 | 0.22 | <0.05 | −0.50 | ||
Ag4 | 7.4 | 87 | 24.5 | 7.4 | 89.0 | 0.043 | 0.038 | 0.01 | 2.4 | <0.5 | 0.03 | <0.05 | 0.56 | ||
S19 | Ag1 | 9.2 | 83 | 14.4 | 11.9 | 119.4 | 0.100 | 0.072 | 0.04 | 2.8 | <0.5 | 0.01 | 0.07 | 0.45 | |
Ag2 | 9.0 | 89 | 15.0 | 12.4 | 124.9 | 0.230 | 0.069 | 0.07 | 3.3 | <0.5 | 0.01 | <0.05 | 0.73 | ||
Ag3 | 8.3 | 112 | 15.2 | 11.3 | 112.1 | 0.148 | 0.087 | 0.04 | 4.0 | <0.5 | 0.09 | 0.06 | 0.50 | ||
Ag4 | 9.2 | 78 | 15.5 | 12.2 | 125.2 | 0.243 | 0.074 | 0.02 | 1.2 | 0.7 | 0.02 | 0.09 | 0.35 | ||
A19 | Ag1 | 6.8 | 91 | 17.7 | 4.5 | 47.1 | 0.014 | 0.023 | <0.01 | 1.5 | <0.5 | <0.01 | <0.05 | 0.61 | |
Ag2 | 6.7 | 92 | 17.9 | 5.3 | 55.9 | 0.037 | 0.035 | <0.01 | 1.2 | <0.5 | <0.01 | <0.05 | 0.72 | ||
Ag3 | 6.7 | 101 | 16.3 | 9.0 | 91.8 | 0.048 | 0.046 | 0.02 | 2.3 | 2.2 | 0.09 | <0.05 | 0.41 | ||
Ag4 | 6.8 | 88 | 17.3 | 6.9 | 72.3 | 0.030 | 0.016 | 0.03 | 1.0 | 0.6 | <0.01 | <0.05 | 0.50 | ||
S20 | Ag1 | 9.6 | 74 | 21.9 | 12.9 | 150.2 | 0.056 | 0.008 | 0.04 | 2.7 | <0.5 | 0.02 | 0.07 | 0.77 | |
Ag2 | 9.7 | 85 | 20.5 | 14.2 | 160.1 | 0.072 | 0.008 | 0.04 | 2.2 | 0.7 | 0.03 | 0.07 | 0.37 | ||
Ag3 | 9.0 | 90 | 20.7 | 12.4 | 141.0 | 0.033 | 0.015 | 0.05 | 3.3 | <0.5 | 0.08 | 0.18 | 0.33 | ||
Ag4 | 9.4 | 73 | 22.4 | 13.3 | 156.5 | 0.046 | 0.008 | 0.01 | 0.6 | <0.5 | 0.03 | 0.10 | 0.61 | ||
Alqueva Main Course | A18 | Al1 | 7.9 | 501 | 16.6 | 6.6 | 68.8 | 0.074 | 0.002 | <0.01 | 4.5 | <1.00 | 0.06 | <0.05 | 1.32 |
Al2 | 8.0 | 491 | 17.2 | 7.4 | 78.0 | 0.138 | 0.000 | 0.02 | 0.5 | <1.00 | 0.03 | <0.05 | 0.72 | ||
Al3 | 8.1 | 515 | 16.8 | 7.0 | 73.2 | 0.067 | 0.023 | 0.12 | <0.5 | <1.1 | 0.07 | 0.17 | 0.95 | ||
Al4 | 8.0 | 541 | 17.6 | 6.6 | 69.6 | 0.090 | 0.014 | 0.52 | 0.8 | <1.00 | 0.08 | 0.20 | 0.87 | ||
Al5 | 8.4 | 692 | 16.6 | 11.6 | 120.9 | 0.248 | 0.044 | 0.08 | 5.6 | 1.3 | 0.16 | <0.05 | 0.15 | ||
S19 | Al1 | 8.5 | 517 | 23.0 | 9.6 | 114.4 | 0.380 | 0.009 | 0.01 | <0.5 | 0.6 | 0.01 | 0.05 | 0.85 | |
Al2 | 8.7 | 515 | 23.7 | 9.4 | 112.8 | 0.384 | 0.012 | 0.02 | <0.5 | 0.6 | <0.01 | <0.05 | 1.36 | ||
Al3 | 8.8 | 538 | 23.1 | 10.0 | 118.2 | 0.386 | 0.002 | 0.04 | 0.6 | 0.6 | 0.01 | 0.11 | 0.83 | ||
Al4 | 8.5 | 570 | 23.8 | 12.7 | 152.6 | 0.352 | 0.016 | 0.07 | 0.7 | 0.7 | 0.01 | 0.08 | 0.58 | ||
Al5 | 9.1 | 714 | 23.0 | 16.9 | 199.5 | 0.460 | 0.074 | 1.70 | 0.9 | 2.1 | 0.09 | 0.58 | 0.08 | ||
