Drag on a Square-Cylinder Array Placed in the Mixing Layer of a Compound Channel
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art
1.3. Objectives
2. Theory
2.1. Computing the Bulk Drag Force from an Integral Momentum Balance
2.2. Drag Coefficient
3. Experimental Facility, Instrumentation and Experimental Procedure
3.1. Experimental Facility
3.2. Experimental Tests
3.3. Velocity Measurements
4. Results
4.1. Time-Averaged Flow and Main Wake Processes
4.2. Analysis of Terms in Equation (4)
4.3. Total Net Contribution of Terms in Equation (4)
4.4. Sensitivity Analysis of the Values of the Drag Coefficient Relatively to the Position of Section S3
4.5. Values of the Drag Coefficient and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
α | generic time-averaged variable; |
b | width of the fluid control-volume; |
C | forces-normalization quantity; |
Cd | drag coefficient; |
d | width of square cylinder; |
d0 | distance between two consecutive cylinders; |
Fr | Froude number; |
FD | time-averaged force exerted by the flow on the cylinders; |
g | gravitational acceleration; |
h | height of the fluid control-volume; |
hr | relative flow depth in a compound channel; |
K | shear parameter; |
l | length of the fluid control-volume; |
n | outward pointing normal unit-vector; |
nc | number of cylinders of an array; |
P | time-averaged pressure of fluid; |
Q | discharge in the channel; |
Red | Reynolds number based on cylinder’s width; |
Reynolds number based on the velocity difference between the flow in the main- channel and in the array and on the cylinder spacing; | |
R | time-averaged force exerted by the cylinders on the flow; |
Rx = |FD| | absolute value of the time-averaged drag force on the cylinders; |
Sc | total surface of the fluid control-volume; |
Sm | open control-section; |
S(m) | area of an open control-section; |
Tik | time-averaged viscous stress tensor; |
t | Time; |
U | time-averaged velocity; |
U0 | mean representative velocity of the approaching flow to the cylinder array; |
Reynolds-stress tensor; | |
Vc | control volume; |
z0 | vertical distance of the measuring level from the floodplain bed; |
x, y, z | longitudinal, lateral and vertical directions; |
θ | angle between the channel bottom and the horizontal plane; |
λ | dimensionless shear; |
ν | kinematic viscosity of fluid; and |
ρ | density of fluid |
Subscript or superscript m (m = 1, 2, 3, 4, 5, 6) refers to an open control-section | |
Subscripts mc and fp refer to main channel and floodplain respectively |
Appendix A
References
- Jain, V.; Fryiers, K.; Brierley, G. Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes. GSA Bull. 2008, 120, 127–141. [Google Scholar] [CrossRef]
- Dieck, J.J.; Ruhser, J.; Hoy, E.; Robinson, L.R. General Classification Handbook for Floodplain Vegetation in Large River Systems (Ver. 2.0, November 2015): U.S. Geological Survey Techniques and Methods, Book 2; U.S. Geological Survey: Reston, VA, USA, 2015; Chapter A1; 51p. [CrossRef] [Green Version]
- Schiller, L.; Linke, W. Pressure and Frictional Resistance of a Cylinder at Reynolds Numbers 5000 to 40,000; NACA Technical Memorandums No. 715; NACA: Boston, MA, USA, 1933. [Google Scholar]
- Roshko, A. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies; NACA Technical Memorandums No. 3169; NACA: Boston, MA, USA, 1954. [Google Scholar]
- Zdravkovich, M.M. Flow around Circular Cylinders. Volume 1: Fundamentals; Reprint 2007; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Zdravkovich, M.M. Flow around Circular Cylinders. Volume 2: Applications; Reprint 2009; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Sumner, D. Two circular cylinders in cross-flow: A review. J. Fluids Struct. 2010, 26, 849–899. [Google Scholar] [CrossRef]
- Sumner, D.; Richards, M.D.; Akosile, O.O. Two staggered circular cylinders of equal diameter in cross-flow. J. Fluids Struct. 2005, 20, 255–276. [Google Scholar] [CrossRef]
- Sumner, D.; Price, S.J.; Païdoussis, M.P. Tandem cylinders in impulsively started flow. J. Fluids Struct. 1999, 13, 955–965. [Google Scholar] [CrossRef]
