Impacts of Desalinated and Recycled Water in the Abu Dhabi Surficial Aquifer
Abstract
:1. Introduction
2. Materials
2.1. Geology and Hydrogeology of the Study Area
2.2. Strategic Aquifer Storage and Recovery Potential
2.3. Non-Conventional Water in Agriculture Field
3. Methods
3.1. Numerical Code
3.2. Model Geometry
3.3. Boundary Conditions
3.4. Model Parameters
3.5. Model Calibration
3.6. Implementation of SASR Structure
4. Result and Discussion
4.1. Impact and Efficiency of SASR Structure
4.1.1. Storage Simulations
4.1.2. Recovery Simulations
4.2. Impact of Non-Conventional Water in Agriculture Field
Potential and Limitation of the Regional Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Valuing Water. UNESCO World Water Assessment Programme. 2021. Available online: https://unhabitat.org/sites/default/files/2021/07/375724eng_1.pdf (accessed on 9 October 2021).
- UN Water. Managing Water under Uncertainty and Risk—World Water Development Report 4; UNESCO Report; UN Water: Paris, France, 2012; Volume 1. [Google Scholar]
- Huang, F.; Zhang, Y.; Zhang, D.; Chen, X. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey. Bibliography of National Drilling Company–United States Geological Survey Reports on the Water Resources of Abu Dhabi Emirate; U.S Geological Survey Open File Report; NDC–USGS: Al Ain, United Arab Emirates, 1996.
- Sathish, S.; Mohamed, M.; Klammer, H. Regional groundwater flow model for Abu Dhabi Emirate: Scenario based investigation. Environ. Earth Sci. 2018, 77, 409. [Google Scholar] [CrossRef]
- Dawoud, M.A. Groundwater economics in arid regions: Abu Dhabi Emirate case study. In Proceedings of the 13th Gulf Water Conference Proceedings, Desalination and Water Treatment, Kuwait, 12–14 March 2019; Volume 176. [Google Scholar]
- Hutchinson, C.B. Groundwater Resources of Abu Dhabi Emirate: National Drilling Company—U.S. Geological Survey Administrative Report, Prepared for the National Drilling Company, Abu Dhabi. 2006. Available online: https://pubs.usgs.gov/of/1998/0018/report.pdf (accessed on 10 May 2021).
- Tadros, S.H.; Huneidi, I. Falajes of Al Ain Area. National Drilling Company Administrative Report; Abu Dhabi Emirate; 1994. Available online: https://pubs.usgs.gov/of/1998/0018/report.pdf (accessed on 10 May 2021).
- Rizk, Z.S. Determining the sources of nitrate pollution of the Liwa Quaternary Aquifer in the United Arab Emirates. In Proceedings of the WSTA 11th Gulf Water Conference, Muscat, Oman, 20–22 October 2014; pp. 120–136. Available online: https://wstagcc.org/WSTA-11th-Gulf-Water-Conference/WSTA-11th-Gulf-Water-Conference-Proceedings.pdf (accessed on 10 May 2021).
- Brook, M.; Houqani, H. Current Status of Aflaj in the Al Ain Area, United Arab Emirates: United Arab Emirates, Enviroment Agency Abu Dhabi. 2006, p. 27. Available online: http://enhg.org/resources/articles/al_ain_falaj/Al_%20Ain_Falaj_Report.pdf (accessed on 23 March 2021).
- Murad, A.A.; Nuaimi, H.A.; Hammadi, M.A. Comprehensive assessment of water resources in the United Arab Emirates. Water Resour. Manag. 2007, 21, 1449–1463. [Google Scholar] [CrossRef]
- Sherif, M.; Sefelnasr, A.; Ebraheem, A.A.; Mulla, M.; Alzaabi, M.; Alghafli, K. Spatial and Temporal Changes of Groundwter Storage in the Quarternary Aquifer, UAE. Water 2021, 13, 864. [Google Scholar] [CrossRef]
- Raouf, M.A. Water Issues in the Gulf: Time for Action. The Middle East Institute Policy Brief No. 22. 2009. Available online: https://www.files.ethz.ch/isn/95680/No_22_Water_Issues_in_the_Gulf.pdf (accessed on 23 March 2021).
