Telecoupled Groundwaters: New Ways to Investigate Increasingly De-Localized Resources
Abstract
:1. Studying Groundwater in New Spatial Relations
1.1. Current Challenges in Groundwater Management
1.2. The Need for a New Spatial Paradigm
2. Telecoupling as a New Epistemological Entry Point to Study Groundwater
2.1. Conceptualizing Distal Ground (Water) Flows
2.2. Rethinking Scale and System Boundaries through Telecoupling
2.3. Governing Telecoupled Flows
3. Remote Relations Influencing European Groundwater Bodies
3.1. How Can Virtual Water Flows Lead to Groundwater Depletion in Spain?
3.2. Can Remote Water Supply Mitigate Stress for Local Groundwater in Germany?
3.3. How Does Tourism Induce Groundwater Deterioration in Croatia?
4. Conclusions
- First, approaches commonly used to depict long-distance relations in the water sector, such as virtual water and water footprint analyses, go in the right direction, but, typically, they fall short in the explanation of the underlying causes of the studied phenomena. Here, the telecoupling framework can provide more insights to inform multi-level governance approaches by making visible the contradictory interactions between different hydrologic, political, or economic scales. Simultaneously, the characteristics of groundwater challenge the idea of a uniform framework of telecouplings in groundwater. An example is the extreme variability in time lags between actual pollution and its propagation and accumulation in an aquifer. In order to provide for an explanation of cause–effect relation, telecoupling effects need to be worked out at aquifer level.
- Second, the telecoupling framework explicitly accounts for unintended consequences of certain flows by highlighting the impacts in spillover systems. These side effects are often overlooked, but they are structurally built into the framework, providing new insights. The systems perspective allows an in-depth analysis of effects with its own cause and effect loops and relevant agents. As the case descriptions show, distinguishing receiving and spillover effects is not trivial in the case of groundwater due to limited knowledge on water flow behavior in karst aquifers. Here, conducting a rigorous study of sending, receiving, and spillover processes involves both the integration of multiple sets of data and the handling of uncertainties. In these contexts, ways in which agents handle uncertainties emerge as a crucial factor in cause and effect loops.
- Third, by taking the telecoupling lens to understand and explain a local groundwater challenge critically widens the picture of relevant stakeholders and particular forms of local knowledge. While considering the local scale only, supra-regional stakeholders are typically left out of sight or discussed as powerful but remote agents as an external force. Telecouplings specifically enable us to bring together stakeholders who are spatially separated but interacting closely. Bringing the interconnectivity of sending, receiving, and spillover systems to the fore makes the mutual dependency on these relations explicit. This creates new spaces for stakeholder interaction at eye level.
- Fourth, rethinking the scale, space, and time of groundwater flows through the telecoupling lens as a boundary concept opens up ways of linking approaches in inter- and transdisciplinary research without compromising the specific contributions of the disciplinary and professional perspectives involved. As we have shown in the discussion of three cases, the telecoupling framework allows for integrating knowledge about flows of policies, people, water, food, and chemical substances. By constantly refining the definition of a ‘system of interest,’ a shared understanding of cause, effect, and agents is created without delimiting definitions of system components and respective methods for their analysis.
- Finally, with its structured epistemological approach, the telecoupling framework provides researchers with a rich toolbox that allows the drawing of flows and boundaries, thereby making visible the scales, systems, and stakeholders relevant for making groundwater use more sustainable. Simultaneously, taking groundwater as an object of study in telecoupling research raises new questions in delineating sending, receiving, and spillover systems and analytically separating flows and systems. Here, we have only begun to tease out the overlaps that deserve further research attention. As our exploration indicates, applying the telecoupling lens to a fluid and hidden resource helps to further conceptualize telecouplings in light of debates of scale and scaling in environmental governance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Groundwater Resources Assessment Centre (IGRAC). Groundwater Overview: Making the invisible Visible. 2018. Available online: https://www.un-igrac.org/sites/default/files/resources/files/Groundwater%20overview%20-%20Making%20the%20invisible%20visible_Print.pdf (accessed on 22 February 2019).