- Sumner, D.; Price, S.J.; Païdoussis, M.P. Flow-pattern identification for two staggered circular cylinders in cross-flow. J. Fluid Mech. 2000, 411, 263–303. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Levitan, M.; Nikitopoulos, D. Wind tunnel tests for mean drag and lift coefficients on multiple circular cylinders arranged in-line. J. Wind Eng. Ind. Aerodyn. 2008, 96, 831–839. [Google Scholar] [CrossRef]
- Yen, S.C.; San, K.C.; Chuang, T.H. Interactions of tandem square cylinders at low Reynolds numbers. Exp. Therm. Fluid Sci. 2008, 32, 927–938. [Google Scholar] [CrossRef]
- Yen, S.C.; Liu, J.H. Wake flow behind two side-by-side square cylinders. Int. J. Heat Fluid Flow 2011, 32, 41–51. [Google Scholar] [CrossRef]
- Robertson, F.H. An Experimental Investigation of the Drag on Idealised Rigid, Emergent Vegetation and Other Obstacles in Turbulent Free-Surface Flows. Ph.D. Thesis, University of Manchester, Manchester, UK, 2016. [Google Scholar]
- Tanino, Y.; Nepf, H.M. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng. 2008, 134, 34–41. [Google Scholar] [CrossRef]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Ferreira, R.M.L.; Ricardo, A.M.; Franca, M.J. Discussion of “Laboratory Investigation of Mean Drag in a Random Array of Rigid, Emergent Cylinders” by Yukie Tanino and Heidi M. Nepf. J. Hydraul. Eng. 2009, 135, 690–693. [Google Scholar] [CrossRef]
- Ricardo, A.M.; Franca, M.J.; Ferreira, R.M.L. Turbulent flows within random arrays of rigid and emergent cylinders with varying distribution. J. Hydraul. Eng. 2016, 142, 04016022. [Google Scholar] [CrossRef]
- Ricardo, A.M.; Martinho, M.; Sanches, P.; Franca, M.J. Experimental characterization of drag on arrays of rough cylinders. In Proceedings of the 3rd IAHR Europe Congress, Porto, Portugal, 14–15 April 2014; pp. 251–260. [Google Scholar]
- Ricardo, A.M.; Sanches, P.; Ferreira, R.M.L. Vortex shedding and vorticity fluxes in the wake of cylinders within a random array. J. Turbul. 2016, 17, 1–16. [Google Scholar] [CrossRef]
- Cheng, N.-S.; Hui, C.L.; Chen, X. Estimate of drag coefficient for a finite patch of rigid cylinders. J. Hydraul. Eng. 2019, 145, 06018019. [Google Scholar] [CrossRef]
- Blocken, B.; van Druenen, T.; Toparlar, Y.; Malizia, F.; Mannion, P.; Andrianne, T.; Marchal, T.; Mass, G.J.; Diepens, J. Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. J. Wind Eng. Ind. Aerodyn. 2018, 179, 319–337. [Google Scholar]
- Prinos, P.; Townsend, R.; Tavoularis, S. Structure of turbulence in compound channel flows. J. Hydraul. Eng. 1985, 111, 1246–1261. [Google Scholar] [CrossRef]
- Shiono, K.; Knight, D.W. Turbulent open channel flows with variable depth across the channel. J. Fluid Mech. 1991, 222, 617–646. [Google Scholar] [CrossRef]
- Proust, S.; Fernandes, J.N.; Peltier, Y.; Leal, J.B.; Riviere, N.; Cardoso, A.H. Turbulent non-uniform flows in straight compound open-channels. J. Hydraul. Res. 2013, 51, 656–667. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.N.; Leal, J.B.; Cardoso, A.H. Improvement of the Lateral Distribution Method based on the mixing layer theory. Adv. Water Resour. 2014, 69, 159–167. [Google Scholar] [CrossRef]
- Proust, S.; Fernandes, J.N.; Leal, J.B.; Rivière, N.; Peltier, Y. Mixing layer and coherent structures in compound channel flows: Effects of transverse flow, velocity ratio, and vertical confinement. Water Resour. Res. 2017, 53, 3387–3406. [Google Scholar] [CrossRef]
- Besio, G.; Stocchino, A.; Angiolani, S.; Brocchini, M. Transversal and longitudinal mixing in compound channels. Water Resour. Res. 2012, 48, W12517. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.G.C.; Peterka, J.A.; Cermak, J.E. Secondary flows and vortex formation around circular cylinder in constant shear flow. J. Fluid Mech. 1989, 204, 523–542. [Google Scholar] [CrossRef]
- Sumner, D.; Akosile, O.O. On uniform planar shear flowaround a circular cylinder at subcritical Reynolds number. J. Fluids Struct. 2003, 18, 441–454. [Google Scholar]
- Kappler, M.; Rodi, W.; Szepessy, S.; Badran, O. Experiments on the flow past long circular cylinders in a shear flow. Exp. Fluids. 2005, 38, 269–284. [Google Scholar] [CrossRef]
- Kwon, S.; Sung, H.J.; Hyun, J.M. Experimental investigation of uniform-shear flow past a circular cylinder. J. Fluids Eng. 1992, 114, 457–460. [Google Scholar] [CrossRef]