- Hajeeh, M. Technical note: Water conservation in Kuwait: A fuzzy analysis approach. J. Ind. Eng. Int. 2010, 6, 90–105. [Google Scholar]
- Zarabi, M.; Jalali, M. Leaching of nitrogen from calcareous soils in western Iran: A soil leaching column study. Environ. Monit. Assess. 2012, 184, 7607–7622. [Google Scholar] [CrossRef] [PubMed]
- UNDP Water Governance in the Arab Region, Managing Scarcity and Securing the Future. Regional Bureau for Arab States, United Nations Development Programme, USA. 2013. Available online: https://www.arabdevelopmentportal.com/sites/default/files/publication/800.water_governance_in_the_arab_region_managing_scarcity_and_securing_the_future.pdf (accessed on 25 March 2021).
- Hussain, M.S.; Abd-elhamid, J.A.A. Management of seawater intrusion in coastal aquifers: A review. Water 2019, 11, 2467. [Google Scholar] [CrossRef] [Green Version]
- Hassane, R.B.; Yebdri, D.; Tidjani, A. Climate change and water resources management of Oran region. J. Water Clim. Chang. 2017, 8, 348–361. [Google Scholar] [CrossRef]
- Sathish, S.; Mohamed, M.M. Assessment of aquifer storage and recovery (ASR) feasibility at selected sites in the Emirate of Abu Dhabi, UAE. Environ Earth Sci. 2018, 77, 112. [Google Scholar] [CrossRef]
- Iqbal, J.; Nazzal, Y.; Howari, F.; Xavier, C.; Yousef, A. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: The case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Ground. Sustain. Dev. 2018, 7, 212–219. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Farouk, S.; Al Nahyan, M.T. Water resource management towards a sustainable water budget in the United Arab Emirates. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 4th International Conference on Water Resources and Environment (WRE); IOP Publishing: Bristol, UK, 2018; Volume 191, p. 012007. [Google Scholar]
- Alhumimidi, M.S. An integrated approach for identification of seawater intrusion in coastal region: A case study of northwestern Saudi Arabia. J. King Saud. Univ. Sci. 2020, 3187–3194. [Google Scholar] [CrossRef]
- Sen, Z. (Ed.) Groundwater Management: Practical and Applied Hydrogeology; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 341–397. [Google Scholar]
- White, E.K.; Peterson, T.J.; Costelloe, J.; Western, A.W.; Carrara, E. Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans. Water Resour. Res. 2016, 52, 4863–4882. [Google Scholar] [CrossRef]
- EAD Groundwater Atlas Abu Dhabi Emirate; Environment Agency: Abu Dhabi, United Arab Emirates, 2018; Volume 91.
- Schlumberger Water Services Strategic Aquifer Storage and Recovery (ASR) Project for the Western Region of the Emirate of Abu Dhabi, Liwa Pilot ASR System Final Report: Schlumberger Water Services, Abu Dhabi, United Arab Emirates. 2011. Available online: https://www.waterworld.com/home/article/16202435/aquifer-storage-recovery-in-arid-environments (accessed on 17 July 2021).
- Stuyfzand, P.J.; Smidt, E.; Zuurbier, K.G.; Hartog, N.; Dawoud, M.A. Observations and Prediction of Recovered Quality of Desalinated Seawater in the Strategic ASR Project in Liwa, Abu Dhabi. Water 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Parimalarenganayaki, S. Managed Aquifer Recharge in the Gulf Countries: A Review and Selection Criteria. Arab. J. Sci. Eng. 2021, 46, 1–15. [Google Scholar] [CrossRef]
- UNESCO. Facing the Challenges: Case Studies and Indicators. UNESCO’s Contribution to The United Nations World Water Development Report, France. 2015. Available online: https://www.pseau.org/outils/ouvrages/unesco_wwdr_2015_case_studies_and_indicators_facing_the_challenges_2015.pdf (accessed on 14 March 2021).