A19 | Al1 | 8.2 | 525 | 16.6 | 8.1 | 83.7 | 0.041 | 0.023 | 0.02 | <0.5 | <0.5 | 0.07 | <0.05 | 0.73 | |
Al2 | 8.3 | 521 | 16.9 | 8.0 | 83.3 | 0.053 | 0.021 | 0.04 | <0.5 | 0.5 | 0.05 | <0.05 | 0.55 | ||
Al3 | 8.3 | 545 | 16.9 | 8.5 | 88.8 | 0.044 | 0.018 | 0.04 | <0.5 | 0.7 | 0.04 | 0.19 | 0.79 | ||
Al4 | 8.3 | 578 | 16.9 | 7.5 | 77.6 | 0.067 | 0.021 | 0.66 | 0.5 | 1.0 | 0.05 | 0.28 | 0.78 | ||
Al5 | 8.4 | 769 | 14.6 | 11.0 | 108.6 | 0.087 | 0.092 | 0.12 | 1.7 | 1.6 | 0.07 | 0.81 | 0.12 | ||
S20 | Al1 | 8.8 | 540 | 32.0 | 8.3 | 114.0 | 0.056 | 0.008 | 0.02 | <0.5 | <0.5 | 0.04 | <0.05 | 0.87 | |
Al2 | 8.9 | 506 | 33.3 | 8.5 | 119.1 | 0.056 | 0.003 | 0.02 | <0.5 | <0.5 | 0.05 | <0.05 | 0.86 | ||
Al3 | 9.0 | 558 | 31.7 | 8.4 | 115.2 | 0.069 | 0.008 | 0.09 | 0.8 | 0.6 | 0.03 | <0.05 | 0.72 | ||
Al4 | 9.2 | 509 | 32.0 | 10.0 | 133.6 | 0.115 | 0.038 | 0.09 | <0.5 | 0.8 | 0.06 | <0.05 | 0.22 | ||
Al5 | 8.6 | 588 | 32.0 | 7.0 | 97.0 | 0.153 | 0.082 | 0.04 | <0.5 | 1.0 | 0.18 | 0.16 | 0.10 |
Taxa | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reservoir | Season | Site | MO—Ancylidae (ANC) | CR—Atyidae (ATY) | EP—Baetidae (BAE) | EP—Caenidae (CAE) | DI—Ceratopogonidae (CER) | DI—Chironomidae (CHI) | CO—Chrysomelidae (CHR) | OD—Coenagrionidae (COE) | OD—Corduliidae (CORD) | HE—Corixidae (CORI) | CR—Corophiidae (CORO) | CO—Dryopidae (DRY) | TR—Dugesiidae (DUG) | CO—Dytiscidae (DYT) | CO—Elmidae (ELM) | CR—Gammaridae (GAM) | AN—Glossiphoniidae (GLO) | OD—Gomphidae (GOM) | CO—Helophoridae (HEL) | CO—Hydraenidae (HYDRA) | CO—Hydrophilidae (HYDRO) | EP—Leptophlebiidae (LEP) | OD—Libellulidae (LIB) | DI—Limoniidae (LIM) | MO—Lymnaeidae (LYM) | HE—Nepidae (NEP) | AN—Oligochaeta (OLI) | MO—Physidae (PHY) | AN—Piscicolidae (PIS) | MO—Planorbidae (PLA) | HE—Pleidae (PLE) | TR—Polycentropodidae (POL) | Total Abundance | Taxonomic Richness | EPT | Shannon-Wiener | Pielou’s Evenness |
Miranda | A18 | M | - | - | - | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 13 | - | - | - | - | - | 16 | 3 | 0 | 0.60 | 0.55 |
S19 | M | - | 1 | - | - | 9 | 4 | - | - | - | - | - | - | - | - | 1 | - | - | - | - | 1 | - | - | - | - | 1 | - | 10 | - | - | - | - | - | 27 | 7 | 0 | 1.51 | 0.77 | |
A19 | M | - | 7 | - | - | - | 23 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 9 | - | - | - | - | - | 40 | 4 | 0 | 1.05 | 0.76 | |