- Stocchino, A.; Brocchini, M. Horizontal mixing of quasi-uniform straight compound channel flows. J. Fluid Mech. 2010, 643, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Gymnopoulos, M.; Ricardo, A.M.; Alves, E.; Ferreira, R.M.L. A circular cylinder in the main-channel/floodplain interface of a compound channel: Effect of the shear flow on drag and lift. J. Hydraul. Res. 2019, 58, 420–433. [Google Scholar] [CrossRef]
- Tominaga, A.; Nezu, I. Turbulent structure in compound open-channel flows. J. Hydraul. Eng. 1991, 117, 21–41. [Google Scholar] [CrossRef]
- Nezu, I.; Nakayama, T. Space–Time correlation structures of horizontal coherent vortices in compound channel flows by using particle-tracking velocimetry. J. Hydraul. Res. 1997, 35, 191–208. [Google Scholar] [CrossRef]
- Bousmar, D.; Riviere, N.; Proust, S.; Paquier, A.; Morel, R.; Zech, Y. Upstream discharge distribution in compound-channel flumes. J. Hydraul. Eng. 2005, 131, 408. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.N. Compound Channel Uniform and Non-Uniform Flows with and without Vegetation in the Floodplain. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2013. [Google Scholar]
- Proust, S.; Berni, C.; Boudou, M.; Chiaverini, A.; Dupuis, V.; Faure, J.B.; Paquier, A.; Lang, M.; Guillen-Ludena, S.; Lopez, D.; et al. Predicting the flow in the floodplains with evolving land occupations during extreme flood events (FlowRes ANR project). In Proceedings of the 3rd European Conference on Flood Risk Management (FLOODrisk 2016), Lyon, France, 17–21 October 2016. [Google Scholar]
- Lambert, M.F.; Myers, W.R. Estimating the discharge capacity in straight compound channels. Proc. Inst. Civ. Eng.-Water Marit. Energ. 1998, 130, 84–94. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking acoustic doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.L.; Roshko, A. Turbulent shear layers and wakes. J. Turbul. 2012, 13, 1–32. [Google Scholar] [CrossRef]
- Ahmed, F.; Rajaratnam, N. Flow around bridge piers. J. Hydraul. Eng. 1998, 124. [Google Scholar] [CrossRef]
- Lyn, D.A.; Einav, S.; Rodi, W.; Park, J.H. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 1995, 304, 285–319. [Google Scholar] [CrossRef]
Test | hr (-) | hfp (m) | Q (ls−1) | Qmc (ls−1) | Qfp (ls−1) | Frmc (-) | Frfp (-) | Red (-) |
---|---|---|---|---|---|---|---|---|
SA_03 | 0.31 | 0.045 | 58.9 | 42.3 | 16.6 | 0.46 | 0.40 | 13,800 |
SA_04 | 0.41 | 0.070 | 95.4 | 63.2 | 32.2 | 0.53 | 0.40 | 18,100 |
Reference | Flow Type | Configuration | Red | Cd | |
---|---|---|---|---|---|
SA_03 | compound-channel flow | 9-cylinder regular array (d0/d = 2.22) | 13,800 | 0.74 | |
SA_04 | compound-channel flow | 9-cylinder regular array (d0/d = 2.22) | 18,100 | 0.58 | |
Robertson (2016) [14] | open-channel flow | infinite regular array (x: d0/d = 5.26, y: d0/d = 2.63) | 9670 | 2.04 | |
Robertson (2016) [14] | open-channel flow | isolated cylinder in uniform flow | 10,000–22,000 | 2.11 | |
Lyn et al. (1995) [44] | closed water-channel flow | isolated cylinder in uniform flow | 21,400 | 2.10 | |
Yen and Liu (2011) [13] | air flow | isolated cylinder in uniform flow | 21,000 | 2.06 | |
Robertson (2016) [14] | open-channel flow | pairs side-by-side (2 < d0/d < 3) | 5600–12,800 | 2.59–3.28 | |
Yen and Liu (2011) [13] | air flow | pairs side-by-side (d0/d = 2.5) | 21,000 | 1.90 | |
Robertson (2016) [14] | open-channel flow | pairs tandem (2 < d0/d <3) | 5600–12,800 | 0.92–1.15 | |
Yen et al. (2008) [12] | air flow | pairs tandem (d0/d = 3) | 900–1200 | 0.50 | |
Yen et al. (2008) [12] | air flow | pairs tandem (d0/d = 1.5) | 900–1200 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.M.L.; Gymnopoulos, M.; Prinos, P.; Alves, E.; Ricardo, A.M. Drag on a Square-Cylinder Array Placed in the Mixing Layer of a Compound Channel. Water 2021, 13, 3225. https://doi.org/10.3390/w13223225
Ferreira RML, Gymnopoulos M, Prinos P, Alves E, Ricardo AM. Drag on a Square-Cylinder Array Placed in the Mixing Layer of a Compound Channel. Water. 2021; 13(22):3225. https://doi.org/10.3390/w13223225
Chicago/Turabian StyleFerreira, Rui M. L., Miltiadis Gymnopoulos, Panayotis Prinos, Elsa Alves, and Ana M. Ricardo. 2021. "Drag on a Square-Cylinder Array Placed in the Mixing Layer of a Compound Channel" Water 13, no. 22: 3225. https://doi.org/10.3390/w13223225