- Khan, M.R.; Voss, C.I.; Yu, W.; Michael, H.A. Water resources management in the Ganges Basin: A comparison of three strategies for conjunctive use of groundwater and surface water. Water. Resour. Manag. 2014, 28, 1235–1250. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, X.; Zhu, B.; Meng, S.; Yao, Y. Unexpected groundwater recovery with decreasing agricultural irrigation in the Yellow River Basin. Agric. Water. Manag. 2019, 213, 858–867. [Google Scholar] [CrossRef]
- Khezri, S. Evaluation of the aquifer storage and recovery pilot project in Liwa Area, Emirate of Abu Dhabi, UAE. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2010. [Google Scholar]
- Hussain, M.S.; Javadi, A.A.; Sherif, M.M.; Naseri-Karim-Vand, R. Control of saltwater intrusion by aquifer storage and recovery. Proc. Inst. Civ. Eng. Eng. Comp. Mech. 2016, 169, 148–155. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. 2011. Available online: http://www.fao.org/3/i1688e/i1688e00.htm (accessed on 15 March 2021).
- Wood, W.W.; Imes, J.L. Dating of Holocene ground–water recharge in western part of Abu Dhabi (United Arab Emirates): Constraints on global climate–change models. In Developments in Water Science; Elsevier: Amsterdam, The Netherlands, 2003; Volume 50, pp. 379–385. [Google Scholar]
- Halcrow, S.W. Partners. Report on the Water Resources of the TRUCIAL States. Engineering Report for the Trucial States Council. Water Resources Survey, Ministry of Agriculture and Fisheries, Dubai. 1969. Available online: https://www.agda.ae/en/catalogue/tna/fo/1016/840/n/39 (accessed on 12 March 2021).
- Ministry of Agriculture and Fisheries, Hydrology, Department of Soil and Water, Ministry of Agriculture and Fisheries, United Arab Emirates. 1993, Volume 3, p. 294. Available online: http://faolex.fao.org/docs/html/cam22456.htm (accessed on 12 March 2021).
- Eggleston, J.R.; Mack, T.J.; Imes, J.L.; Kress, W.; Woodward, D.W.; Bright, D.J. Hydrogeologic Framework and Simulation of Predevelopment Groundwater Flow, Eastern Abu Dhabi Emirate, United Arab Emirates. Scientific Investigation Report—USGS, U.S. Geological Survey Scientific Investigations Report; USGS: Reston, Virginia, 2020; p. 5158. Available online: https://pubs.er.usgs.gov/publication/sir20185158 (accessed on 12 March 2021).
- Brook, M. Water Resources of Abu Dhabi Emirate, UAE; Water Resources Department, Environment Agency: Abu Dhabi, United Arab Emirates, 2009; Available online: https://www.researchgate.net/publication/292017241_Water_resources_in_Abu_Dhabi_emirate_United_Arab_Emirates (accessed on 12 March 2021).
- SCAD Statistical Yearbook of Abu Dhabi 2019. Available online: https://www.scad.gov.ae/Release%20Documents/Statistical%20Yearbook%20of%20Abu%20Dhabi_2019_Annual_Yearly_en.pdf (accessed on 15 July 2021).
- GTZ Combined Artificial Recharge and Utilization of the Groundwater Resource in the Greater Liwa Area. Pilot Project Final Technical Report 2005b. Available online: https://www.giz.de/en/worldwide/18540.html (accessed on 9 October 2021).
- Osterkamp, W.R.; Lane, L.J.; Menges, C.M. Techniques of groundwater recharge estimates in arid/semi–arid areas, with examples from Abu Dhabi. J. Arid. Environ. 1995, 31, 349–369. [Google Scholar] [CrossRef] [Green Version]
- MWR Ministry of Water Resources, Sultanate of Oman, Water Attachment Position Paper. 1999. Available online: https://www.mrmwr.gov.om/web/mrmwr (accessed on 6 October 2021).