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Griebler, C.; Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Schmied, H.M.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Global status of nitrate contamination in groundwater: Its occurrence, health impacts, and mitigation measures. In Handbook of Environmental Materials Management; Springer: Cham, Germany, 2018; pp. 1–21. [Google Scholar]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam. 2015, 1, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Griebler, C.; Malard, F.; Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 2014, 27, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, D.K.; Ball, D.M.; Re, V.; Simmons, C.T.; Bothwell, T.; Verweij, H.J.; Mukherjee, A.; Moreau, M.F. The future of groundwater science and research. In Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions; Mukherjee, A., Scanlon, B.R., Aureli, A., Langan, S., Guo, H., Mckenzie, A.A., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2021; pp. 503–518. ISBN 978-0-12-818172-0. [Google Scholar]
- Moss, T.; Bouleau, G.; Albiac, J.; Slavíkova, L. WFD + 20: Assessing the European water framework directive. Water Altern. 2020, 13, 446–457. [Google Scholar]
- Zingraff-Hamed, A.; Schröter, B.; Schaub, S.; Lepenies, R.; Stein, U.; Hüesker, F.; Meyer, C.; Schleyer, C.; Schmeier, S.; Pusch, M.T. Perception of bottlenecks in the implementation of the European water framework directive. Water Altern. 2020, 13, 1–26. [Google Scholar]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Re, V. Incorporating the social dimension into hydrogeochemical investigations for rural development: The Bir Al-Nas approach for socio-hydrogeology. Hydrogeol. J. 2015, 23, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Woodhouse, P.; Muller, M. Water governance—An historical perspective on current debates. World Dev. 2017, 92, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A global focus on the ‘local resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2019, 2, 100009. [Google Scholar] [CrossRef]
- Newig, J.; Schulz, D.; Jager, N.W. Disentangling puzzles of spatial scales and participation in environmental governance—The case of governance re-scaling through the European water framework directive. Environ. Manag. 2016, 58, 998–1014. [Google Scholar] [CrossRef] [Green Version]
- Rangecroft, S.; Rohse, M.; Banks, E.W.; Day, R.; di Baldassarre, G.; Frommen, T.; Hayashi, Y.; Höllermann, B.; Lebek, K.; Mondino, E.; et al. Guiding principles for hydrologists conducting interdisciplinary research and fieldwork with participants. Hydrol. Sci. J. 2021, 66, 214–225. [Google Scholar] [CrossRef]
- Jahn, T.; Bergmann, M.; Keil, F. Transdisciplinarity: Between mainstreaming and marginalization. Ecol. Econ. 2012, 79, 1–10. [Google Scholar] [CrossRef]
- Krueger, T.; Maynard, C.; Carr, G.; Bruns, A.; Mueller, E.N.; Lane, S. A transdisciplinary account of water research. Wiley Interdiscip. Rev. Water 2016, 3, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Wiering, M.; Liefferink, D.; Boezeman, D.; Kaufmann, M.; Crabbé, A.; Kurstjens, N. The wicked problem the water framework directive cannot solve. The governance approach in dealing with pollution of nutrients in surface water in The Netherlands, Flanders, Lower Saxony, Denmark and Ireland. Water 2020, 12, 1240. [Google Scholar] [CrossRef]
- Rica, M.; Petit, O.; Elena, L.-G. Understanding groundwater governance through a social ecological system framework—Relevance and limits. In Advances in Groundwater Governance; CRC Press: London, UK, 2017; pp. 55–72. [Google Scholar]
- Ballestero, A. A Future History of Water; Duke University Press: Durham, UK, 2019. [Google Scholar]
- Schleyer, C.; Lux, A.; Mehring, M.; Görg, C. Ecosystem services as a boundary concept: Arguments from social ecology. Sustainability 2017, 9, 1107. [Google Scholar] [CrossRef] [Green Version]