S20 | M | - | 1 | - | - | 1 | 2 | - | - | - | 3 | - | - | - | - | - | - | - | - | 1 | - | 1 | - | - | - | - | - | 132 | - | - | - | - | - | 141 | 7 | 0 | 0.34 | 0.18 | |
Pocinho | A18 | P | - | 116 | 2 | 2 | - | 5 | - | 7 | - | 1 | 2 | - | - | - | - | 6 | 1 | - | - | - | - | - | - | - | - | - | 15 | - | - | - | - | - | 157 | 10 | 2 | 1.05 | 0.46 |
S19 | P | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | 24 | - | - | - | - | - | 27 | 4 | 0 | 0.47 | 0.34 | |
A19 | P | 2 | 192 | - | 211 | - | 48 | - | 1 | - | - | 3 | - | - | - | - | - | 12 | - | - | - | - | - | - | - | - | - | 5 | - | - | 2 | - | 13 | 489 | 10 | 2 | 1.28 | 0.56 | |
S20 | P | 1 | - | 1 | 39 | - | 192 | - | 2 | - | - | 1 | - | - | - | - | 1 | 4 | - | - | - | - | - | - | - | - | - | 32 | - | - | - | - | - | 273 | 9 | 2 | 0.96 | 0.44 | |
Aguieira | A18 | Ag1 | - | 11 | - | 4 | - | 26 | - | - | 6 | 27 | - | - | - | - | - | 26 | 4 | - | - | - | - | - | - | - | - | - | 25 | - | - | 2 | - | - | 131 | 9 | 1 | 1.91 | 0.87 |
Ag2 | - | - | - | 41 | 2 | 9 | - | - | 2 | 11 | - | 2 | - | - | - | 216 | 30 | - | - | - | - | - | - | - | 5 | - | 1 | - | - | 4 | - | 3 | 326 | 12 | 2 | 1.24 | 0.50 | ||
Ag3 | - | 1 | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 9 | - | - | - | - | - | 11 | 3 | 0 | 0.60 | 0.55 | ||
Ag4 | - | - | - | 13 | - | 3 | - | - | - | 8 | - | 1 | - | - | - | 9 | 12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 46 | 6 | 1 | 1.59 | 0.89 | ||
S19 | Ag1 | - | 12 | - | 4 | - | 344 | - | - | 1 | 64 | - | - | - | - | 142 | 59 | 1 | - | - | - | - | - | - | - | - | - | 7 | - | - | - | - | - | 634 | 9 | 1 | 1.30 | 0.59 | |
Ag2 | - | - | - | 2 | - | 119 | - | - | - | 309 | - | - | - | - | 15 | 147 | - | - | - | - | - | - | - | - | - | - | 28 | 2 | - | 1 | - | - | 623 | 8 | 1 | 1.28 | 0.62 | ||
Ag3 | - | - | - | - | - | 141 | - | - | - | 138 | - | - | - | - | - | 1 | - | - | - | - | 1 | - | - | - | - | - | 33 | - | - | - | - | - | 314 | 5 | 0 | 0.99 | 0.62 | ||
Ag4 | - | - | - | 4 | - | 65 | - | - | - | 804 | - | - | - | - | 1 | 22 | - | - | - | - | - | - | - | - | 1 | - | 87 | - | - | - | - | - | 984 | 7 | 1 | 0.68 | 0.35 | ||
A19 | Ag1 | - | 13 | - | - | - | - | - | - | 1 | 2 | - | - | - | - | 4 | 4 | 1 | - | - | - | - | - | - | - | - | - | - | 1 | - | 7 | - | - | 33 | 8 | 0 | 1.70 | 0.82 | |
Ag2 | - | 2 | - | - | - | - | - | - | - | 36 | - | - | - | - | - | 15 | - | - | - | - | - | - | - | - | - | - | 8 | - | - | - | - | - | 61 | 4 | 0 | 1.03 | 0.75 | ||