- Alsharhan, A.S.; Rizk, Z.A.; Nairn, A.E.M.; Bakhit, D.W. Hydrogeology of an Arid Region. The Arabian Gulf and Adjoining Areas; Elsevier: New York, NY, USA, 2001. [Google Scholar]
- Al Dhaheri, S.; Saji, A. Water quality and brine shrimp (Artemia sp.) population in Al Wathba Lake, Al Wathba Wetland Reserve, Abu Dhabi Emirate, UAE. Int. J. Biodivers. Conserv. 2013, 5, 281–288. [Google Scholar] [CrossRef]
- Lokier, S.W. Coastal Sabkha Preservation in the Arabian Gulf. Geoheritage 2013, 5, 11–22. [Google Scholar] [CrossRef]
- Lokier, S.W.; Steuber, T. Large-scale intertidal polygonal features of the Abu Dhabi coastline. Sedimentology 2009, 56, 609–621. [Google Scholar] [CrossRef]
- Stanford, W.E.; Wood, W.W. Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeol. J. 2001, 9, 358–366. [Google Scholar] [CrossRef]
- Pavelic, P.; Nicholson, B.C.; Dillon, P.J.; Barry, K.E. Fate of disinfection by products in groundwater during aquifer storage and recovery with reclaimed water. J. Contam. Hydrol. 2005, 77, 119–141. [Google Scholar] [CrossRef]
- Lowry, C.S.; Anderson, M.P. An assessment of aquifer storage recovery using ground water flow models. Groundwater 2006, 44, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Missimer, T.M.; Sinha, S.; Ghafour, N. Strategic aquifer storage and recovery of desalinated water to achieve water security in the GCC/MENA region. Int. J. Environ. Sustain. 2012, 1, 87–99. [Google Scholar] [CrossRef]
- Langevin, C.D.; Thome, D.T., Jr.; Dausman, A.M.; Sukop, M.C.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi–Species Solute and Heat Transport. U.S. Geological Survey Techniques and Methods 6–A22. 2008; Volume 39. Available online: https://pubs.usgs.gov/tm/tm6a22/ (accessed on 12 March 2021).
- Harbaugh, A.W. MODFLOW–2005, the U.S. Geological Survey Modular Ground–Water Model—the Ground–Water Flow Process: U.S. Geological Survey Techniques and Methods 6–A16. 2005. Available online: https://pubs.usgs.gov/tm/2005/tm6A16/ (accessed on 12 March 2021).
- Zheng, C.; Wang, P.P. MT3DMS—A Modular Three–dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Ground–Water Systems: Documentation and User’s Guide: U.S. Army Corps of Engineers Contract Report SERDP–99–1. 1999. Available online: http://www.geology.wisc.edu/~andy/g727/mt3dmanual.pdf (accessed on 14 March 2021).
- Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 1983, 43, 357–393. [Google Scholar] [CrossRef] [Green Version]
Year | Total Area of Green Field (km2) | Total Pumping Rate (MCMYr−1) | Nonconventional Water (MCMYr−1) | Gross Irrigation Water Demand (Qir) (MCMYr−1) | Irrigation Return Flow Rir (MCMYr−1) |
---|---|---|---|---|---|
2000 | 620 | 2185 | 114 | 2299 | 333.355 |
2001 | 695 | 2451 | 117 | 2571 | 372.36 |
2002 | 708 | 2501 | 118 | 2620 | 379.755 |
2003 | 719 | 2541 | 120 | 2663 | 385.845 |
2004 | 719 | 2542 | 123 | 2668 | 386.425 |
2005 | 740 | 2860 | 125 | 2987 | 432.825 |
2006 | 720 | 2730 | 132 | 2869 | 414.99 |
2007 | 704 | 2657 | 144 | 2813 | 406.145 |
2008 | 732 | 2569 | 160 | 2745 | 395.705 |
2009 | 738 | 2450 | 175 | 2640 | 380.625 |
2010 | 748 | 2267 | 159 | 2410 | 351.77 |
2011 | 705 | 2495 | 165 | 2666 | 385.7 |
2012 | 737 | 2587 | 196 | 2814 | 403.535 |
2013 | 753 | 2665 | 211 | 2876 | 417.02 |
2014 | 750 | 2626 | 248 | 2874 | 416.73 |