- Alba, R.; Kooy, M.; Bruns, A. Conflicts, cooperation and experimentation: Analysing the politics of urban water through Accra’s heterogeneous water supply infrastructure. Environ. Plan. E Nat. Space 2020, 0, 1–22. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. (Ed.) Virtual Water Trade. Proceedings of the International Expert Meeting on Virtual Water Trade; IHE Delft: Delft, The Netherlands, (Value of Water Research Report Series, 12); 2003. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, M.J.; Velázquez, E. The political ecology of virtual water in southern Spain. Int. J. Urban Reg. Res. 2015, 39, 1020–1036. [Google Scholar] [CrossRef]
- Wichelns, D. Virtual water and water footprints. Compelling notions, but notably flawed. GAIA-Ecol. Perspect. Sci. Soc. 2011, 20, 171–175. [Google Scholar] [CrossRef]
- Newig, J.; Moss, T. Scale in environmental governance: Moving from concepts and cases to consolidation. J. Environ. Policy Plan. 2017, 19, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Newig, J.; Lenschow, A.; Challies, E.; Cotta, B.; Schilling-Vacaflor, A. What is governance in global telecoupling? Ecol. Soc. 2019, 24, 26. [Google Scholar] [CrossRef] [Green Version]
- Friis, C.; Nielsen, J. Global land-use change through a telecoupling lens: An introduction. In Telecoupling: Exploring Land-Use Change in a Globalised World; Springer: Cham, Switzerland, 2019; pp. 1–15. [Google Scholar]
- Liu, J.; Dou, Y.; Batistella, M.; Challies, E.; Connor, T.; Friis, C.; Millington, J.D.; Parish, E.; Romulo, C.L.; Silva, R.F.; et al. Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 2018, 33, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Deines, J.M.; Liu, X.; Liu, J. Telecoupling in urban water systems: An examination of Beijing’s imported water supply. Water Int. 2016, 41, 251–270. [Google Scholar] [CrossRef]
- Moss, T.; Newig, J. Multilevel water governance and problems of scale: Setting the stage for a broader debate. Environ. Manag. 2010, 46, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.; Choudhury, E.; Islam, S. An assessment of scale-sensitivity in policy design and implementation of the EU water framework directive within the context of the Danube Basin. Water Altern. 2020, 13, 634–658. [Google Scholar]
- Swyngedouw, E. Globalisation or ‘glocalisation’? Networks, territories and rescaling. Hist. Econ. Soc. Bull. 2004, 17, 25–48. [Google Scholar] [CrossRef]
- Goodman, M.K.; Boykoff, M.T.; Evered, K.T. Contentious geographies: Environmental knowledge, meaning, scale. In Contentious Geographies: Environmental Knowledge, Meaning, Scale; Goodman, M.K., Boykoff, M.T., Evered, K.T., Eds.; Ashgate: Hampshire, Englang; Burlington, VT, USA, 2008; pp. 1–23. [Google Scholar]
- Foster, S.; Custodio, E. Groundwater resources and intensive agriculture in Europe—Can regulatory agencies cope with the threat to sustainability? Water Resour. Manag. 2019, 33, 2139–2151. [Google Scholar] [CrossRef]
- Adger, W. Scales of governance and environmental justice for adaptation and mitigation of climate change. J. Int. Dev. 2001, 13, 921–931. [Google Scholar] [CrossRef]
- Terkenli, T.S. New landscape spatialities: The changing scales of function and symbolism. Landsc. Urban Plan. 2005, 70, 165–176. [Google Scholar] [CrossRef]
- Nielsen, J.Ø.; Friis, C.; Niewöhner, J. Beyond integration: Exploring the interdisciplinary potential of telecoupling research. In Telecoupling: Exploring Land-Use Change in a Globalised World; Friis, C., Nielsen, J.Ø., Eds.; Springer: Cham, Switzerland, 2019; pp. 339–355. ISBN 3030111059. [Google Scholar]
- Friis, C.; Nielsen, J.Ø. On the system. Boundary choices, implications, and solutions in telecoupling land use change research. Sustainability 2017, 9, 974. [Google Scholar] [CrossRef] [Green Version]
- Matias, D.M. The Extended Present: Conceptualizing Tempocoupling and Sustainability Archaeology; Institute for Social-Ecological research: Frankfurt/Main, Germany, 2020. [Google Scholar]
- Rusca, M.; di Baldassarre, G. Interdisciplinary critical geographies of water: Capturing the mutual shaping of society and hydrological flows. Water 2019, 11, 1973. [Google Scholar] [CrossRef] [Green Version]
- EurEau. The Impact of Drought on Drinking Water. 2020. Available online: https://www.eureau.org/documents/drinking-water/briefing-note/5111-briefing-note-on-the-impact-of-drought-on-drinking-water/file (accessed on 26 April 2021).