Ag3 | - | 1 | - | - | - | 1 | - | - | - | 7 | - | - | - | - | - | 24 | - | - | - | - | - | - | - | - | - | - | 25 | - | - | - | - | - | 58 | 5 | 0 | 1.12 | 0.70 | ||
Ag4 | - | 1 | - | 2 | - | - | - | - | - | 538 | - | - | - | - | - | 68 | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | 610 | 5 | 1 | 0.40 | 0.25 | ||
S20 | Ag1 | - | 9 | - | - | - | 36 | - | - | - | 11 | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | 4 | 2 | - | - | - | - | 63 | 6 | 0 | 1.25 | 0.70 | |
Ag2 | - | 2 | - | - | - | 150 | - | - | - | 48 | - | - | - | - | - | 10 | - | - | - | - | - | - | - | - | - | - | 1 | 3 | - | - | - | - | 214 | 6 | 0 | 0.86 | 0.48 | ||
Ag3 | - | - | - | 1 | - | 44 | - | - | - | 222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 267 | 3 | 1 | 0.47 | 0.43 | ||
Ag4 | - | 80 | - | - | - | 32 | - | - | - | 417 | - | - | - | - | - | 1 | 3 | - | - | - | - | - | - | - | - | - | 5 | - | - | - | - | - | 538 | 6 | 0 | 0.73 | 0.41 | ||
Alqueva | A18 | Al1 | - | 1 | - | - | - | 16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 17 | 2 | 0 | 0.22 | 0.32 |
Al2 | - | - | - | 6 | - | 570 | - | 2 | - | - | - | - | 4 | - | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 587 | 6 | 2 | 0.18 | 0.10 | ||
Al3 | - | 2 | - | - | - | 10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 13 | 3 | 0 | 0.69 | 0.63 | ||
Al4 | - | - | - | - | - | 37 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | 1 | - | - | 2 | 1 | - | - | - | 42 | 5 | 0 | 0.52 | 0.33 | ||
Al5 | - | 4 | - | - | - | 21 | - | - | - | 38 | - | - | - | - | - | - | 13 | - | - | - | - | - | - | - | 1 | - | - | 5 | 6 | - | - | - | 88 | 7 | 0 | 1.52 | 0.78 | ||
S19 | Al1 | - | - | - | 85 | - | 221 | 1 | 3 | - | 20 | - | - | - | - | - | - | 3 | - | - | - | - | - | - | - | 5 | - | 3 | 4 | - | - | - | - | 345 | 9 | 1 | 1.05 | 0.48 | |
Al2 | - | - | - | 2 | - | 91 | 1 | - | - | 3 | - | - | 2 | 1 | - | - | 1 | - | - | - | 1 | - | - | - | 10 | - | 1 | 23 | - | - | 14 | - | 150 | 12 | 1 | 1.35 | 0.54 | ||
Al3 | - | 2 | 1 | - | - | 80 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 21 | - | 2 | - | - | - | - | - | 106 | 5 | 1 | 0.73 | 0.45 | ||
Al4 | - | - | - | 14 | - | 72 | - | - | - | 17 | - | - | - | - | - | - | 11 | - | - | - | - | - | - | - | - | - | 10 | 2 | - | 2 | - | - | 128 | 7 | 1 | 1.37 | 0.71 | ||