2015 | 750 | 2562 | 349 | 2911 | 422.095 |
2016 | 750 | 2634 | 378 | 3012 | 436.74 |
2017 | 750 | 2657 | 384 | 3041 | 440.945 |
2018 | 750 | 2646 | 401 | 3047 | 441.815 |
2019 | 750 | 2645 | 419 | 3064 | 444.28 |
Parameter | Value | Unit |
---|---|---|
Horizontal hydraulic conductivity | 2.74 × 10−8 to 266 | md−1 |
Vertical hydraulic conductivity | 2.74 × 10−9 to 27 | md−1 |
Porosity | 0.001–0.4 | (-) |
Specific yield | 0.0009–0.32 | (-) |
Storativity | 1 × 10−4–7 × 10−3 | (-) |
Longitudinal dispersivity | 2500 | m |
Horizontal transverse dispersivity | 750 | m |
Vertical transverse dispersivity | 750 | m |
Effective molecular diffusion | 1 × 10−5 | md−1 |
Density of groundwater at deeper aquifer | 1.025 | kgm−3 |
Density of groundwater at surficial aquifer | 1.000 | kgm−3 |
Density of seawater at Persian gulf | 1.028 | kgm−3 |
Density/conc.slope | 0.7523 | (kgm−3) |
Sl.No. | Component | Actual Volume (MCMYr−1) | Calibrated Volume (MCMYr−1) |
---|---|---|---|
1 | Outflow towards S and S–W | 3.00 | 3.00 |
2 | Outflow towards North | 16.00 | 16.00 |
3 | Evapotranspiration | 88.00 | 86.53 |
4 | Transboundary recharge from east | 38.50 | 38.50 |
Parameter | EC (μS/cm) | Temperature (°C) | Salinity (gL−1) | TDS (gL−1) | pH | Ca (gL−1) | Mg (gL−1) | Na (gL−1) | K (gL−1) | HCO3 (gL−1) | Cl (gL−1) | SO4 (gL−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Desalinated water quality | 123 | 35 | 0.08 | 0.25 | 8.1 | 0.0202 | 0.0004 | 0.0041 | 0.0001 | 0.066 | 0.005 | 0.001 |
Drinking water standard | 1600 | 1 | 1.50 | 7–9.2 | 0.080 | 0.0300 | 0.1500 | 0.0120 | >0.060 | 0.250 | 0.250 |
Concentration of Irrigation Return Flow (gL−1) | Predicted Change in Groundwater Head (m) | Predicted Change in Concentration of Groundwater (gL−1) | ||
North and Piedmont Region | Sand Dune Area | North and Piedmont Region | Sand Dune Area | |
0.1 | −6.71 to 5.16 | −2.45 to 1 | −0.63 to 0.86 | −0.03 to 1.63 |
0.5 | −6.71 to 5.16 | −2.45 to 1 | −0.63 to 0.89 | −0.03 to 1.63 |
1 | −6.71 to 5.16 | −2.45 to 1 | −0.63 to 0.92 | −0.03 to 1.63 |
2 | −6.71 to 5.16 | −2.45 to 1 | −0.63 to 0.96 | −0.03 to 1.63 |
Addon volume of nonconventional water to irrigation water demand | Predicted change in groundwater head (m) | Predicted change in concentration of groundwater (gL−1) | ||
North and Piedmont region | Sand dune area | North and Piedmont region | Sand dune area | |
1% Yr−1 | −6.62 to 5.19 | −2.24 to 1.05 | −0.63 to 0.86 | −0.05 to 1.60 |
2% Yr−1 | −6.44 to 5.22 | −2.17 to 1.07 | −0.64 to 0.82 | −0.07 to 1.58 |
3% Yr−1 | −5.55 to 5.35 | −1.73 to 1.12 | −0.71 to 0.76 | −0.1 to 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathish, S.; Cherubini, C.; Pastore, N.; Giasi, C.I.; Rapti, D. Impacts of Desalinated and Recycled Water in the Abu Dhabi Surficial Aquifer. Water 2021, 13, 2853. https://doi.org/10.3390/w13202853
Sathish S, Cherubini C, Pastore N, Giasi CI, Rapti D. Impacts of Desalinated and Recycled Water in the Abu Dhabi Surficial Aquifer. Water. 2021; 13(20):2853. https://doi.org/10.3390/w13202853
Chicago/Turabian StyleSathish, Sadhasivam, Claudia Cherubini, Nicola Pastore, Concetta I. Giasi, and Dimitra Rapti. 2021. "Impacts of Desalinated and Recycled Water in the Abu Dhabi Surficial Aquifer" Water 13, no. 20: 2853. https://doi.org/10.3390/w13202853