- Rodríguez-Estrella, T. The problems of overexploitation of aquifers in semi-arid areas: The Murcia Region and the Segura Basin (South-east Spain) case. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 5729–5756. [Google Scholar] [CrossRef]
- FEPEX. La Exportación Española de Frutas y Hortalizas Frescas Supera Los 14.500 Millones de Euros en 2020. Available online: https://www.fepex.es/noticias/detalle/exportacion-espanola-frutas-hortalizas-2020 (accessed on 12 August 2021).
- MAPA. Frutas y Hortalizas. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y-hortalizas/informacion_general.aspx (accessed on 12 August 2021).
- Argamasilla, M.; Barberá, J.A.; Andreo, B. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Sci. Total Environ. 2017, 580, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Swyngedouw, E.; Williams, J. From Spain’s hydro-deadlock to the desalination fix. Water Int. 2016, 41, 54–73. [Google Scholar] [CrossRef]
- Lankford, B.; Closas, A.; Dalton, J.; Gunn, E.L.; Hess, T.; Knox, J.W.; van der Kooij, S.; Lautze, J.; Molden, D.; Orr, S.; et al. A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges. Glob. Environ. Chang. 2020, 65, 102182. [Google Scholar] [CrossRef]
- Dumont, A. Flows, Footprints and Valus: Visions and Decisions on Groundwater in Spain. Doctoral Thesis, Complutense University of Madrid, Madrid, Spain, 2015. [Google Scholar]
- Vos, J.; Hinojosa, L. Virtual water trade and the contestation of hydrosocial territories. Water Int. 2016, 41, 37–53. [Google Scholar] [CrossRef] [Green Version]
- BMEL. Agrarpolitischer Bericht der Bundesregierung 2019. 2019. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/Agrarbericht2019.pdf;jsessionid=D199BB1B3EE323E5447FD3C3FDEEBC61.live922?__blob=publicationFile&v=4 (accessed on 12 August 2021).
- United Nations Conference on Trade and Development (UNCTAD). Impact of Remittances on Poverty in Developing Countries; United Nations: Geneva, Switzerland, 2011. [Google Scholar]
- Hahn, H.-J.; Fuchs, A.; Berkhoff, S. Biomonitoring Nitrat 2020 in Sachsen-Anhalt: Endbericht. 2020. Available online: https://lhw.sachsen-anhalt.de/fileadmin/Bibliothek/Politik_und_Verwaltung/Landesbetriebe/LHW/neu_PDF/5.0_GLD/Dokumente_GLD/Berichte_Dokumente_GW/2020_Endbericht_Biomonitoring_Nitrat.pdf (accessed on 15 October 2021).
- Landesamt für Umweltschutz Sachsen-Anhalt (LAU). Urankonzentrationen im Grundwasser von Sachsen-Anhalt; Landesamt für Umweltschutz Sachsen-Anhalt (LAU): Halle, Germany, 2007. [Google Scholar]
- Landkreis Mansfeld-Südharz. Allgemeinverfügung zur Beschränkung des Gemeingebrauchs i.S.v. §29 Abs. 1 WG LSA (Wassergesetz für das Land Sachsen-Anhalt) im Landkreis Mansfeld-Südharz. 2018. Available online: https://www.mansfeldsuedharz.de/de/ausgabe/wasserknappheit-landkreis-verbietet-entnehmen-von-wasser-aus-oberflaechengewaessern.html (accessed on 12 August 2021).