Al5 | - | - | - | - | - | 83 | - | - | - | 211 | - | 2 | - | - | - | - | 8 | - | - | - | 2 | - | - | - | 1 | 1 | 8 | 4 | 1 | 20 | - | - | 341 | 11 | 0 | 1.15 | 0.48 | ||
A19 | Al1 | - | 3 | - | 157 | - | 131 | - | 21 | - | 7 | - | - | - | - | - | - | 9 | - | - | - | - | - | - | - | - | - | - | 1 | 1 | - | - | - | 330 | 8 | 1 | 1.15 | 0.55 | |
Al2 | - | 1 | - | - | - | 2 | - | 5 | - | - | - | - | 4 | - | - | - | 6 | - | - | - | - | - | 1 | - | - | - | 4 | 2 | - | - | - | - | 25 | 8 | 0 | 1.91 | 0.92 | ||
Al3 | - | 8 | - | 5 | - | 7 | - | 9 | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | 1 | 1 | - | - | - | - | 32 | 7 | 1 | 1.65 | 0.85 | ||
Al4 | - | 3 | 21 | 56 | - | 51 | - | 27 | - | - | - | - | - | - | - | - | 7 | - | - | - | - | 9 | 4 | - | 1 | - | 1 | 2 | - | - | - | - | 182 | 11 | 3 | 1.78 | 0.74 | ||
Al5 | 1 | - | - | - | - | 6 | - | - | - | 512 | - | - | - | - | - | - | 164 | - | - | - | - | - | - | - | - | - | 14 | - | - | 6 | - | - | 703 | 6 | 0 | 0.74 | 0.41 | ||
S20 | Al1 | - | 6 | - | 38 | - | 7 | - | 3 | - | 18 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 1 | - | 2 | - | - | 76 | 8 | 1 | 1.45 | 0.69 | |
Al2 | - | 1 | - | 5 | - | 1 | - | 1 | - | 12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 20 | 5 | 1 | 1.10 | 0.68 | ||
Al3 | - | - | - | - | - | - | - | - | - | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 | 1 | 0 | 0 | - | ||
Al4 | - | - | - | - | - | - | - | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | 4 | 2 | 0 | 0.56 | 0.81 | ||
Al5 | - | - | - | 1 | - | 7 | - | - | - | 3040 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 38 | - | - | - | - | 3088 | 5 | 1 | 0.09 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, I.; Rodrigues, S.; Antunes, S.C. Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach. Water 2021, 13, 3391. https://doi.org/10.3390/w13233391
Pinto I, Rodrigues S, Antunes SC. Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach. Water. 2021; 13(23):3391. https://doi.org/10.3390/w13233391
Chicago/Turabian StylePinto, Ivo, Sara Rodrigues, and Sara C. Antunes. 2021. "Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach" Water 13, no. 23: 3391. https://doi.org/10.3390/w13233391
APA StylePinto, I., Rodrigues, S., & Antunes, S. C. (2021). Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach. Water, 13(23), 3391. https://doi.org/10.3390/w13233391