- Hattermann, F.F.; Weiland, M.; Huang, S.; Krysanova, V.; Kundzewicz, Z.W. Model-supported impact assessment for the water sector in central Germany under climate change—A case study. Water Resour. Manag. 2011, 25, 3113–3134. [Google Scholar] [CrossRef]
- Imbery, F.; Friedrich, K.; Koppe, C.; Janssen, W.; Pfeifroth, U.; Daßler, J.; Bissolli, P. Wärmster Sommer im Norden und Osten Deutschlands. 2018. Available online: https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20180906_waermstersommer_nordenosten2018.pdf?__blob=publicationFile&v=7 (accessed on 25 June 2020).
- Riedel, T.; Weber, T.K.D. Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeol. J. 2020, 28, 1939–1959. [Google Scholar] [CrossRef]
- Möhler, F.; Wiesner, C.; Ruhland, A. Auswirkungen des klimawandels und anpassungsstrategien für das wasserwerk colbitz in Sachsen-Anhalt. Grundwasser 2021, 26, 47–60. [Google Scholar] [CrossRef]
- Landesamt für Umweltschutz Sachsen-Anhalt. Bericht zur Öffentlichen Wasserversorgung in Sachsen-Anhalt für das Jahr 2018. 2018. Available online: https://lau.sachsen-anhalt.de/fileadmin/Bibliothek/Politik_und_Verwaltung/MLU/LAU/Wasser/Wassertechnik_downloads/Dateien_Ber_2018/200604_OEWVLSA2018_Bericht_bf.pdf (accessed on 26 March 2021).
- Landesamt für Umweltschutz Sachsen-Anhalt. Die Öffentliche Wasserversorgung in Sachsen-Anhalt 2018 (Karte): Betreiber Der Öffentlichen Wasserversorgung und Ihre Versorgungsräume. 2020. Available online: https://lau.sachsen-anhalt.de/fileadmin/Bibliothek/Politik_und_Verwaltung/MLU/LAU/Wasser/Wassertechnik_downloads/Dateien_Ber_2018/oewv_18_karte1.pdf (accessed on 26 March 2021).
- Pommer, G.; Koch, H. Zu viel Nitrat im Trinkwasser: Säuglinge dürfen jetzt nur noch mineralwasser trinken: Sangerhausen—Was die Behörden in dem Fall den betroffenen Bürgern empfehlen. Mitteldeutsche Zeitung. 1 June 2018. Available online: https://www.mz.de/lokal/sangerhausen/zu-viel-nitrat-im-trinkwasser-sauglinge-durfen-jetzt-nur-noch-mineralwasser-trinken-1442903 (accessed on 12 August 2021).
- Kranert-Rydzy, H. Trinkwasser in Mansfeld-Südharz: Uran abfall lagert neben brunnen. Mitteldeutsche Zeitung. 23 October 2013. Available online: https://www.mz.de/mitteldeutschland/trinkwasser-in-mansfeld-sudharz-uran-abfall-lagert-neben-brunnen-2086531 (accessed on 12 August 2021).
- Bonacci, O.; Željković, I.; Galić, A. Karst rivers’ particularity: An example from Dinaric karst (Croatia/Bosnia and Herzegovina). Environ. Earth Sci. 2013, 70, 963–974. [Google Scholar] [CrossRef]
- Oštrić, M.; Horvat, B.; Lončarić-Trinajstić, I.; Benac, Č.; Ružić, I.; Rubinić, J. Research of water resources on Karst Islands on the example of the Island of Krk (Croatia). Water Obs. Inf. Syst. Balk. Ctries 2010, 1–12. Available online: http://balwois.com/wp-content/uploads/old_proc/ffp-1835.pdf (accessed on 3 December 2020).
- Croatian Bureau of Statistics. Tourism 2019. Statistical Reports. 2020. Available online: https://www.dzs.hr/Hrv_Eng/publication/2020/SI-1661.pdf (accessed on 11 August 2021).
- Slavuj, L.; Čanjevac, I.; Opačić, V.T. Water supply as a factor of sustainable tourism development on the Island of Krk. Hrvat. Geogr. Glas. Geogr. Bull. 2009, 71, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Babinka, S. Multi-Tracer Study of Karst Waters and Lake Sediments in Croatia and Bosnia-Herzegovina: Plitvice Lakes National Park and Bihac Area. Doctoral Dissertation, University of Bonn, Bonn, Germany, 2007. [Google Scholar]
- Philipp, D. Development of a Study on the Establishment of the Klokot (Bihac) Spring Cross-Border Sanitary Protection Zones. 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjWiI-eq8zzAhWphP0HHRoRAyYQFnoECAIQAQ&url=https%3A%2F%2Fdocuments1.worldbank.org%2Fcurated%2Fen%2F876781602132853101%2Fpdf%2FFinal-Report.pdf&usg=AOvVaw3FPsblZivcELVw_3ji0Cig (accessed on 13 August 2021).
- Vurnek, M.; Brozinčević, A.; Kepčija, R.M.; Frketić, T. Analyses of long-term trends in water quality data of the Plitvice Lakes National Park. Fundam. Appl. Limnol. 2021, 194, 155–169. [Google Scholar] [CrossRef]
Spain | Germany | Croatia | ||
---|---|---|---|---|
Flows | Virtual Water | Physical Water | Tourists | |
Sending System | Agents | Farmers, retailers | Dam operator, remote water supplier, nature conservation | Travel agencies, tour operators |
Causes | Historic water rights, trade regulations, primacy of irrigated agriculture over water supply | Historic water rights, hydro-climatic conditions, low competition for water resources | Marketing strategies, hegemonic paradigm of “holidays on the Adriatic coast” | |
Effects | GW depletion, salinization, eutrophication, economic gains | Substantial ecosystem alterations, tourism | Satisfaction of consumer preferences, drawback for national tourism sector, increased outbound air travel | |
Receiving System | Agents | Consumers, retailers, supermarkets, water suppliers, farmers | Local water supplier, remote water supplier, farmers, water consumers, nature conservation | Administration, tour operators, tourism industry actors, water suppliers, nature conservation |
Causes | Paradigm of consuming Mediterranean fruits, primacy of water supply over irrigated agriculture, agricultural tradition | Water quality (nitrate, uranium hardness), consumer perception of water, farmer-water utility conflicts, drought stressed water supply | Low-price destination, favourable climate and landscape, good water infrastructure endowment and accessibility, seasonal population increase | |
Effects | Nitrate pollution due to intense livestock farming | Satisfaction of consumer preferences, quantitative protection of local GW-bodies | Economic gains, seasonal (ground)water depletion, water quality deterioration, remote water supply | |
Spillover System | Agents | Farmers, migrant workers, immigration agency | Farmers, water utilities, nature conservation | Nature conservation, administration, tourism sector, water utilities |
Causes | Crises in home countries, immigration regime | Water protection legislation, lack of coherent policies | Transboundary geo-hydrological link, untreated wastewater | |
Effects | Remittances to families, precarious working conditions | Qualitative risks for local GW-bodies, land use conflicts | Contaminated groundwater, cost-intensive water treatment, (non-) EU policy implementation challenges |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luetkemeier, R.; Frick-Trzebitzky, F.; Hodžić, D.; Jäger, A.; Kuhn, D.; Söller, L. Telecoupled Groundwaters: New Ways to Investigate Increasingly De-Localized Resources. Water 2021, 13, 2906. https://doi.org/10.3390/w13202906
Luetkemeier R, Frick-Trzebitzky F, Hodžić D, Jäger A, Kuhn D, Söller L. Telecoupled Groundwaters: New Ways to Investigate Increasingly De-Localized Resources. Water. 2021; 13(20):2906. https://doi.org/10.3390/w13202906
Chicago/Turabian StyleLuetkemeier, Robert, Fanny Frick-Trzebitzky, Dženeta Hodžić, Anne Jäger, David Kuhn, and Linda Söller. 2021. "Telecoupled Groundwaters: New Ways to Investigate Increasingly De-Localized Resources" Water 13, no. 20: 2906. https://doi.org/10.3390/w13202906